
Intensive Metrics for the Study of the Evolution of
Open Source Projects: Case studies from Apache

Software Foundation projects
Santiago Gala-Pérez

Apache Software Foundation
sgala@apache.org

Gregorio Robles
GSyC/LibreSoft

Universidad Rey Juan Carlos
grex@gsyc.urjc.es

Jesús M. González-Barahona
GSyC/LibreSoft

Universidad Rey Juan Carlos
jgb@gsyc.urjc.es

Israel Herraiz
Universidad Politécnica de Madrid

israel.herraiz@upm.es

Abstract—Based on the empirical evidence that the ratio of
email messages in public mailing lists to versioning system
commits has remained relatively constant along the history of
the Apache Software Foundation (ASF), this paper has as goal
to study what can be inferred from such a metric for projects
of the ASF. We have found that the metric seems to be an
intensive metric as it is independent of the size of the project,
its activity, or the number of developers, and remains relatively
independent of the technology or functional area of the project.
Our analysis provides evidence that the metric is related to the
technical effervescence and popularity of project, and as such
can be a good candidate to measure its healthy evolution. Other,
similar metrics -like the ratio of developer messages to commits
and the ratio of issue tracker messages to commits- are studied
for several projects as well, in order to see if they have similar
characteristics.

I. INTRODUCTION, MOTIVATION AND GOALS

On Nov 29, 2008, Joe Schaeffer, an Apache Software
Foundation (ASF) member and at that time employee for
infrastructure work at the ASF, sent an email to the private
ASF member discussion mailing list, which informed about
” [...] something I[n] M[y] O[pinion] interesting about the
ASF: the fact that the number of commits and the number of
mailing list posts have (sic) grown in linear relationship to one
another over the years. [...] Note how well the charts for total
commits and total emails align even though they’re graphed
against 2 different scales.” In the subsequent discussion on the
importance and meaning of the result, Joe added that ”you can
get an idea of how significant those emails are to the total by
comparing the two scales. Looks like about 1 commit email
for every 7-8 non-commit emails”. Since then, a dynamic web
site offers a graphical overview of the evolution of these two
factors of which Figure 1 provides a recent snapshot.

This paper aims to study in depth this metric, and what
can be inferred from its use on software projects, especially
if they can describe the state and the evolution of software
development projects. Our more ambitious goal is to identify
what are known as intensive properties. In the natural sciences,
an intensive property is not dependent on the size of the system
or the amount of material in the system: it is scale invariant.
By contrast, an extensive property is one that is additive for in-

Fig. 1. Recent snapshot of the commits and mailing list messages for all
ASF projects. Source: http://www.apache.org/dev/stats/

dependent, noninteracting subsystems, so directly proportional
to the amount of material in the system [1].

The identification of intensive metrics would be especially
suited for comparing projects of different sizes. Most metrics
of projects are difficult to compare since they depend on
the size of the project. This is additionally complicated in
the software domain because successful projects commonly
undergo transitions in size of two orders of magnitude during
their development.

The metric that we will study in this paper relates the
communication flow with the development activity. Our as-
sumption is that if this ratio is an intensive metric, we
will be able to infer information from this metric from a
software evolution point of view. Thus, we expect to have a
metric that varies with the maturity, technology or community
composition of a project, but not, or at least not much, with
its size.

Our focus is in particular on free software projects, and
among them, those projects for which most, if not all, of the
information exchanges take place over channels that can be
audited, logged and indexed for search and reference, like
email, bug trackers, code revision tools, etc. In particular, we
will concentrate mainly in the study of the ratio between email
traffic and number of source code commits for a selection of
projects in the ASF.



Hence, the contributions of this paper can be summarized
as follows:

• It presents the concept of invariant metrics applied to
software projects

• It introduces the usefulness of such metrics for the study
of software evolution

The structure of this paper is: Next, the methodology is
presented, including the identification of the data sources that
have been used. The following section contains the analysis
of several projects of the ASF. Lessons learned are presented
and discussed in section IV, while Section V tries to find
other ratios that may serve as invariant metrics. The following
section contains related research on the topic. The paper
concludes with sections on threats to validity, hints about how
to reproduce it and conclusions and further research.

II. METHODOLOGY

Studying the communication flows in a project is a tricky
task, as the number of channels in use is vast and may depend
on role, circumstance, task and other issues. However, in some
free software projects, such at is the case of the ASF, there is
a strong cultural trait that all decision-making should happen
through mailing lists. Justin Erenkrantz, one of the ASF board
members, states that ”all technical decisions about a project
are made in public (mailing lists)” and quotes a famous Roy
Fielding mantra where decisions have to occur: ”If it didn’t
happen on-list, it didn’t happen”1. Therefore, synchronous
media such as IRC, AIM, Jabber, etc. are not suitable for
decisions, and if they are important for any discussion, the
conversations are to be included in a mail message.

The fact that mailing lists are used at the ASF as a central
coordination point for projects has another advantage for
our research, as all interactions with the main development
systems are submitted to lists as well. So,

• issue trackers will send an email to specific lists for every
issue opened, commented, modified or closed,

• code review tools, automated builds -specially when the
build gets broken-, or wiki page edition are notified per
e-mail,

• and meta-data from commits to the source code version-
ing system are reflected in the project lists allowing to
discuss the change.

The ASF makes all its public mailing list archives available
using mod-mbox, an Apache Web Server module that serves
email archives in mbox format2. The archives are available at
a web site3, are indexed by list, in monthly archives.

A Shell script has been used for processing the mbox
email files. The result is a file containing lists of comma-
separated value (CSV) tables per project. A number of regular
expressions are then used to select, or filter out, automatically
generated messages or messages belonging to the various types

1http://www.erenkrantz.com/apachecon/JASIG%20-
%20No%20Jerks%20Allowed.pdf

2http://www.qmail.org/man/man5/mbox.html
3http://mail-archives.apache.org/mod mbox/

of traffic. Then, a Python script has been created to break the
results into a single CSV file per project. The output is used
with the R statistical environment: the data is read, transformed
into data frames. Later on, it is processed so that it takes
the form of a time series (ts) with the leading and trailing
months without activity stripped out, and a series of derived
and smoothed ratios are computed and added. For smoothing
we have used loess, a polinomial estimate [2]. Finally, a lot of
small plotting scripts are used to generate the graphics shown
in this paper.

A number of times, we found an isolated major peak in
the ratio between information exchanges and commits that
distorted the result. Manual inspection of the messages led
to the discovery of certain types of messages that have been
filtered out:

• Automated build failures.
• Incidents where a developer used Subversion

lock/unlock, and as other committers tried to commit a
big number of mails were generated.

• Because of a data loss that happened in jakarta.apache.org
in September 2003, the email archives were recon-
structed, leaving some files behind called 200308-
incomplete.gz or 200309-incomplete.gz. Those files were
matched by our script, causing duplicity of developer mail
messages and commits with regards to other lists.

III. ANALYSIS

We have selected a group of projects from the ASF and have
performed an exploratory analysis of them. The projects have
been chosen on the basis that they differ on issues such as size
(in terms of source code and number of developers and users),
age, endeavor (end-user or developer oriented), technology and
maturity, among others. We have even included some projects
of which we know that there is low activity or that have been
moved to the Attic, where Apache projects get archived if their
development ceases.

The amount of communication exchange in the projects
under study ranges from the 11,500 emails/month that Apache
Hadoop generated in Aug 2012 to projects such as Turbine,
that has generated a maximum of 175 messages per month
during the last 5 years.

In addition, we will analyze what we have called ecosys-
tems, closely coupled group of projects that typically consist
of an original project that sprout children as it grew, or projects
that depend on a common platform. Examples of these are:

• httpd created apr as its runtime, and they remain
related.

• Sling uses Jackrabbit and Felix. Even if
Jackrabbit is a reference implementation of JSR170
and Felix is a OSGI Service Platform, all three were
donated by Day Software to the ASF and have an ample
common committer pool.

• Hadoop is a Big Data framework. Being currently the
most popular ASF project, there are a lot of projects
spawning off Hadoop: HBase, Avro, Hive, Pig,
Zookeeper, and Whirr.



A. Apache Httpd

The Apache httpd server is the project that originated the
ASF as such. It has a 15 years history and has passed through
one major release (1.3 -> 2.0) and two minor ones (2.0 -> 2.2
and 2.2 -> 2.4). The project is still being actively developed,
and has generated a maximum of 5,200 messages in Apr 2002;
currently, the activity lies around 1,000 messages/month. Its
current size is 156 KSLOC.

Fig. 2. httpd measures. Main releases are annotated with vertical lines.

Figure 2 shows that the total traffic started relatively high,
with spikes of 2,000 messages/month, but went down to
around 1,000 by 1999. Commits started growing, to around
100 at the beginning of 1997, and up to 300 around 1999-2000.
This reflects the maturation of Apache 1.X. From then on there
was a big growth in total traffic, followed with a certain delay
by commits, which made the ratio go up to 10 by 2004. This
growth corresponds to Apache 2.0 and 2.2. The increase in
the ratio around 2001-2002 comes from a sharp increase in
traffic, related with the release of 2.0. Apache httpd 2.0 had
a new API and features. The extra traffic took some time to
stabilize an then decrease. The commit flow kept reasonably
constant in time, going slightly down after the release and
keeping flat, but only the traffic decrease as the excitement
faded and the knowledge about HTTP 2.0 spread returned the
ratio to stationary levels. After this, the ratio of commits to
total messages has been going down steadily, and even the
recent release of 2.4 didn’t suppose a major change.

B. Apache Portable Runtime (APR)

apr is a 66 KSLOC library that eases the porting of httpd
to different platforms. It is also used by Subversion and
other projects. Its traffic patterns are very different of the ones
in httpd, with peaks of total traffic and commit traffic not
much related with the releases or activity of httpd, specially
as it matured.

Figure 3 shows that the activity is polarized around the
releases, and fairly decoupled from httpd, although signifi-
cant spikes of traffic followed major httpd server releases,
especially 2.2, meaning probably that a number of bugs or
design problems were discovered after further exposure of the
code.

Fig. 3. apr measures. Main releases are annotated with vertical lines.

apr is what we have identified as a developer oriented
project, as it has little impact outside the developer community.
We have analyzed if the pattern of the traffic in the developer
mailing list is different from the shown above which includes
the total traffic, and have found that they have a similar shape.

C. Apache Lucene

Lucene is a full text indexing and search solution. Its
current size is 414 KSLOC. It is showing a lot of activity in the
last years, because of the trend of Big Data processing. The
ratio total messages/commits consistently grew until 2008,
because the rise in the number of mail messages was not
followed with a similar increase in the number of commits
(see Figure 4). However, even though it has seen a tremendous
increase of traffic from 2009 onwards, the number of commits
has been growing at a faster pace, outgrowing mail messages
and resulting in a decreasing ratio with values under 10.

D. Apache Turbine

Turbine, an early web framework in Java, is part of
Apache Jakarta. It is a project that was very active around
2000, but got stagnant due to endless refactoring that broke
backwards compatibility and the rising popularity of alternate
approaches, such as Ruby on Rails. The latest Turbine
release had 41 KSLOC.

Figure 5 shows that the total email traffic has gone down
since 2001-02. In January 2006 the number of messages
was 26, down from 1,865 in January 2002, a two orders



Fig. 4. Apache Lucene measures. Main releases are annotated with vertical
lines.

Fig. 5. Apache Turbine measures. Main releases are annotated with vertical
lines.

of magnitude of decrease. Turbine 3 never got released.
Developers moved to other alternatives at the time, and the
source code was refactored several times while component
functionality and APIs never became stable but keep changing
and breaking dependent projects such as Jetspeed.

However, the smoothed ratio has remained almost constant
during the whole lifetime of the project. Even as the total
traffic went down by a factor 100, a small group of developers
is still using it and working on it, and the ratio of messages
to commits shows a steady progress. Version 4-M1 is being
currently tested. The project is mostly stable, and still alive.

E. Apache Tomcat

Tomcat was one of the first projects in Apache involving a
code donation. In Jakarta there was a project called JServ,
developed to support the Servlet API 2.0. Sun Microsystems,
at the time, had a product called JWSDK, a reference imple-
mentation of the Servlet API. Its current size is 213 KSLOC.

Fig. 6. Apache Tomcat measures. Main releases are annotated with vertical
lines.

When Tomcat released the 3.2 version, there was a strong
discussion about its future evolution4. As a consequence,
during a relatively long period, Tomcat released in parallel
3.2.X, 3.3.X and 4.0.X versions, developed by different de-
veloper groups. While this feature can be thought to cause
the spike in developer mail traffic during 2000, the user
traffic was most probably not related: it was coming from the
increase in use that the frantic development of the web and
the consolidation Java as a server side platform was bringing.

We can see in Figure 6 how 3.3 and 4.0.1, the first releases
of the two competing designs, were released very close in
time. There was a big activity releasing fixes, optimizing
performance, etc. during the next years. At the end of this
fork, Tomcat 5 was based on the Tomcat 4 architecture
(codenamed Catalina) and not in the approach from 3.3.

Some releases are signaled in Figure 6, including the RFR
marker, which outlines the date of the Rules for Revolutionar-
ies email message. After this message and in the following big
discussion, the number of messages grew up to values around
6,100/month, and later 7,200 around the release of 5.0.0.

It should be noted, that free software developers and users
typically install and update packages using the distribution
package repository as new versions are released. They are
also typically more familiar with cultural issues: where to

4Craig R. McClanahan recounts the history in a mes-
sage, see http://mail-archives.apache.org/mod mbox/tomcat-
dev/200001.mbox/raw/%3C387BF46C.F8302840%40mytownnet.com%3E



find documents, how to proceed when a bug is found, etc. In
contrast, typical Windows developers discovering Java in the
early 2000’s would be forced to download, install and upgrade
on their own, and being less aware of cultural conventions.
These type of developers make more noise in lists asking for
support. The arrival of Windows developers, attracted to Open
Source by the corporate commitment to Java and the nature
of the typical servers being Open Source, explains this strong
surge in total traffic, that we have not found in the developer
list.

F. Apache Jackrabbit

Jackrabbit is the reference implementation of JSR-
170, a Java Content Repository (a standard for managing
web content). This JSR was pushed forward mostly by Day
Software, a company who donated two other components that
use Jackrabbit to the ASF as well: the OSGi service
platform, Felix, and a web framework, Sling. The three
projects are closely related and will be studied together in
Figure 7.

Fig. 7. Apache Jackrabbit measures. Main releases are annotated with vertical
lines.

The ecosystem has attained success, with Jackrabbit
having processed 1,500 messages in July 2009, Felix 2,168
in September 2009, and Sling 1,688 in July 2008, and 1,616
in August 2010. Felix continues to be relatively successful,
being one of the two top OSGi Service Platforms, and the one
independent of Eclipse, but used by NetBeans, and it is seeing
further adoption. Sling has slightly slower activity. Probably
the reason is that there is a big number of Content Management
platforms in other languages, and the main inroads of Java
based CMS systems into enterprise use are in big, Java-only
shops, which tend to trust commercial vendors and not feed
public, community based activity.

G. Apache Hadoop

The Hadoop ecosystem is seeing development at a frantic
pace since 2007. With time, a number of subprojects spawned
out of Hadoop, which already amounts for 1.27 MSLOC,
being the most significant:

• Avro, a data serialization system,
• HBase, the Hadoop distributed, scalable, big data store

database,
• Hive, a data warehouse system for Hadoop, and
• Pig, a platform for analyzing large data sets.

Fig. 8. Hadoop and subprojects measures. Main releases are annotated with
vertical lines.

All the projects are seeing very high ratios of messages to
commits, above 10 most of the time (see Figure 8). When
inspecting the traffic of the mailing lists in detail, we have
found that most of the communication, almost half of it,
appears to be related to the issue tracking system, while the
developer traffic share is very low. This makes us assume that
development is coordinated, with users as well, through the
issue tracker rather than using the developer list.

H. Apache Geronimo

Geronimo is a certified JavaEE Application Server. It was
born when a group of developers involved in several JavaEE
components got in a conflict with JBoss and asked the
ASF to release a certified JavaEE Application Server. It was
adopted by IBM as a community edition of their WebSphere
Application Server. The current size of Geronimo is
370 KSLOC.

As can be seen from Figure 9, Geronimo shows a uniform
ratio of traffic to commits. As the project matures, there is less
developer activity.

I. Apache Spamassassin

Written in Perl, it is a preexisting community that joined
the ASF in 2004. While most Java developers are involved in



Fig. 9. Geronimo measures.

several projects, and some of them even in httpd or apr,
Spamassassin developers were more isolated in the initial
phases of the project.

Fig. 10. Spamassassin measures. Main releases are annotated with vertical
lines.

Spamassassin is a mature application used in production
with 54 KSLOC of code. Figure 10 provides information
on the total activity against commits; the activity settles as
the project matures. In Spamassassin the design was fairly
mature already when the project joined the Apache Software
Foundation. So the total ratio has gone down to 5, and stayed
between 3 and 8 since 2007. Spikes of activity are related to
new releases.

J. Apache Portals

Portals is an ecosystem of software projects, where
Jetspeed is its main product with around 202 KSLOC.

Fig. 11. Jetspeed measures. Main releases are annotated with vertical lines.

According to Figure 11, Jetspeed is stagnating in early 2012:
the traffic has fallen consistently and so have the number of
commits as well, to the point where the number of commits
is very low. The ratio shows a discontinuity when no commits
occurred during a month.

K. Apache Beehive

Beehive makes J2RR programming easier by building a
simple object model on J2EE and Struts. Beehive is the first
project that got retired into the Attic, where Apache projects
get archived. It serves as a good example of what happens to
a project that gets abandoned by developers. Beehive has a
lifespan starting 2004, when it was donated by BEA to Apache
for incubation, to about September 2008. After that is was
relatively abandoned, and moved to the Attic in January 2010.
The latest release had 88 KSLOC.

As it can be seen from Figure 12, the ratio of to-
tal messages/commits is almost constant until release 1.0.2.
Then, the project is abandoned and even some months with
no commits result in discontinuities in the ratio.

IV. LESSONS LEARNED AND DISCUSSION

In this section we summarize and discuss the lessons that
we have learnt from measuring the ratio on several projects,
with a special focus on assessing the appropriateness of our
metric as an intensive metric and what information it provides.

A first observation from the projects under study is that that
we can characterize a healthy Apache project as one that has a
smooth ratio messages/commits. Those projects showing little
activity or those where a few developers are responsible of
most commits will show more noisy ratios than active projects



Fig. 12. Beehive measures. Main releases are annotated with vertical lines.

with a balanced groups of active developers. Noisy behavior of
the information exchange/commits ratio is typical of projects
with low activity or subject to future problems.

When a project stagnates, the metric allows to visually iden-
tify this, as it peaks to infinity. Beehive is a good example,
as after one such period the activity ceased completely, and
it was retired to the Attic two years later. Apache Portals
shows in 2012 a pattern similar to the final one of Beehive,
of ceasing commit and total activity, which points to the fact
that the portlet API based portals are being abandoned.

Figure 13 provides an overview of the results shown for
those projects that offer a continuous development. We can
observe how the metric under study allows us to easily
compare the evolution of the projects, even if those span
two orders of magnitude in the size of the source code, the
activity and the number of contributors differ in one order of
magnitude, and they are of different age.

Among these projects, we can identify two groups: those
projects that are user-oriented and those that are developer-
oriented. For the former, we can see that a typical historical
shape of the ratio starts with high values, as brainstorming
sessions or discussion about design happen. In the maturity
phase, however, the ratio goes down to values between 3 and 8.
So, projects show high peaks, but tends to the above mentioned
values as the project enters a development and maintenance
phase.

Developer-oriented projects, such as Turbine and
Geronimo, however show a different pattern. Having their
community a minor size, there are no major spikes of user
traffic and the peaks are narrower and do not leave the
region where the ratio is between 3 and 8. Geronimo shows
a maximum of 6.2 in July 2005 and a minimum of 3.7
in February 2011, and varied slowly. Turbine has stayed
between a minimum of 2.5 in March 2009 and 5.4 in May

Fig. 13. Smoothed messages/commits ratio for some of the studied projects.

2003. Felix and sling show the same pattern, and we
suspect it is for the same reasons. Even Portals, a similar
project, had a strong spike of 13.8 in March 2001, in the heat
of the portletAPI discussions, when a big group of external
people joined the discussion.

In summary, the total traffic to commit ratio can be consid-
ered an intensive metric. However, at least for the projects un-
der study, it seems better suited to user-oriented projects with
large communities than for small, developer-only projects.

V. USING OTHER RATIOS

A. Developer List Messages vs. Commits

We can limit our comparison to the developer mailing list.
While the total message traffic includes bug reports, user list
question, and other sources of messages that are typically not
originated inside the development team, developer mail traffic
is typically created either by internal developers or people
trying to join or just modifying the code for their use. Also,
while the total traffic typically goes up when a project is
used or adopted a lot, developer traffic increases before major
releases or refactorings, and when there is brainstorming or
discussions about design decisions.

As shown in Figure 14, when a project matures and devel-
opment is limited to bug fixing and maintenance, the need for
coordination is lower and a pattern with less messages on the
developer mail list compared to commits can be found. This
trend seems to be followed by most of the projects we have
been analyzing. So, even when, like Hadoop, the total/commit
ratio is very high, the developer mail/commit ratio is below
one, meaning that developers either don’t need to talk or the
just ”talk with patches”, as Apache developers often say.

For the purpose of our study, the developer traffic to
commits ratio seems to be an invariant metric as projects from
very different (source code and community) sizes can be easily



Fig. 14. Developers to commits ratio for all projects.

compared. However, this metric is less expressive than the one
that considers all the traffic in the project, in the sense that
from the latter the phases of the projects can be more easily
identified as a simple inspection of Figure 13 and Figure 14
shows.

B. Issues vs. Commits

Another information source is the one that is related to
issues, i.e., bugs and enhancement requests submitted to the
projects. The issue related activity does not show the same
convergence with maturity than the previous cases when
compared with number of commits (see Figure 15). It gets
higher and higher as users are encouraged to report bugs and
interact with the project via the issue tracker, and also when
a project development is user-driven rather than developer
driven.

However, we have found that the issue-related activity
correlates with the total project activity in a similar way as
with commits. Mature projects have a similar trend to get an
issue-related activity of 10-15% of total activity. The Hadoop
ecosystem, because of its use of the issue tracking system as
it main communication point, shows a much lower total/issue
ratio.

Again, the issues to commits ratio may be considered an
intensive metric. However, its applicability is not clear to the
authors at this time, and the information it provides can be
obtained in a more clear way from the previous ratios.

VI. RELATED RESEARCH

The existence of laws that allow to explain how software
evolves is a matter of study since the early 1970s, starting
with seminal work by Lehman [3], [4]. There has been ample
research literature on this issue from the mining software
repositories point of view [5]. However, to the knowledge
of the authors, there is no previous research concerned with

Fig. 15. Bug tracking issues to commits ratio for all projects.

finding intensive metrics for software projects, even from
the point of view of software evolution. Although Lehman
acknowledges the importance of metrics in the process of
software evolution [6], the laws are written at a high level
of abstraction, without referring to specific metrics. Hence,
it is difficult to assign the metrics discussed in this paper to
any of the laws, although probably the closest are law III
of Self Regulation, which states that ”global E-type system
evolution is feedback regulated”, and law VIII of Feedback
System, which says that ”evolution processes are multi-level,
multi-loop, multi-agent feedback systems” [7]. Nevertheless,
the fact that there are some factors that are inherent to software
development is a central idea of the laws, and as such, this
paper has much in common with Lehman’s views.

The approach that has been presented in this paper has tight
links with literature on open systems. In this regard, Prigogine
calls dissipative structures to the open systems showing self-
organization thought this connection between order, stability
and dissipation that happens far from equilibrium and/or in
the presence of highly non-linear coupling [8]. Rong et al. [9]
characterize ”the web community” as a dissipative structure,
and advocates the use of information entropy for the study
of fluctuations as some contributors have a disproportionate
contribution, thus using software entropy as a measurement
of how far from equilibrium is a community. In [10], while
the approach seems to be oriented to the quantification and
measure of the entropy of exchanges between parts of a
system, and between the system and the environment, no effort
is done to give quantitative data. Many authors have already
thought that free software development should be viewed from
such a perspective, being it an open ecology [11]. Some
authors have even suggested that self-organization that occurs
in the animal world (as the well-known stigmergy [12]), may



explain how software development occurs in free software
projects [13].

Several studies on how the free software communities orga-
nize and structure themselves. The most prominent analyses
are those by Mockus et al. on Apache [14], [15] and by Koch
and Germán on GNOME [16], [17].

The role mailing lists play have been already the main
focus of many empirical studies [18], even to the point where
literature exists that highlights the concerns that should be
considered for such type of analyses [19]. Of special interest
to this research is a paper on when a contribution to a mailing
list is meaningful [20]. There are some publications that
provide further information specifically on the Apache mailing
lists [21], [22].

VII. THREATS TO VALIDITY

Being our approach an empirical research, some threats to
its validity can be identified. In this section, we follow the
usual classification of threats to construct, internal and external
validity.

A. Threats to Construct Validity

• In our approach the unity of information is the message
to the mailing list. Many issues regarding this can be
found, as messages may have different values of content
and redundancy.

• Although, as described in the methodology, we have tried
to filter artificial peaks out, this is a manual task that
probably has been done in an incomplete way.

• Messages might have gotten lost. As an example, the
archives for turbine from 1998 to 2001 were not in
Apache and got lost.

• Different information flows are not considered: press,
documentation and other communication exchange in
downstream projects such as the Linux distributions that
package ASF software.

• For projects implementing standards, such as
Jackrabbit, Felix, Tomcat, and even httpd,
it might happen that the relevant standards lists has
activity, such as proposals for the revision of the
standard, feed-back, errata, etc. that influence directly
the development of the project. We are, thus, losing
some of the information exchanges related with the
project.

B. Threats to Internal Validity

• Extraneous effects: the use of new tools may produce
changes in the ratio. So, the use of the Jira issue-tracking
system has shown to produce more messages, and the
introduction of the git versioning system results in more
commits.

C. Threats to External Validity

• Non-representative sampling: We have worked in this
paper at the granularity of the ASF subproject, starting
from the fact that the ratio can also be observed at the

global ASF project. The open question that arises is
in how far our results and conclusions are valid when
looking at smaller units. In projects dominated by a
company with internal work-flows and where code is
dumped periodically as an open source projects, lots of
information is not publicly traceable and the methodology
could not be applied. Such a case would be Android or
MySQL.

• Non-representative research context: We have only stud-
ied a sample of projects from the ASF. Even if they all
have their own goals, culture and sometimes rules, future
research should see if the findings may be generalized
to other free software projects, and to evaluate how
the number of volunteers and professionals, the open
communication exchange vs. internal/other means may
affect the results. So, in projects making extensive use of
videoconferencing or IRC channels, our method would
not provide good results. A good example of this behavior
is the Cyanogenmod project, where developers mostly
hang on IRC channels and tend to meet weekly by web
video conference. They also use forums, which don’t
send email. In those projects information flows are either
not archived or not present in email. In order to study
such projects, different analysis techniques will have to
be developed, for instance parsing IRC log activity or
forum threads.

VIII. REPRODUCTION PACKAGE

This study has been performed using shell, Python and R
scripts. The data source used has been the official mailing list
archives of the ASF projects under study. The scripts used to
process and analyze the information, and other complementary
information can be found in the companion web site with
reproduceability elements and methodological details5, built
following the criteria presented in [23].

IX. CONCLUSIONS AND FURTHER RESEARCH

This paper presents the concept of invariant metrics in the
domain of software projects, in particular with special attention
to software evolution. we have shown three simple metrics
that have the property of being scale invariant regarding to
project size, community size, global activity and project age,
thus being good candidates for an intensive metrics.

Of these, the ratio of total messages to the mailing lists to
total number of commits in the versioning system has shown
to be the most expressive metric, providing a good overview of
the state of the projects under study. In addition, and because
of its invariance, we are able to compare the projects regarding
their state even if their sizes are very disperse. This metric
has shown to serve to identify stagnant projects, and more
importantly, projects in danger of stagnation. However, at least
for the population of projects under study, its use is better
suited towards user-oriented projects with a large community
of users than to developer-oriented projects. Much of the

5http://gsyc.urjc.es/∼grex/repro/2013-apache-intensive



information that can be easily visualized in the former is not
available in the latter, at least with the current approach.

Our methodology is a simplification of our first idea, which
was to compare the total communication flow against the
development information. It would be tempting to compute
the complexity of each contribution to a software project, and
thus compute our ratios in terms of total bits contributed/bits
committed to the repository. This approach will be further
investigated, but we felt that the contributions will have a
similar average information content, and thus it would have
complicated our computations without a big change in results.

Further research should be put on verifying our results and
lessons learned on other free software projects to see if they
can be generalized and if the proposed metrics are really a)
intensive and b) of any usefulness.

ACKNOWLEDGMENT

The authors would like to thank the Apache community, for
their support and comments on some questions raised related
to this paper. The work of G. Robles and J.M. González-
Barahona has been funded in part by the European Com-
mission under project ALERT (FP7-IST-25809) and by the
Spanish Gov. under project SobreSale (TIN2011-28110).

REFERENCES

[1] K. Narayanan, A Textbook of Chemical Engineering Thermodynamics.
PHI Learning Pvt. Ltd., 2004.

[2] W. G. Jacoby, “Loess:: a nonparametric, graphical tool for depicting
relationships between variables,” Electoral Studies, vol. 19, no. 4, pp.
577–613, 2000.

[3] M. M. Lehman, “Programs, Life Cycles, and Laws of Software Evolu-
tion,” in Proceedings of the IEEE, vol. 68, no. 9, Sep. 1980, pp. 1060–
1076.

[4] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M.
Turski, “Metrics and laws of software evolution - the nineties view,”
in METRICS ’97: Proceedings of the 4th International Symposium on
Software Metrics, nov 1997, p. 20.

[5] H. H. Kagdi, M. L. Collard, and J. I. Maletic, “A survey and taxonomy
of approaches for mining software repositories in the context of software
evolution,” Journal of Software Maintenance, vol. 19, no. 2, pp. 77–131,
2007.

[6] M. M. Lehman, D. E. Perry, and J. F. Ramil, “Implications of evolution
metrics on software maintenance,” in Proceedings of International
Conference on Software Maintenance, 1998, pp. 208–217.

[7] M. M. Lehman, “Laws of software evolution revisited,” in Proceedings
of the European Workshop on Software Process Technology. London,
UK: Springer-Verlag, 1996, pp. 108–124.

[8] G. Nicolis and I. Prigogine, Self-organization in nonequilibrium systems.
Wiley, 1977.

[9] J. Rong, L. Hongzhi, Y. Jiankun, Z. Dehai, C. Lihua, and S. Yafei, “An
approach to analysis and measurement of the stability of web community
based on dissipative structure theory and information entropy,” in
Natural Computation, 2009. ICNC’09. Fifth International Conference
on, vol. 6. IEEE, 2009, pp. 326–329.

[10] J. Rong, L. Hongzhi, Y. Jiankun, F. Tao, Z. Chenggui, and L. Junlin, “A
model based on information entropy to measure developer turnover risk
on software project,” in Computer Science and Information Technology,
2009. ICCSIT 2009. 2nd IEEE International Conference on. IEEE,
2009, pp. 419–422.

[11] K. Healy and A. Schussman, “The ecology of open-source software
development,” University of Arizona, USA, Tech. Rep., Jan. 2003,
http://opensource.mit.edu/papers/healyschussman.pdf.

[12] P.-P. Grassé, “La reconstruction du nid et les coordinations inter-
individuelles chez bellicositermes natalensis et cubitermes sp. la théorie
de la stigmergie: Essai d’interpretation du comportement des termites
constructeurs.” Insectes Sociaux, no. 6, pp. 41–81, 1959.

[13] G. Robles, J. J. Merelo, and J. M. González-Barahona, “Self-organized
development in libre software: a model based on the stigmergy concept,”
in Proceedings of the 6th International Workshop on Software Process
Simulation and Modeling (ProSim 2005), St.Louis, Missouri, USA, May
2005.

[14] C. Bird, D. Pattison, R. D’Souza, V. Filkov, and P. Devanbu, “Latent
social structure in open source projects,” in Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of software
engineering. ACM, 2008, pp. 24–35.

[15] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies
of Open Source software development: Apache and Mozilla,” ACM
Transactions on Software Engineering and Methodology, vol. 11, no. 3,
pp. 309–346, 2002.

[16] S. Koch and G. Schneider, “Effort, cooperation and coordination in an
open source software project: GNOME,” Information Systems Journal,
vol. 12, no. 1, pp. 27–42, 2002.

[17] D. M. Germán, “The GNOME project: a case study of open source,
global software development,” Journal of Software Process: Improve-
ment and Practice, vol. 8, no. 4, pp. 201–215, 2004.

[18] E. Shihab, N. Bettenburg, B. Adams, and A. Hassan, “On the central
role of mailing lists in open source projects: An exploratory study,” New
frontiers in artificial intelligence, pp. 91–103, 2010.

[19] N. Bettenburg, E. Shihab, and A. E. Hassan, “An empirical study on
the risks of using off-the-shelf techniques for processing mailing list
data,” in Software Maintenance, 2009. ICSM 2009. IEEE International
Conference on. IEEE, 2009, pp. 539–542.

[20] W. M. Ibrahim, N. Bettenburg, E. Shihab, B. Adams, and A. E. Hassan,
“Should i contribute to this discussion?” in Mining Software Repositories
(MSR), 2010 7th IEEE Working Conference on. IEEE, 2010, pp. 181–
190.

[21] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan, “Min-
ing email social networks,” in Proceedings of the 2006 international
workshop on Mining software repositories. ACM, 2006, pp. 137–143.

[22] P. C. Rigby and A. E. Hassan, “What can oss mailing lists tell us? a
preliminary psychometric text analysis of the apache developer mailing
list,” in Proceedings of the Fourth International Workshop on Mining
Software Repositories. IEEE Computer Society, 2007, p. 23.

[23] J. M. González-Barahona and G. Robles, “On the reproducibility of
empirical software engineering studies based on data retrieved from
development repositories,” Empirical Software Engineering, vol. 17, no.
1-2, pp. 75–89, 2012.


