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Abstract—Time-sensitive applications are increasingly preva-
lent in various network domains, such as industrial, medical,
and vehicular communications, imposing substantial demands
on network infrastructure. Consequently, ensuring low latency
has become a crucial requirement for future networks, par-
ticularly through the implementation of deterministic latency
network controllers. However, it is essential to recognize that
the network controller represents just one facet of network
performance management. The configuration of the network’s
topology also significantly influences its overall performance. This
study, therefore, investigates the impact of different topologies
on network performance, specifically focusing on deterministic
latency guarantees. Our analysis shows the correlation between
graph metrics characterizing the topology and its performance.
This correlation facilitates a straightforward ranking of topology
performance during critical phases like network planning or
expansion. We introduce a readily obtainable graph metric
that enables relative performance ranking without the need
for exhaustive simulations or emulations. The metric exhibits
a Spearman Ranking correlation coefficient exceeding 0.93.

Index Terms—deterministic networking, graph theory, param-
eter study

I. INTRODUCTION

In a time marked by the pursuit of faster, more reliable,
and efficient data transmission, Time-Sensitive Networking
(TSN) has emerged as a pivotal paradigm, revolutionizing
the landscape of communication and networking technologies.
The increasing integration of real-time applications, such as
industrial automation and autonomous vehicles, demands a
level of precision that conventional networking protocols strug-
gle to achieve. TSN addresses these challenges by providing
a standardized framework for time-critical communication,
ensuring deterministic and low-latency data delivery. As in-
dustries transition towards automation and interconnected sys-
tems, the significance of TSN in ensuring temporal accuracy
and reliability has become paramount.

Such latency-critical applications, typically operated in cam-
pus networks, depend on multiple aspects covered by the
real-time network paradigm that TSN describes, such as
fine-granular control of infrastructure components, precise
monitoring, and the reservation of resources to realize the
required latency requirements on top of a shared, physical
infrastructure. In these campus deployments, a single provider
controls and manages the entire network, from planning, to
provisioning, and finally operation.

An efficient topology plays a crucial role in the effective-
ness of real-time operations, specifically when it comes to
the reservation of streams required for the stringent require-
ments imposed by time-critical applications. The choice of
topology directly influences factors such as packet delivery
time, network utilization, and overall performance, which are
critical considerations for ensuring the successful reservation
of streams. In a TSN network, a well-designed topology helps
to optimize the allocation of network resources, preventing
congestion, and providing the necessary bandwidth for real-
time traffic. Furthermore, TSN deployments frequently involve
the coexistence of different types of traffic, including both
time-sensitive and non-time-sensitive data. An efficient topol-
ogy allows for effective segregation and prioritization of traffic,
ensuring that streams with stringent timing requirements are
not adversely affected by less time-critical data. This segrega-
tion is crucial for maintaining the determinism and reliability
necessary for TSN applications to function as intended.

Existing systems for predictable latency such as Chameleon
[1] or Silo [2] ensure that real-time flow requirements like a
flow’s absolute deadline and minimum rate are met. Typically,
these systems monitor the network state on a global scale. This
centralized view enables them to decide if an additional flow
request can be admitted to the network or if embedding a new
flow leads to a violation of real-time requirements. However,
those state-of-the-art systems for predictable low latency are
typically designed for data center networks following a strictly
determined data center topology. In contrast, emerging real-
time applications have to run in arbitrary network topologies,
unlike hierarchically structured data center topologies.

In contrast, the study conducted in the context of this paper
includes the explicit validation of strict delay requirements
that either pass or fail, instead of only minimizing delay. In
addition, we propose a simple graph metric that provides a
strong correlation to the expected flow admission performance.
Hence, in this paper, we aim to address the following re-
search question: Is it possible to compare the flow admission
performance of two topologies based on their graph repre-
sentation? Understanding how different topologies impact the
performance of flow admissions provides valuable information
when planning or upgrading such networks. Specifically, to
answer the posed research question, we make the following
contributions in the scope of this work:
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Fig. 1: Data flow overview for running the tests to get the
performance of networks

o We perform a large-scale study to show the impact of
various network topology parameters on the number of
flow admissions with latency guarantees;

e We propose a graph metric that maps the expected
performance in terms of latency guarantees to a given
network topology;

o We show that our proposed metric is able to achieve a
Spearman rank correlation coefficient of 0.93;

II. RELATED WORK

The performance of networks depends on their underlying
topology and employed technology. With Software Defined
Networking (SDN), the authors of [3] conclude that processing
times depend on the size of the network. Furthermore, [4]
shows the dependency between the amount of control traffic
and the network’s size and network type. [5] obtains the
correlation between different SDN performance indicators and
graph metrics of the topologies. The knowledge can also be
applied in the other direction to generate topologies with sim-
ilar performance and features [6], [7]. Moreover, the authors
of [8] find that the same graph metric can describe different
datasets. The authors of [9] define a custom measure to rank a
topology’s ability to ensure low latency in changing conditions
under different routing schemes. To the best of our knowledge,
nobody obtained a correlation between the performance of
deterministic network controller and graph metrics of the
underlying topology.

III. SYSTEM OVERVIEW AND METHODOLOGY
A. Architecture

Network Controller: At the core of the system is the
deterministic network controller. One feature of such con-
trollers is that they guarantee latency for embedded flows.
Controllers that provide guaranteed latency already exist.
Three deterministic network controllers are: Chameleon [1],
Silo [2], and QJump [10]. This paper chooses Chameleon
as its network controller since it adds reconfiguration as a
feature. Chameleon uses resource allocation and reservation
to check if an admission of a flow is possible. Furthermore,
it uses a greedy routing strategy for choosing paths. However,
reconfiguration allows the Controller to re-evaluate and re-
embed previously embedded flows to potentially embed more
flows [1]. When using Chameleon, the flows need to follow

arrival curves that can be described with the Token-Bucket
model [11], [12].

System Design: Figure 1 shows the system’s architecture.
The system consists of three main stages: input (Topology
and Flow request Generator), distribution (main controller),
and execution (Worker-Chameleon combinations). The input
stage provides the main controller with topologies and flow
requests. Then, the main controller generates jobs and dis-
tributes them to the Worker-Chameleon combinations. The
Worker-Chameleon combination executes the test case and
stores the results. The separate input and distribution stages
function as administration for the parallel execution of mul-
tiple Worker-Chameleon combinations, where each Worker-
Chameleon instance functions as a standalone Chameleon
controller to execute a single test case. This also allows
for parallelization on multiple servers. The following section
describes the workflow in detail.

B. Methodology

The system presents Chameleon with topologies and flow
requests to obtain a network’s performance. The following
section describes the process of obtaining the number of
successful embeddings - the performance metric - in detail.
It also highlights what settings the user can change.

First, the user selects a set of topologies and a Flow Request
generator via configuration. The user can choose between
single-flow and categorical requests and specify the parameters
for the chosen request generator. The system forwards the
information to the distribution stage. The main controller
combines each topology with all possible flow request settings.
The combination of a topology and settings for the flow request
generator is called a job. The distribution stage iteratively gen-
erates all possible jobs from the configuration. Next, the main
controller sends the job to an available Worker-Chameleon
combination (worker). Worker-Chameleon combinations are
self-contained units that allow the parallel execution of multi-
ple test cases. The worker receives the settings for the test run
and sends the topology to Chameleon. Chameleon initializes
with the topology and notifies the worker when ready. After
the worker receives the signal from Chameleon, it generates
the first admission request. The flow generation depends on
what Flow Request Generator the user chooses.

1) Single-flow requests: All admission requests are the
same in this option. The user controls the flow specification
with the generator settings. Table II describes all flow param-
eter ranges from the evaluation. The worker receives a flow
request generator with a single flow specification. Here, only
the source and destination of the flow request change between
requests. When the worker asks for a new admission request,
the single-flow generator returns the current flow specifications
and samples a source and destination. Part 3) describes the
source-destination sampling.

2) Categorical flow requests: This option has different
specifications for each flow. Here, the generator has four
categories that specify ranges for the flow parameters. The user



can specify the distribution of categories in the configuration.
Then, the generator samples a category. From the category,
the generator gets upper and lower bounds for burst, rate, and
deadline. Next, the generator samples burst, rate, and deadline
uniformly at random from the ranges. This process is the same
as the authors van Bemten et al. describe in [1]. Finally, the
generator samples the source-destination pair, which Part 3)
describes.

3) Source and destination: The request generator selects
the source-destination pair uniformly at random from all host
pairs, where source and destination are not the same.

The admission request combines the source-destination pair
with the flow specification. Next, the worker sends the ad-
mission request to Chameleon. Chameleon tries to embed the
flow request into the current state of the network. If Chameleon
succeeds, it sends the path for the flow back. If Chameleon
does not find a path directly where all flow requirements of
currently embedded flows are met and the requirements of
the new flow are met, it tries to reroute previously embedded
flows that share the same links as the new flow request. The
authors van Bemten et al. describe the process in more detail
in [1]. Chameleon tries up to ten reroutings. If the reroutings
do not result in a valid path for the new flow, Chameleon
sends no route back to the worker. The system considers this
a failure. When a failure occurs, the worker discards the flow
request and continues with the next. To ensure a more uniform
utilization of the network, the system allows for 100 failures.
The failures can be consecutively or distributed during the
embedding process. The worker has a failure counter, and if
that failure counter reaches 100, the test case terminates, and
then the worker saves the results. This concludes the execution
of one job. After this, the worker receives the next job with
new parameters and repeats the execution.

Topology Selection: This paper uses three types of topolo-
gies for the test cases. First, Barabdsi-Albert graphs [13]
with a different number of nodes and the initial node degree
ranging from one to four. Barabasi-Albert graphs are scale-free
networks where nodes are added using preferential attachment
[13]. Second, graphs from the Internet Topology Zoo Dataset
[14], which is a collection of real-world networks created
from public information of these networks. Third, generated
WAN-like topologies. The tool from Dietz et al. [7] uses an
initial topology to generate more topologies that are similar
to the initial topology. The initial topology for this paper’s
use-case is Agis from the Topology Zoo [14]. The paper
uses 160 topologies from each category. Furthermore, Table
I summarizes important parameters. The system interprets the
topologies as a combination of switches and links, i.e., each
node is a switch, and each edge is a link. The test system
connects four hosts to each switch to have enough sources and
destinations to ensure that the network bottlenecks and not a
connection between a host and a switch. Furthermore, all links
have the same link speed of 1Gbit/s. Higher link speeds result
in more flow admission but also in longer execution times.

TABLE I: Overview of Topologies
Category

Barabasi-Albert

Parameters

Nodes: 15-34; Edges: 14-120
Initial Node Degree: 1-4

Nodes: 4-37; Edges: 4-76

Nodes: 25; Edges: 24-41
Initial Topology: Agis

Topology Zoo

Generated Topologies

TABLE II: Settings for the single-flow evaluations
Parameter

Burst [Bytes]
Rate [Mbit/s]
Deadline [ms]

Values

100, 500, 900, 1300
0.1, 0.4, 0.7, 1.0, 4.0, 7.0, 10.0
10, 50, 90

C. Topology Metric

The evaluation in this paper relates the performance of
the network with its graph metrics. Here, the performance
of the topology is measured as successful admissions in the
network. Easy to obtain graph metrics of a graph G = (V, E)
are the number of nodes |V| and the number of edges |E|.
Furthermore, this paper looks at the closeness centrality [15]
in its normalized form. The normalized form is defined as:

V-1
_vi-1 0
ZyGV d($7 y)
where d(x,y) defines the shortest path length between node x

and vy.
This paper proposes the custom metric:

M(G) = |E| - min(Cn(G)) )

CN(.I) =

where C'y(G) defines the normalized closeness centrality for
all nodes in GG. The custom metric combines the number of
edges |E| with the minimal normalized closeness centrality
of the nodes by multiplication. Section IV-Al explains the
reasoning behind this metric.

IV. EVALUATION

This evaluation uses the system described in III. The eval-
uation uses 480 different topologies and the two types of
flow request generation. Each topology is combined with all
different flow request settings. This results in over 590.000
different test cases. In all test cases, the performance, i.e., the
number of successful admission was obtained with Chameleon.

A. Evaluation with 480 different Topologies

1) Ranking Relative Performance: The main goal of this
evaluation is to rank topologies according to their performance
based on their respective graph metric. The evaluation ag-
gregates the results of all test cases for each topology and
ranks them based on the aggregate. Furthermore, the evaluation
uses the Spearman rank correlation coefficient to compare
the performance of different metrics. The Spearman rank
correlation coefficient measures the ranking performance of
the metrics. The coefficient ranges from —1 to +1, where —1
means perfect reverse ranking and +1 means perfect ranking.
Figure 2 shows the ranking results for three different metrics.
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Fig. 2: Using three different metrics to correlate the number of successful admissions with topologies

First, Figure 2a ranks the topology’s performance, i.e., the
number of successful flow admissions based on the number
of edges in the topology. Second, Figure 2b compares the
ranking based on the topology’s minimal closeness centrality
and performance. Third, Figure 2c uses the custom metric
M (G) from Sec. III-C to rank the performance.

Using |E| as the metric allows for good rankings with
topologies with more edges (|E| > 60). However, the metric
fails to rank the topologies with fewer edges effectively. The
problem with this metric is that many different topologies with
the same number of edges exist. Each of these topologies
can have the same number of edges and vastly different
performance. For example, a full mesh topology with 5 nodes
has 10 edges. A star topology with 11 nodes also has 10 edges.
However, both topologies have different performance. Overall,
using |E| as a metric achieves a Spearman rank correlation
coefficient of 0.7987.

Next, we take a look at the minimal closeness centrality
as a metric to rank the performance. The minimal normalized
closeness centrality can take values from 0.0 to 1.0 regardless
of the network’s size. This results in rather bad rankings. For
example, considering only full mesh topologies, the minimal
closeness is always 1.0. However, a topology with 10 nodes
has more admitted flows than a topology with only 4 nodes.
Therefore, the minimal closeness alone is insufficient to rank
the topologies relatively. The minimal closeness centrality
achieves a Spearman rank correlation coefficient of 0.7218.

The metric M (G) from Sec. III-C combines both previous
metrics. With the dataset used, it achieved the best ranking
performance. M (G) uses the minimal closeness centrality as
a discounting factor. This factor can account for the structural
differences in the topologies. Accounting for structural dif-
ferences helps when the topologies have the same number of
edges. For example, a star topology with 11 nodes and a full
mesh with 5 nodes have 10 edges each. Here, the discount
factor for the star topology is 0.53 (the minimal closeness
centrality in the star topology) and 1.0 for the full mesh.
However, M (G) not only considers the structure but also the
size of the network. For example, for full-mesh topologies, the
discount factor is always 1.0. Then, the ranking relies on the

number of edges | F| to rank the topologies. The metric M (G)
achieves a Spearman rank correlation coefficient of 0.9317

Importantly, M (G) can only rank the topologies relative
to each other. M(G) can not make statements on absolute
performance. The absolute performance largely depends on
inputs like the flow request that the controller has to embed.
Furthermore, M (G) only delivers valid results for scenarios
when the input flow requests are similar.

2) Differences in M(G): The metric is not intended to
estimate the absolute number of flows the network can embed
but to rank topologies. The ranking makes it easier to choose
better-suited topologies when needed. Therefore, the question
arises: If we have two different topologies, at what difference
in M (G) is the performance difference statistically significant?
To answer this, we look at the effect differences in M (G) have
on performance. We calculate the difference of every pair of
points for M (G) and the number of admitted flows.

Figure 3 shows the results for all differences in M (G) in the
data set. The blue error bars contain the confidence interval
with confidence of 95%. The subplot in Figure 3 highlights
the results in the range O to 10. Figure 3 can be interpreted as
follows: If two topologies have a difference of five in M (G),
we see that the flow admission performance differs in the mean
by 1800 flows. However, the absolute value depends largely on
the parameters of the flows. The confidence intervals that are
colored blue do not overlap, which means that the performance
difference is statistically significant with a confidence of 95%.
In particular, the confidence intervals do not overlap starting
with AM (G) of 1. Hence, for differences of M(G) < 1.0, we
cannot make a definite decision on which topology is better.
For the data set, this also mostly works with the difference in
the number of edges. However, not with the difference in the
minimal normalized closeness centrality.

B. Discussion

The results the evaluation achieves are based on assump-
tions. The set of topologies plays a role. We try to provide a
wide variety of different topologies. Here, we assume that we
have equal link speeds on all links in the topology. This limits
the comparability of the metric. The goal is to address this
issue in future work. Furthermore, the sources and destinations
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are uniformly distributed among all possible hosts. In future
work, we want to address different demand distributions.

The data were created with a particular combination of flow
request settings, topologies, and controller settings. Therefore,
it is very likely that our custom metric is only valid for that
particular setup. We acknowledge that changing the controller
to a different controller might require a different metric since
resource allocation and routing strategies of controllers can
be different. However, the idea of a correlation between the
topology and performance should still hold. The evaluation
considers the number of successful admissions as the network
performance metric. Changing the performance metric, e.g. to
network utilization, might require a different metric.

Furthermore, the metric this paper presents is meant to
rank topologies relative to each other. It will not provide
accurate results for the absolute number of embedded flows
since the number of embedded flows largely depends on the
flow requests. Therefore, the idea of finding a metric that
allows for quick relative ranking of topologies also holds for
different settings and scenarios. However, the metric might be
different.

V. CONCLUSION AND FUTURE WORK

Real-time networks gain more popularity with the advance
of time-sensitive applications like industrial automation and
autonomous vehicles. The network’s ability to admit flows
while keeping the real-time demands of all other flows is
crucial. Here, the topology plays a critical role. However,
choosing the right topology in the planning phase or changing
an existing topology to account for more flows is time-
consuming since all qualified topologies need to be tested.

This paper explores the connection between the topology
and flow admission performance via a custom metric to
quickly rank topologies. We show that our metric performs
better than other metrics like the topology’s size alone. With
this easy-to-obtain metric, topologies can be quickly ranked
relative to each other and narrow the number of possible
topologies when planning a real-time network. Our custom
metric achieved a Spearman rank correlation of 0.93.

In the future, we want to further use the knowledge about the
correlation between the network’s flow admission performance

and its representation as a graph to help plan better-performing
networks for real-time use cases. For example, the proposed
metric could be used to judge possible changes to a network

faster than testing the changes with the network controller.
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