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1. INTRODUCTION 

A synergetic understanding of cancer evolution and the effect of 

combination drug therapies on it is the cornerstone for developing 

effective personalized treatments, which can radically improve 

patients’ well-being and their quality of (work and social) life. By 

extension, improving the treatment of patients indirectly enhances 

the quality of life for families, friends, and carers. Moreover, 

personalizing effective therapeutic approaches reduces treatment 

duration, cutting down healthcare monetary costs, which can be 

re-directed to other health and social services. Given that three out 

of four US families will at some point experience a family 

member suffering from cancer1, the potential impact of improved 

cancer treatment is of considerable socio-economic and 

organizational significance. 

Paving the way for the development of new cancer treatments 

requires identifying personalized drug combinations, which, by 

acting synergistically, will be able to fight cell resistance in target 

therapies and ultimately increase the patients’ life expectancy and 

quality of life. Studying the effects of drug synergies on resistant 

cells is central to the problem of curing cancer. These phenomena 

are subject to the inherent complexity of biological systems and 

affected by the interplay between different processes that occur at 

different scales. For instance, they depend on the molecular 

mechanisms by which individual cells can develop resistance to a 

particular drug [1], which are complex in their own right, but they 

also depend on various types of dynamic processes concerning 

populations of cells. Examples of the latter include the variability 

in the gene expression profiles of different cells, which gives rise 

to heterogeneous populations, the competition for resources such 

as space and nutrients, as well as the interaction or cross-talk 

between different cells [2]. Consequently, multi-cellular systems’ 

dynamics, such as tumor growth and evolution, can only be 

understood by studying how individual cells grow, divide and die, 

and the interactions between the cells at the population level.  

In-silico models are becoming powerful tools in the fight against 

cancer, since they allow the combination, in a controlled 

environment, of heterogeneous sources of experimental data with 

prior biological knowledge, towards a better understanding of the 

underlying mechanisms and the biological processes which 

                                                                 

1 http://natamcancer.org/NAP_Native_American_Priorities.pdf  

determine tumor growth, resistance to therapies and effects of 

drug synergies in cells. The multi-scale interplay of such 

processes makes their modeling and simulation hard. For instance, 

an average-sized tumor nodule contains approximately 108 - 109 

cells. Each such cell needs to be modeled individually, thus its 

state must be updated at each step of the simulation process. 

Moreover, modeling the dynamics of the entire system at the cell-

population level, and the evolution of various environmental 

parameters via partial differential equations adds additional 

complexity to the task. The process of simulating such a cellular 

system produces data at a rate of approximately 100 GB/min. 

Therefore, in-silico models of tumor evolution and resistant cells’ 

emergence require immense computational resources, in addition 

to extremely efficient data processing algorithms, operating on 

massive data streams. 

This work presents the necessary architectural and algorithmic 

apparatus for speeding up (a) the repetitive procedures employed 

by biologists in cooperation with data scientists for modelling, 

setting up and running such simulations, and (b) the extraction of 

simulation outcomes so that drug combinations are interactively 

applied. This way, the time for personalized and, consequently, 

more effective treatments is cut down. 

2. TECHNOLOGICAL CHALLENGES 
Below, we summarize the technological challenges that must be 

addressed for the development of new cancer treatments.   

Challenge 1: On one hand, utilizing large computer clusters, 

along with High-Performance Computing (HPC) resources in 

order to avoid stalling clock rates when dealing with extreme-

scale simulations is of utmost importance. On the other hand, 

more often than not, data analysts cooperating with life scientists 

have to resort to traditional, batch processing methodologies, 

where a computer cluster is treated as a black box. A user submits 

a job to the cluster and patiently waits for the job to finish, with 

little insight on what is being processed and where, what data 

volumes are being moved around and at what cost, how long the 

whole process will take and whether it could be optimized to run 

more efficiently. Often, what lies at the end of this long and 

expensive process, is yet another set of experiments. Consider, for 

instance, a life science data analyst who needs to tune a vast 

number of parameters for a complex machine learning model, or 

identify potentially useful cell or population features, with no 

alternative other than repeatedly running a different 

parameter/feature set configuration.  
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Requirement 1: Addressing this challenge requires developing 

novel interactive processing tools for extreme-scale data 

analytics. Such tools will enable life scientists in cooperation with 

data analysts to iteratively pose queries and derive rapid 

responses. They can also provide support on how time-consuming 

computations may be broken down into smaller chunks in an 

optimal manner, based on the specifications of the underlying 

computational resources, and how results from such smaller 

chunks may be presented to the life scientist in an incremental 

fashion.  

Challenge 2: Big Data analytics tools mine past data to extract 

patterns conveying insights into what has happened, and then 

project those patterns into the future to make sense of the fresh 

simulation data that stream-in. This permits only the detection of 

such patterns, which is often inadequate. In order to mitigate 

risks, capitalize on opportunities and allow for proactive decision-

making, predictive analytics tools, enabling forecasts of future 

events of interest are required. Consider, for instance, the ability 

to forecast the emergence of resistant cells via the detection of 

small changes in physiological or molecular markers. Interactive 

analytics, therefore, should be guided by complex event 

forecasting. The ability to forecast, as early as possible, a good 

approximation to the outcome of a time-consuming and resource-

demanding computational task also allows the rapid identification 

of undesired outcomes and saves valuable amount of time, effort 

and computational resources, which would otherwise be spent in 

vain. Consider, for example, the possibility to forecast the 

outcome of a complex multi-cellular system simulation for tumor 

evolution, without the need to wait for the simulation to be 

completed.      

Requirement 2: Addressing this challenge requires cutting-edge 

techniques combining distributed, online machine learning and 

complex event forecasting. Algorithms should incorporate, in real-

time, new knowledge that streams into ever-changing, ever-

adapting, but highly robust and accurate models, while also being 

able to make trustworthy forecasts for future events of interest, 

fostering proactive decision-making. Additionally, a library of 

distributed, highly-scalable and optimized machine learning 

techniques, based on deep analysis of massive amounts of 

historical data, allows the discovery of valuable patterns of past 

behavior, which are subsequently subject to change and 

adaptation via online revision techniques. 

Challenge 3: Allowing the data analyst to gain rapid insights on 

the characteristics of the massive input, lays the ground for a 

synergy between domain experts, human analysts, data analytics 

algorithms and computing infrastructures, in contrast to the 

current state of affairs, where algorithms and infrastructures are 

treated as black boxes. Such a synergy could result in efficiently 

handling problems, which are currently beyond the abilities of 

contemporary information and computer technology. As a simple 

example of such a synergy consider a data analyst able to pre-

attentively identify an informative feature set over a multi-cellular 

population, using her prior domain knowledge and some first 

insights on the data properties, gained by exploring data synopses. 

Proposing this feature set to a machine learning algorithm may 

ultimately improve the algorithm’s performance faster than it 

would be possible without human intervention. In turn, this 

affects the available computational resources, which can be 

allocated elsewhere.  

Requirement 3: Interactive data analytics should foster such 

synergies between humans and algorithms towards the effective 

solution of difficult problems.  

Challenge 4: Domain experts and even data analysts often do not 

possess the necessary programming skills to code, optimize and 

debug data processing operations over Big Data and HPC 

infrastructures.  

Requirement 4: A visual tool for setting up the desired data 

processing operations that would automatically translate the 

setting to optimized code is highly desirable. In contrast to 

mainstream solutions, what is needed here is to design and 

develop a flexible, pluggable, distributed software architecture 

that will be largely programmable and set up by graphical data 

processing workflows. This will allow the non-data scientist, such 

as the life scientist, to take the most out of the underlying 

computational resources, by interactively querying data-at-rest 

and data-at-motion and experimenting with a multitude of 

otherwise highly-opaque models with complex parameter 

configurations.  

3. METHOD, ARCHITECTURE & 

APPARATUS 
Overcoming the challenges outlined in the previous section 

revolves around integrating two core concepts: interactive data 

analytics and operational proactivity via complex event 

forecasting. Figure 1 illustrates a possible architecture and 

outlines an algorithmic apparatus which unites the two concepts. 

As shown in the figure, extreme-scale data streams are 

continuously acquired from the various (cellular system 

simulation) sources. A dedicated, lightweight engine relying on 

approximate query processing techniques is introduced to extract 

compact synopses out of these data streams [3][4][5]. Synopses 

are thought of as a prerequisite that allows for fast response times 

during exploring the massive, high-speed input (in Figure 1 this 

corresponds to Synopses Data Engine - SDE). Then, both the 

extracted data synopses and data streams are forwarded to a 

number of recommended components responsible for interactive 

analytics and operational proactivity. Accounting for the 

requirements in Section 2 involves four main components for: (a) 

distributed machine learning & data mining; (b) data processing 

and workflow specification; (c) distributed complex event 

forecasting and (d) optimization and runtime adaptation of Big 

Data processing workflows. We examine the operation of each 

component in turn, below. 

The distributed machine learning & data mining component is 

used to incorporate a wide variety of tools for building various 

types of predictive models from data. These tools can rely on 

existing algorithms for data analysis [6][7], which need to be 

customized to work in a distributed, streaming setting, and 

optimized to cope with the immense data volumes. The machine 

learning algorithms are utilized to constantly mine the streaming 

input to generate, maintain and update a rich variety of diverse, 

high-quality models and model ensembles. These models can be 

used, at any time, to analyze the data that stream-in. At the same 

time, these algorithms may be used as a library for interactive data 

analytics, for the data analyst to experiment with compressed data 

synopses. This will enable the data analyst to e.g. try different 

parameter configurations per model, different feature sets on 

existing models, or even generate new models on-the-fly from 
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representative data views, thus gaining early insights on the 

properties of the data she's dealing with.  

The process of interactive data analytics is not supposed to hinder 

the actual knowledge extraction from the streaming data: for 

instance, the life scientist should be able to explore data stream 

synopses, as the machine learning algorithms seamlessly integrate 

new regularities into the models, by continuously updating them 

from the entire stream of data. 

The data processing and workflow specification component is 

added to offer additional support for interactive data analytics, via 

a rich variety of data processing functions, as well as the ability to 

plug-in new custom functions, or new data analytics algorithms 

(see Figure 1). Moreover, it allows the composition of data 

analytics pipelines from existing models and data processing 

functions. Interactive data analytics must be supported by 

graphical interfaces for the specification of data processing 

workflows, thus enabling the domain expert, in cooperation with 

the data analyst, to take the most out of the platform with 

minimum coding effort. The vision is to involve non-data 

scientists into fast loops of interactive, exploratory data analysis, 

where domain experts and data analysts may gain rapid insights 

on properties of the data “at a glance”. 

The optimization and runtime adaptation of query execution is a 

component suggested to facilitate fast response times during 

extreme-scale analytics across different computing platforms, as 

well as the execution for Big Data processing workflows (see 

Figure 1). Data analytics is not necessarily performed on a single 

platform. Parts of the processing could be pushed to the input 

sensor level e.g., collecting simulation data, while more 

computationally intensive operations, such as population cell 

simulations, could be executed in one or more (potentially 

distributed) Big Data platforms, or within clusters (e.g. GPUs) of 

a supercomputer. Even within a single supercomputer, one often 

finds different available clusters, with different hardware and 

processing capabilities. In case of (machine learning) operators 

that have available implementations in different platforms, it is 

desirable to minimize the data analysts’ involvement in the 

specification of the platform on which these operators must be 

executed. Hence, optimization and runtime adaptation technology 

[8] is foreseen to automate the optimal allocation of resources on-

the-fly for the execution of these operations.  

Distributed complex event forecasting adds up as a key enabler 

component for the recommended architecture. The streaming 

input is constantly matched against a set of event patterns, i.e. 

arbitrarily complex combinations of time-stamped pieces of 

information. An event pattern can either be fully matched against 

the streaming data, in which case events are detected, or partially 

matched, in which case events are forecast with various degrees of 

certainty. The latter usually stems from stochastic models of 

future behavior [9], embedded into the event processing loop, 

which estimate the likelihood of a full match, i.e. the actual 

occurrence of a particular complex event.  

Notably, “forecasting” in this context is not to be confused with 

“predicting”, typically used to refer to machine learning models 

classifying previously unseen instances. From a methodological 

standpoint, it also differs from time-series forecasting. Complex 

event forecasting combines symbolic and numerical streams for 

foreseeing the occurrence of any type of situation that may be 

defined as an event, based on combinations of other similar events 

and contextual knowledge.  

Given that the input consists of a multitude of data streams, events 

may correlate sub-events across many different streams, with 

different attributes and time granularities. Therefore, a highly-

expressive event pattern specification language, capable of 

capturing complex relations between events, is necessary. 

Moreover, the actual patterns of what constitutes an event of 

interest are often not known in advance, and even if they are, 

event patterns need to be frequently updated to cope with the 

drifting nature of streaming data. Therefore, the required 

algorithmic apparatus must incorporate machine learning 

techniques for learning and revising complex event patterns from 

data, which is another role of the component of distributed 

learning of event patterns (see Figure 1).  

What is necessary here is highly-expressive, declarative event 

pattern specification formalisms, which combine first-order logic, 

probability theory [10][11] and automata theory [12][13]. This is 

due to the fact that such formalisms have a number of key 

advantages: (i) they are capable of expressing arbitrarily complex 

relations and constraints between events; (ii) they can be used for 

event forecasting, offering support for robust temporal reasoning; 

(iii) they offer direct connections to machine learning techniques 

for refining event patterns, or learning them from scratch, via 

tools and methods from the field of Statistical Relational Learning 

[14]. Notably, all existing techniques for complex event detection 

and forecasting, as well as machine learning techniques for the 

automatic extraction of event patterns from data, need to be 

extended to work in a highly-distributed, streaming setting.  

Complex event forecasting contributes significantly to the 

effectiveness of interactive analytics. The idea is to use an event-

based methodology to model time-consuming, computationally-

demanding operations, and then use event forecasting to derive 

good approximations of the operations’ outcomes, without the 

need to wait for the actual operations to terminate. This will save 

time, effort and resources (computing power, bandwidth), by 

enabling data analysts get rapid responses from expensive 

operations, thus identifying undesired outcomes and poorly 

performing configurations of particular data analysis approaches 

and facilitating the exploration of more promising options. 

Equally beneficial in speeding-up time-consuming computational 

processes to foster interactivity, is to use specialized domain 

knowledge for the problem at hand, which allows simplification 

of the computational process, by e.g. pruning large parts of a 

search space for some difficult optimization task, which are 

known beforehand to be pointless to search.  

4. A VIRTUAL LABORATORY FOR 

STUDYING TUMOR GROWTH AND 

EVOLUTION  
The introduced extreme-scale analytics architecture is a key 

enabler to provide a “virtual laboratory” for studying tumor 

growth and evolution. It can support the goal of using in-silico 

models of cell systems found in in-vivo tumors, to facilitate the 

design, testing and optimization of cancer treatments based on 

combinations of different drugs.  

In-silico simulations of such phenomena require modeling multi-

scale processes, thus bridging the gap between different levels of 
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description and connect events that occur at different scales. As an 

example of such correlated multi-scale phenomena, consider a 

DNA mutation that alters the function of a protein, which leads to 

an alteration of the cell-cycle — the process by which a cell 

replicates its DNA and divides into two daughter cells — 

producing an uncontrolled cell growth [1]. At the molecular level, 

an individual cell can be described by the network of its signal 

transduction pathways [15][16]. Modeling this network allows the 

representation of the molecular machinery by which a cell 

integrates environmental signals and alters the gene expression 

patterns in response to specific stimuli. For example, when a 

growth factor binds to a membrane receptor (the stimulus), this 

signal is translated into an activation of the cell cycle, i.e., the cell 

starts to grow in order to divide into two daughter cells. Models of 

signaling networks have been reconstructed for different cell types 

and can be simulated using different approaches, such as Ordinary 

Differential Equation or the Boolean Formalism [16][17]. Such 

models describe the state of different signaling pathways, which 

can be used to predict the “fate” of a particular cell 

(proliferation/apoptosis). In turn, these models can be used to 

predict the effects of drug synergies, as in the case of [15], where 

a model reconstructed and calibrated for the gastric 

adenocarcinoma cell-line (AGS) was used to accurately predict (as 

validated through growth experiments) the effects of drug 

synergies. 

At the cell-population level, a simple Agent-Based Model (see 

Figure 2c) has been developed that takes into account gene 

expression levels (see Figure 2a), growth, as well as nutrient 

consumption, and where each individual agent has its own 

signaling network from which the propensity, for an individual 

cell, to proliferate or to enter into apoptosis can be calculated 

using Boolean simulations (see Figure 2b). This model is being 

used to integrate and interpret experimental data on gene 

variability and drug synergies. A fundamental feature of 

simulating cell populations is that it allows for modeling 

heterogeneity. This is of importance in the study of cancer, since 

tumor heterogeneity and resistance to target therapies are two 

closely interconnected phenomena [18]. Integrating experimental 

information of gene expression variability available from RNA 

sequence data as well as DNA mutations (see Figure 2a), it is 

possible to generate heterogeneous populations of agents (see 

Figure 2c) which resemble the variability known to be present in 

tumors [17].  

Simulation of multi-cellular systems is computationally 

demanding, but because of the simulation structure, it is very 

suitable for running in HPC environments. Since, at each time 

step the internal state of each agent can be computed 

independently of the other agents, these operations can be run in 

parallel and thus the performance may scale linearly with the 

number of agents. There are already different packages for 

simulating multi-scale models, and some of them have been 

developed to run in HPC environments (see Figure 2d). For 

example, PhysiCell has already been designed and implemented 

for HPC environment and its deployment is straightforward [19]. 

However, simulating the evolution of multi-cellular systems of 

realistic sizes, involving billions of cells, as those found in in-vivo 

tumors remains a challenging task, even for HPC infrastructures. 

Moreover, to study the effects of drug synergies on such systems 

requires a very large number of such simulations. 

To support the simulation of multi-cellular systems with the actual 

number of cells found in in-vivo tumors, the framework outlined 

in Section 3 would host, in the respective components, (i) 

machine and deep learning techniques for obtaining dynamic cell-

cycle models; (ii) complex event forecasting techniques for the 

early detection of undesired simulation outcomes, e.g. when 

performing large-scale parameter screening, as well as various 

events of biological interest, such as forecasting the emergence of 

resistant cells via the detection of small changes in physiological 

or molecular markers; (iii) graphical workflow designs and 

interactive learning techniques enhancing the efficiency of model 

calibration and parameter selection during the simulation process. 

All the above would be efficiently orchestrated by a optimization 

and runtime adaptation component. 

Such a virtual laboratory will lead to the exploitation of 

simulation outcomes for the timely indication of personalized 

therapies. Socio-economic implications of improved therapies, in 

turn, will aid patients to maintain their working status and quality 

of life as well as receive equal treatment from insurance, banking 

(such as loan) or other services in their everyday life [20]. 

Moreover, shorter treatment duration will cut down public 

healthcare costs, with the possibility of savings being invested to 

other social services. 

5. BROADER APPLICATION DOMAINS 
In principle, the generic architecture of Figure 1 suits several other 

application domains dealing with massive data flows. Taking 

advantage of such data requires sophisticated analytics tools, 

capable of extracting insights on-the-fly, from a multitude of 

voluminous, correlated, high-velocity data streams, but also, 

harvesting ever-growing historical data repositories. This imposes 

similar, compared to life sciences, challenges to computer 

scientists, system engineers and industrial stakeholders.  

Maritime Monitoring: Maritime surveillance applications need 

to combine high-velocity data streams, including global maritime 

surveillance systems, such as the AIS (Automatic Identification 

System), with acoustic signals of autonomous, unmanned 

vehicles, such as Wave gliders [21]. Employing an architecture 

which incorporates the discussed algorithmic apparatus helps 

improving maritime situational awareness by enabling the 

accurate identification (via learning new patterns) and forecasting 

the activities of “dark targets” that are (intentionally) hidden from 

traditional monitoring systems.  

Finance: In the financial domain, stock price forecasting and 

portfolio management rely on stock tick data combined with rich, 

real-time information sources on various pricing indicators. 

Financial data involve a variety of market data, including stock 

market and crypto-currencies market data, arriving in tens of 

thousands of correlated, high-velocity streams. The distributed 

complex event forecasting component of Figure 1 can be used to 

forecast price swings of stocks, currencies, commodities and the 

distributed learning and data mining component can serve 

systemic risk prediction purposes and offer decision support for 

investment opportunities. 

6. SUMMARY 
We presented the method, architecture and algorithmic apparatus 

for materializing interactive extreme-scale analytics in the battle 

against cancer. Our discussion expands on the whole processing 
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pipeline, from the time distributed data streams from simulations 

of multi-scale biological processes are digested into a Big 

Data/HPC platform, to the extraction of real-time knowledge and 

event forecasting. The apparatus includes architectural 

components equipped with the novel algorithms necessary for 

constructing concise data summaries, machine learning models for 

knowledge extraction and event forecasting facilities. These 

components are assisted by integrated workflow design tools, 

minimizing programming effort, and by an optimizer transparently 

devising the execution of the whole data processing pipeline. This 

way, the time to set up on-line processing pipelines is diminished, 

and the real-time discovery and monitoring of events is enabled, 

paving the way for searching, discovering and employing new 

personalized cancer therapies.  
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Figure 1: Interactive Extreme-scale Analytics – The Big Picture. 

“Applications” emphasize the applicability of the approach to 

several domains, while “Pluggability” refers to component 

modularity. 

 

 

mailto:pubs-permissions@ieee.org
mailto:h.arndt@springtechno.com
mailto:a.artikis@unipi.gr
mailto:adeli@softnet.tuc.gr
mailto:raffaele.grasso@cmre.nato.int
mailto:fabiana@il.ibm.com
mailto:miguel.ponce@bsc.es


 

 

Copyright (c) 2019 IEEE. Personal use of this material is permitted. Permission to use this material for any other purposes must be obtained from the 

IEEE by sending a request to pubs-permissions@ieee.org. 

This article has been published in the IEEE Technology and Society Magazine. https://doi.org/10.1109/MTS.2019.2913071  

 

 

 

 

Figure 2: The simulation process of the hybrid multi-scale model of individual cell signaling. a) RNA-seq expression profiles for different 

conditions (i.e. different drugs, controls) for each node of the model. b) Signaling model calibrated for the gastric adenocarcinoma (AGS) 

cell line. Nodes are set to active or inactive based on the RNA-seq data. c) Different signaling networks are embedded into an Agent-Based 

Model (ABM) to simulate population level dynamics. d) In-silico experiments of cell cultures treated with different drugs. 
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