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ABSTRACT

Hardware Trojans (HTs) are undesired design or manufacturing modifications that can severely alter the
security and functionality of digital integrated circuits. HTs can be inserted according to various design
criteria, e.g., nets switching activity, observability, controllability, etc. However, to our knowledge, most
HT detection methods are only based on a single criterion, i.e., nets switching activity. This paper proposes
a multi-criteria reinforcement learning (RL) HT detection tool that features a tunable reward function for
different HT detection scenarios. The tool allows for exploring existing detection strategies and can adapt new
detection scenarios with minimal effort. We also propose a generic methodology for comparing HT detection
methods fairly. Our preliminary results show an average of 84.2% successful HT detection in ISCAS-85
benchmarks.

Keywords Hardware Trojan, Reinforcement learning, Automated Benchmarks

1 Introduction

Due to time-to-market constraints and increasing production costs, the integrated circuit (IC) supply chain has adopted a
multi-party production model. According to this new model, most microelectronic chips are being produced outside of the
country sec (2022), raising security concerns about the design and fabrication of chips, particularly hardware Trojan (HT)
insertion attacks.

Our current HT detection capabilities suffer from the following shortcomings. 1) Most detection methods perform the HT
detection through a one-dimensional lens, i.e., nets’ switching activity Lyu and Mishra (2020) and Gohil et al. (2022). We
believe that the current detection methods might not cover the real-world scenarios in which adversaries can insert HTs according
to a range of criteria. 2) Available HT benchmarks suffer from significant limitations in size and variety of circuits, as well as the
fact that they are all human-crafted and hence are biased by the expert mindset at the creation time Sarihi et al. (2022)1.

This paper attempts to move the HT detection research space forward by developing a multi-criteria HT detector that explores
many HT detection strategies, not limited to a designer’s mindset. Our Reinforcement Learning (RL) HT detector has a tunable
rewarding function that helps detect different HTs with different insertion strategies. The RL agent explores large circuit designs
promptly and generates test vectors to find HTs in digital circuits. Our threat model consists of a security engineer that must
verify a manufactured IC’s integrity before allowing it to be integrated into a bigger design. The engineer only can rely on the

1The most referenced benchmarks are available on trust-hub.org.
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golden netlist to produce test vectors. Our threat model inherently differs from previous works Lyu and Mishra (2020), where the
design internals are still accessible in the pre-silicon phase. Our generated test patterns are publicly available through this link2.
Additionally, this paper introduces a confidence value as a part of a methodology to compare HT detectors fairly. This helps
security engineers to decide the merits of HT detectors for specific applications. In summary, the paper’s contributions are as
follows:

• We introduce an RL-based HT detection tool with a tunable rewarding function that can be modified and re-trained
based on different criteria.

• We introduce and use a generic methodology to make fair comparisons among HT detectors.

The rest of the paper is organized as follows. We discuss previous endeavors in HT detection in Section 2. Section 3 presents
our HT detection tool. We define a security metric to better compare the HT detectors by security engineers in Section 4.
Experimental evaluation of the proposed tool and analysis of the results are in Section 5. Finally, Section 6 concludes the paper.

2 Background and Previous Work

This section reviews existing hardware Trojan (HT) detection methods. MERO is a test pattern generator that tries to trigger
possible HTs by exciting rare-active nets multiple times. MERO becomes less effective with larger circuits. Hasegawa et
al. Hasegawa et al. (2017) extract 51 features from the Trusthub benchmarks and train a Random Forest classifier. However, the
studied dataset is limited. Lyu et al. Lyu and Mishra (2020) proposed TARMAC, which maps the trigger activation problem
to the clique cover problem. TARMAC requires access to the internal nets and testing each suspect circuit separately. TGRL
is an RL framework where the agent decides whether to flip a bit in the test vector according to an observed probability
distribution. The reward function combines the number of activated nets and their SCOAP Goldstein and Thigpen (1980)
(Sandia Controllability/Observability Analysis Program) parameters. The algorithm was not tested on any HT benchmarks.
DETERRENT Gohil et al. (2022) is another RL-based detector that finds the smallest set of test vectors to activate as many rare
nets as possible; however, it only targets the switching activity of nets. HW2VEC Yu et al. (2021) uses Graph Neural Networks
to extract structural features from graphs and produce graph embeddings. The embeddings are passed to a deep neural network
to classify circuits as HT-free or HT-infected. The detector is trained on Trusthub benchmarks. Unlike the previous work, our
study proposes a multi-criteria RL-based HT detector tool that can detect HTs with different insertion strategies.

3 RL-based HT Detection

From an RL agent perspective for HT detection, the environment is a given circuit (or netlist) to determine whether it is clean
or HT-infected. The agent interacts (performs an action) with the circuit by flipping input values to activate internal nets. The
RL agent has an n-dimensional binary action space at = [a1, a2, ..., an] where n is the number of circuit primary inputs. The
agent may set or reset each ai to transition to another state. ai = 0 denotes that the value of the ith input will remain unchanged
from the previous test pattern, and ai = 1 means that the input bit will flip. Attackers are likely to choose trigger nets with a
consistent value (either 0 or 1) most of the time. Thus, a detector aims to activate as many dormant nets as possible. We consider
two different approaches for identifying such rare nets:

1) Dynamic Simulation: We feed each circuit with 100K random test patterns and record the value of each net. Through
logging nets transitions, we populate the switching activity statistics for each net and compare it against a threshold θ (ranges in
[0, 1]). Nets with switching below θ are considered rare nets.

2) Controllability Simulation: This approach classifies the nets based on their controllability3 values. Low switching nets have
a high difference between their controllability value Sebt et al. (2018), i.e., they are mostly stuck at 0 or 1. We set a threshold
value η as defined in Eq. 1:

η =
|CC1(Neti)− CC0(Neti)|

Max(CC1(Neti), CC0(Neti))
(1)

where CC0(Neti) and CC1(Neti) are the combinational controllability of 0 and 1 for Neti, respectively. The η parameter
ranges between [0, 1) such that higher values of η correlate with lower net activity Sebt et al. (2018).

Our RL state is mapped to the set of the collected rare nets. In a circuit with m rare nets, the state space is defined as
Statet = [s1, s2, ..., sm] where si is associated with the ith net in the set. Whenever an action (a test pattern) activates si (taking
its rare value), it will set that state to 1 in the state vector. Otherwise, its state stays at 0. As can be inferred, the action and state
spaces are multi-binary. Figure 1 summarizes our tool flow.

2The link removed for blind review.
3Controllability is the difficulty of setting a particular net to 0 or 1 logic value.
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Figure 1: The proposed toolset workflow.

Algorithm 1 Rewarding Function D2

Input: Net switching vector Switchingvector,
Current state vector Statevector, State Vector Length K
Output: Final reward Rewardfinal

1: Rewardvector = [0] ∗K
2: for k ∈ {0, . . . ,K − 1} do
3: if (Switchingvector[k]! = 0) then
4: Rewardvector[k] = Switchingvector[k]

−1

5: else
6: Rewardvector[k] = 0
7: end if
8: end for
9: rewardmax = max(Rewardvector[ ])

10: for k ∈ {0, . . . ,K − 1} do
11: if (Switchingvector[k] == 0) then
12: Rewardvector[k] = 10 ∗ rewardmax
13: end if
14: end for
15: Rewardfinal = 0
16: for k ∈ {0, . . . ,K − 1} do
17: if (Statevector[k] == 1) then
18: Rewardfinal+ = Rewardvector[k]
19: else
20: Rewardfinal+ = −1
21: end if
22: end for

3.1 Rewarding Functions

The agent’s goal is to activate as many HT triggers as possible. Thus, a part of the rewarding function should enumerate rare nets.
However, we should avoid over-counting situations where a rare net has successive dependent rare nets. We adopt a pruning
strategy and pick the rarest net in a sequence of dependent rare nets (seen in Figure 1).

This policy will help accelerate the RL agent to converge on the global minima faster.

As for rewarding the agent, we consider three rewarding functions, and we explain them in the rest of this section. In our first
rewarding function (hereafter D1), we use a copy of the agent’s previous state and encourage it to generate states that differ
from the previous one. This pushes the agent towards finding test vectors that lead to unseen states. The pruned current and
previous state vectors are passed as inputs to D1; the final reward is the output. The reward function comprises an immediate and
sequential parts. The sequential reward is computed by making a one-to-one comparison between the nets in the old and new
states. The highest reward is given when an action can activate a net that was not triggered in the previous state, where it is
given +40 for each net. If a rare net continues to be active in the new state, the agent will still be rewarded +20. The worst
state transition is whenever an agent takes an action that leads to a rare net losing its rare value, and that is rewarded −3. Lastly,
if the agent cannot activate a rare net after a state transition, it will be rewarded −1. The immediate award is the number of
activated rare nets in the new state. Lastly, the final reward is a weighted mixture of immediate and sequential rewards with
tunable weights.

3
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Algorithm 1 describes our second rewarding function D2. In this case, the agent gains a reward proportional to the difficulty of
the rare net it can trigger. This reward is computed using the inverse of net switching activities (line 4). If no vectors were found
to trigger a net, it would be rewarded 10X , the greatest reward in the vector (line 12). The algorithm encourages the agent to
trigger the rarest nets in the circuit.

In the third rewarding function (D3), rare nets are populated based on threshold η in Eq. 1. When a rare net is activated, the
agent is rewarded with the controllability of the rare value. This scenario aims to investigate controllability-based HT detection
using an RL algorithm.

4 The Proposed Generic HT-Detection Metric

We propose the following methodology to the community for fair and repeatable comparisons among HT detection methods.
This methodology obtains a confidence value that one can use to conduct a fair comparison between different HT detection
methods. There are 4 possible outcomes when an HT detection tool studies a given circuit. From the tool user’s point of view,
the outcomes are probabilistic events. For example, when an HT-free circuit is being tested, the detecting tool may either classify
it as an infected or a clean circuit, i.e., Prob(FP ) + Prob(TN) = 1 where FP and TN stand for False Positive and True
Negative events. Similarly, for HT-infected circuits, we have Prob(FN) + Prob(TP ) = 1. We know FN and FP are two
undesirable outcomes that detectors misclassify. Between these two, FN cases are much more dangerous because an FN
case leads to a situation in which we rely on an HT-infected chip, whereas an FP case means wasting a clean chip by either
not selling or not using it. So, we need to know how HT detection tools’ user (might be a security engineer or a company
representative) prioritizes FN and FP cases. We define a parameter α as the ratio of the undesirability of FN over FP . The
tool user determines α based on characteristics and details of the application that eventual chips will be employed in, e.g., the
risks of using an infected chip in a device with a sensitive application versus using a chip for home appliances. Note that the user
sets this value, which is not derived from the actual FP and FN . After α is set, it is plugged in Eq. 2 and a general confidence
basis Conf. V al is computed.

Conf. V al =
(1− FP )

(1/α+ FN)
(2)

This metric can make a fair comparison between HT detection methods regardless of their detection criteria and implementation
methodology. The defined confidence metric combines the two undesirable cases concerning their severity from the security
engineer’s point of view, and it ranges between [ 0.5α

1+0.5α ..α]. The closer the value is to α, the higher the confidence in the
detector. The absolute minimum of the Conf. V al = 1/3 that happens when α = 1 and FP = FN = 50%. This analysis
assumes that FN and FP are independent probabilities. We note that for some detection methods, FP is always 0. For instance,
test-based HT detection methods that apply a test pattern to excite HTs use a golden model (HT-free) circuit for comparison and
decision-making. There is no way for such methods to detect an HT in a clean circuit falsely. However, our metric is general and
captures such cases.

5 Experimental Evaluations

Our proposed multi-criteria HT detector is developed in Python. The training process of the RL agent is done using the PPO
(proximal policy optimization) Schulman et al. (2017) from the Stable Baselines library with an episode length of 10. This
guarantees that the agent would reset each 10 episodes and agent observes a new state. We select six circuits from ISCAS-85,
namely c432, c880, c1355, c1908, c3540, and c6288.

To accelerate the training of the RL agent, instead of calling time-consuming graph functions, we built adjacency matrices and
dictionaries that contain structural information of each node within the graph. This simple yet efficient technique speeds up
training and testing processes by 3.7× and 3.2×, respectively. We start from 450K of timesteps for training in c432 and increase
the timesteps for each successive circuit by 10% to enable enough exploration for larger circuits. We ran the training processes in
parallel for each circuit. This process took nearly 27 hours to train the benchmark set. In the testing phase, we ran the trained RL
agent for 20K episodes. To select a test vector, we set a cut-off reward of one-tenth of the collected reward in the last training
episode (since we have ten steps per episode). We gather 20K test vectors that surpass this reward threshold.

Table 1 summarizes the detection percentages of our three detection scenarios for different HT sizes inserted in ISCAS-85 Sarihi
et al. (2022). The inserted HTs in this dataset were introduced to address two issues: 1) removing inherent human bias in current
HT databases and 2) providing ample HT instances for training detectors. Table 1 lists six benchmarks with HTs triggered by 2,
3, 4, and 5 input wires and reports the detection accuracy for D1, D2, and D3 (labeled across the top of the table). The number
of HTs for each case is in Sarihi et al. (2022).
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Table 1: Detection accuracy of scenarios D1, D2, and D3 for HTs with different input widths in Sarihi et al. (2022).

Benchmark 2-Input HT 3-Input HT 4-Input HT 5-Input HT
D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3

c432 15.0% 27.8% 8.0% 41.2% 61.9% 42.8% 36.4% 66.5% 24.9% 24% 49.1% 21.6%
c880 100% 100% 100% 100% 92.0% 84.0% 86.7% 83.0% 64.1% 85.1% 79.3% 40.2%

c1355 94.6% 99.1% 98.3% 92% 98.1% 97.5% 90.5% 97.7% 96.2% 89.6% 97.0% 95.5%
c1908 96.4% 98.3% 97.3% 97.6% 96.4% 94.9% 93.0% 93.2% 94.4% 89.6% 91.1% 86.7%
c3540 56.0% 89.8% 89.8% 86.5% 91.6% 91.0% 89.4% 97.1% 98.8% 77.8% 79.2% 83.9%
c6288 96.1% 97.9% 97.1% 97.5% 97.6% 97.2% 95.6% 96.1% 95.9% 93.3% 94.1% 93.7%

Confidence Value 2.97 4.07 3.19 4.13 4.89 3.93 3.56 4.73 3.23 2.91 3.52 2.51

From the table, D2 has the best detection rate in most cases; however, exceptions exist. For instance, in c880, the detection rate
for D1 is equal to or better than D2, especially for 5-input HTs. The same happens for 3-input HTS in c1908.

On the other hand, D3 shows its superiority in c3540. Except for the 3-input Trojans, D3 equals or is better than the other two
rewarding scenarios. This underlines the importance of D3, which uses an inherently different detection criterion. Polling among
the three HT detection scenarios can generally lead to satisfactory HT detection in most circuits.

One interesting observation concerns the detection rate of c432. While applying 100, 000 random test vectors, we found that the
rarest net in the circuit was triggered 7% of the time, which is significantly higher than other circuits where many nets exhibit
switching activity of less than 1%. This suggests that the inserted HTs in the c432 might be activated easier with random test
vectors. To test this hypothesis, we generated 20, 000 additional random test vectors and applied them to the circuit, detecting
99% of the HTs. This demonstrates that the RL attack did not have the intended impact in c432.

The confidence metric of our HT-detection tool proposed in Section 4 can be seen in the last row of the table, assuming α = 10.
The confidence value for each column is calculated by averaging each detection scenario for each column. The table shows
that the security engineer can put confidence in the D2 detector since it has higher confidence values than the other detection
scenarios. The confidence value only surpasses 5 for detectors with FN < 10%. In other words, the confidence value increases
sharply, and better HT detectors are rewarded with more exponential confidence values.

6 Conclusion

This paper emphasizes the need for multi-criteria HT detection tools and universal metrics to compare them. We propose a
reinforcement learning tool for hardware Trojan detection, which features three rewarding functions that detect a wide range
of HTs. Results on ISCAS-85 circuits showed a high detection rate of the proposed tool for various HTs. We also present a
methodology to help the community compare HT detection methods regardless of their implementation details. We applied the
methodology to our HT detection and discovered that our tool offers the highest confidence in HT detection when using the
rewarding function D2.
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