
Non-Intrusive Transaction Monitoring
Using System Logs

Bikram Sengupta(*), Nilanjan Banerjee(*), Animashree Anandkumar(†), Chatschik Bisdikian(‡)

(*)IBM India Research Lab
New Delhi 110070, India

{bsengupt, nilanjba}@in.ibm.com

(†)ECE Department, Cornell University
Ithaca, NY 14853, USA

aa332@cornell.edu

(‡)IBM T. J. Watson Research Center
Hawthorne NY 10532, USA

bisdik@us.ibm.com

Abstract— We consider the problem of online monitoring of
transaction instances in enterprise environments, based on footprints
left by the instances in system logs and using a state-based reference
model of the transaction. Unlike existing approaches, we do not rely
on any platform-specific knowledge, neither do we assume footprints
to carry correlating identifiers, as injected through instrumentation.
We outline a solution for tracking transaction instances at individual
and aggregate levels, present preliminary results on theoretical
analysis of monitoring precision and conclude with directions of
ongoing and future research.

Keywords-transactions; monitoring; log files;

I. INTRODUCTION
Consider a travel company that starts off by offering

attractive bargains on domestic air tickets to customers through
its website. It has a small IT team managing a few custom-
written applications running on a handful of servers. As its
customer base grows, the company decides to expand its
offerings and starts selling international air tickets as well, and
adds several new applications to their IT suite. With increasing
market share over the years, it acquires a couple of competitors
with their IT infrastructure, and positions itself to manage
travel end-to-end, by not only arranging air tickets, but ground
transportation and hotel accommodation as well. All this while,
the once small and manageable IT infrastructure continues to
grow and eventually becomes a complex mix of numerous
legacy applications patched together with newly added
software components, running on several hundred servers and
databases, and integrated with a host of third-party products.
The IT staff has increasingly less visibility into the
infrastructure they are supposed to keep up and running, and
they struggle with customer complaints of failed or time-
consuming transactions. Existing transaction monitoring
products are considered but these are either platform specific
and able to handle only a subset of the infrastructure, or require
large-scale instrumentation, which the IT staff finds to be an
unacceptable proposition in their environment due to licensing
issues. Ultimately they resort to manual collation of
information spread across a variety of infrastructure elements
and applications, which is a time-consuming and labor-
intensive task, and essentially reactive in nature.

Such scenarios are common in the complex enterprise
environments of today, and consequently, ample motivation
exists for a lightweight, non-intrusive and general-purpose

management solution that is easy to deploy and can track
transactions as they execute in an enterprise environment, end-
to-end, while imposing minimal requirements on the
underlying applications and infrastructure. Such a solution
should ideally (a) help discover and model transaction flow in
the deployed environment and (b) monitor the environment to
automatically draw conclusions regarding the status of
transactions. Existing tools usually support these activities
through instrumentation and/or platform-specific knowledge.
However, we take a platform-agnostic approach and focus on
environments where the only information available are
footprints left by transaction instances in system logs, which
may be custom-written and not necessarily generated by any
specific middleware. Moreover, we do not assume these
footprints to carry transaction identifiers (as injected through
instrumentation) which would have allowed a footprint to be
mapped to a specific transaction instance. While our larger
research effort includes (semi-) automated discovery of
transaction models from historical logs, in this paper we focus
on the problem of online monitoring of transaction instances by
observing footprints that are created in various system logs,
using a state-based model of the transaction. In particular, our
contributions are two-fold: (i) we propose a monitoring
solution outline for tracking ongoing transaction instances at
individual and aggregate levels and (ii) we present preliminary
results of theoretical analysis that explores the precision
bounds with which footprints coming from the same
transaction instance may be correlated.

The rest of the paper is organized as follows: In Section II,
we introduce our notion of transaction models, and briefly
discuss how such models may be obtained. Section III presents
an overview of our monitoring solution, while theoretical
analysis preliminaries are introduced in Section IV. Section V
cites related work, while Section VI discusses directions for
ongoing and future work.

II. TRANSACTION MODELS
 Transaction models may be obtained through log analysis
techniques and domain-expert involvement. In our approach,
historical log records carrying footprints of the transaction of
interest are first analyzed to detect structurally similar log
records. Such log records are then mapped to a common
abstract form, which we call a footprint pattern.

879978-1-4244-2066-7/08/$25.00 ©2008 IEEE

 Fig1. Example ATM Transaction Model

Next, sequences of patterns that seem to occur frequently are
discovered, and these lead to sequences of “states”, where a
state corresponds to a footprint pattern. Finally, the domain
experts inspect these state machines, add/delete states as
needed, label states with the activity names they correspond to,
logically compose separate sub-models, and incorporate
additional information in the footprint patterns when available
(e.g. indicating that there is a variable or token of interest in the
pattern). This yields the final transaction model that is used
during monitoring. While the details of our model discovery
approach are beyond the scope of this paper, we adapt
techniques from a rich body of related work cited in Section V.

A. Example
To illustrate the notions of states and footprints, we present

a simple example of a transaction model. The model, shown in
Fig.1, represents the possible interactions of a user with an
Automated Teller Machine (ATM). State 1 (“Started”)
corresponds to the initiation of a new session for a user. First,
the login credentials supplied by the user are verified (State 2),
and in case of correct login (State 3), a set of banking services
are offered to the user (State 7), certain selected services are
performed (State 8), and the session completes successfully
(State 9). In case of an incorrect login (State 4), the user is
permitted a second login attempt (State 5). If this is successful,
then the interaction follows states 7 through 9 as before.
However, if the second login attempt is again unsuccessful
(State 6), then the session is terminated (State 10).

Fig. 1 also shows example footprint patterns corresponding
to each state. The footprint pattern for a state may contain
wildcard characters “[*]” denoting arbitrary strings, timestamps
etc. and may also carry placeholders for tokens. For example,
<name> in the footprint pattern of state 1 represents the name
of the user as recognized from the ATM card. The presence of
such tokens cannot usually be detected through automated log
file analysis, but may be indicated by domain experts.
Moreover, footprints may not carry any such token at all e.g.
the footprint patterns of states 2, 4, 5 etc. are devoid of tokens.

III. MONITORING TRANSACTIONS
We will now discuss challenges in monitoring transaction

instances based on their footprints. Next, we will present a

solution outline for monitoring ongoing transaction instances at
individual and aggregate levels, using their footprints and a
model of the transaction.

A. Tracking Transaction Progress Via Footprints
Given a model of the transaction we can use it to track the

progress of transaction instances by observing their footprints.
More specifically, we can match log records as they appear in
different logs with the expected footprint patterns of different
states in the transaction model. In case of sequential execution
of transaction instances, this is simple to do; a new log record
must have been written by the current transaction instance, and
the state, whose footprint pattern matches the log record, is the
current location of the instance. However, transaction
monitoring becomes more challenging when several
transaction instances execute concurrently, with interleaved log
record footprints. It has been our experience that such
footprints - particularly in legacy systems, or where
instrumentation is not feasible - frequently do not carry any
transaction identifier; at most, they may carry a token
representing an item of interest e.g. line-of-business name,
order number etc. However, these tokens may not be unique to
one transaction instance, may not appear in every footprint of
an instance, or may get transformed as the transaction instance
flows from one application to another. For these reasons, when
multiple transaction instances execute, we may not know
which specific instance has produced a particular footprint. In
such cases, our solution identifies the candidate transaction
instances that may have produced a log record footprint and
tries to narrow down the “possible” states of these instances to
a localized part of the model. For large and complex
transaction models, this carries significant benefits in terms of
understanding transaction flow, performance, and debugging.

There are situations however, when the overall distribution
of instances over the different states of the transaction model is
of more interest that the state of a particular instance. In such
cases, we may compute bounds on the number of instances in
the different states. Such information may drive dynamic
resource allocation and load balancing strategies.

B. Basic Approach and Supporting Architecture
Let us first consider a sequence of log records corresponding
to the ATM model in Fig.1 to informally explain our proposed
approach. Suppose we have a record “Starting session for user
John”, then a new instance, say T1, must have started, with
token name=John. Next, if a similar record comes in for user
Peter, then we can conclude that another instance, say T2, has
started. Both instances are now in state 1. If log record
“Verifying login information” corresponding to state 2 arrives
next, both T1 and T2 are candidates for it; thus the possible
states of T1 (as also T2) are states 1 and 2. If another instance
of “Verifying login information” arrives, then two instances of
this record have been received so far, and there are two
candidate instances. Since each instance can reach state 2 only
once (i.e. state 2 is not part of a cycle), both T1 and T2 must
have reached state 2, and state 1, which precedes state 2, is
removed as a possible state. Next, if a footprint “Log-in
successful for user Peter” corresponding to state 3 is received,

Started Verifying
Information

Correct
Login

Incorrect
Login

Offered
Services

Performed
Services

Second
Attempt

Incorrect
Login Again

Completed

Terminated

State Footprint Pattern

1. Started: “[*] Starting session for user <name>”
2. Verifying Information: “[*] Verifying log-in information”
3. Correct Login: “[*] Log-in successful for user <name>”
4. Incorrect Login: “[*] Log-in failed”
5. Second Attempt: “[*] Trying again”
6. Incorrect Login Again: “[*] Login failed again”
7. Offered Services: “[*] Offering [*] services to user <name>”
8. Performed Services: “[*] Service [*] performed”
9. Completed: “[*] Session completed for user <name>”
10. Terminated: “[*] Terminated”

1 2
5

4

3

6

7 8 9

10

Started Verifying
Information

Correct
Login

Incorrect
Login

Offered
Services

Performed
Services

Second
Attempt

Incorrect
Login Again

Completed

Terminated

State Footprint Pattern

1. Started: “[*] Starting session for user <name>”
2. Verifying Information: “[*] Verifying log-in information”
3. Correct Login: “[*] Log-in successful for user <name>”
4. Incorrect Login: “[*] Log-in failed”
5. Second Attempt: “[*] Trying again”
6. Incorrect Login Again: “[*] Login failed again”
7. Offered Services: “[*] Offering [*] services to user <name>”
8. Performed Services: “[*] Service [*] performed”
9. Completed: “[*] Session completed for user <name>”
10. Terminated: “[*] Terminated”

1 2
5

4

3

6

7 8 9

10

880

the user name indicates that this log record was produced by
T2. Hence, the possible state of T2 is updated to state 3. The
overall idea is to use a combination of execution history (e.g.
number of footprints received, and candidate instances for the
same) and available token information to identify the possible
states of ongoing transaction instances.

To monitor transactions at aggregate level, we can assign a
pair of counters [smin, smax] to each state s in the model, where
smin and smax denote the minimum and maximum number of
transaction instances currently in state s, respectively, and are
both initialized to 0. Suppose at some point during execution,
we have the following counts; state 1: [4, 4], state 2: [2, 2],
state 3: [5, 5] and state 5: [3, 3]. If we now get a log record
“Verifying log-in information” corresponding to state 2, it
indicates that (a) a transaction instance has moved to state 2,
so its count is updated to [3,3] and (b) since state 2 has only
one immediate predecessor in state 1, the instance must have
moved from state 1 to state 2, so the count of state 1 is reduced
to [3,3]. On the other hand, if we next get a log record
corresponding to state 3, we see that it has two immediate
predecessors in state 2 and state 5, both of which have some
instances. In this case, we cannot tell if the log record has been
written by an instance moving from state 2 to state 3, or by an
instance going from state 5 to state 3. So, while we increase
the counts of state 3 to [6, 6], we can only reduce the lower
bounds of both state 2 and state 5; thus the new bounds are
state 2: [2,3] and state 5: [2, 3].

Our proposed system architecture for supporting transaction
monitoring at individual and aggregate levels, as illustrated
above, is shown in Fig. 2. The main components are (a) a set
of probes and a probe manager (b) the monitoring engine and
(c) a set of agents.

A probe is associated with each log file where a transaction
footprint may be recorded. It reads records as they appear in
the log, and forwards the same to a probe manager. Assuming
that each log record carries a timestamp, the probe manager
sorts records received from various probes according to the
record timestamps, and forwards a sorted sequence of log
records to the monitoring engine.

The monitoring engine maintains a list of ongoing transaction
instances, and the states they expect next (the next expected
states). When the engine receives a log record that
corresponds to an initial state of the transaction model, it
records a new transaction instance whose next expected states
are those that immediately follow the initial state, and creates
an agent that is henceforth responsible for tracking the
progress of this instance. The engine also binds tokens, if
present in footprint patterns, to their concrete values as
obtained from matching log records. If the engine receives a
log record that corresponds to some other (non-initial) state of
the model, then it scans the list of ongoing instances to
determine which candidate instances may have produced it, by
considering the next expected states of these instances, and

their token values. The agents corresponding to the candidate
instances (called candidate agents) are forwarded the log
record, along with information about all the candidate
instances for this record.

 Fig2. Monitoring System Architecture

An agent keeps track of the current possible states of its
associated transaction instance. If an agent receives a log
record corresponding to state s, for which it is the only
candidate, then its instance must be in state s. Otherwise, s is
recorded as a possible state, and for each possible state, an
agent maintains a count of the number N1 of footprints of that
state witnessed by it, and the cumulative set of candidate
instances A that may have produced these footprints. When
N1=A for a state s that is not part of a cycle, the agent
concludes that the instance has definitely reached state s, and
accordingly updates the set of possible states, by removing
states that precede s, or are unreachable from s. The next
expected states (containing any state that follows a current
possible state) are then determined, and updated at the engine.
Subsequently, the engine reads the next record, and the cycle
repeats. The engine also monitors aggregate count of instances
at each state of the model. On reception of a log record
corresponding to state s, the engine increments smin and smax,
and decrements the bounds of the parent(s) of s as illustrated
in the example above.

IV. PRECISION MODELING PRELIMINARIES
In this section, we highlight some of the theoretical

challenges related to this study. Specifically, given a set of
interleaved footprints generated by several ongoing transaction
instances, we would like to investigate the theoretical limits on
the precision with which we can correlate footprints coming
from the same instance.

Fig. 3 shows a simple system comprising of two states, a start
state and a finish state. We assume that log records contain
information on when transaction instances start being
processed (arrivals at times y0(1), y0(2),… to state S0) and when
they finish (arrivals at times y1(1), y1(2),… to state S1).
However, due to absence of transaction identifiers, we have no
knowledge of which of the instances have departed or in what
order. We say that an n-match occurs whenever we pick n
consecutive arrivals and n departures (not necessarily
consecutive) and the latter “happen” to be the departures of the
n arrivals picked. We consider n-matches that correspond to
busy periods of the system, i.e., when the first of the arrivals

Probes

Transaction Model

Probe Manager

AgentsEngine

Log records

Probes

Transaction Model

Probe Manager

AgentsEngine

Log records

881

arrive to an empty system and the n-th departure leaves the
system empty again. It should be obvious that there is no need
to attempt matches across busy periods. The system in Fig 3,
and the preliminary results shown next, serve as the basis for
analysis of more elaborate system we currently study.

4 4 3 2

time, t

departures from system
(“leaving” state S1)

S0 S1

arrivals to system
(“arriving” state S0)

start finish
system

occupancy

0
1

2

t

t

{1,2} {1,2,3} {1,2,3,4} {1,2,3,4}

y0(1) y0(2) y0(3) y0(4)

y1(1) y1(2) y1(3) y1(4)

a busy period

candidate arrivals

 Fig3. Arrivals and departures in a 2-state system

If instances were processed in FIFO or LIFO order, then
matching would have been trivial. However, when the only
information available is the size of a busy period, i.e., the
number n of instances processed during the busy period, then
any departure could be due to any of the arrivals in the busy
period. Thus, the number Nm of possible n-matches equals the
number of permutations of n objects nPn=n!. If, in addition,
timestamps are also available, then causality arguments can be
used to reduce the number of departure choices (or
permutations), e.g., in Fig. 3 the fourth arrival (at time y0(4))
can only be associated with the third and fourth departures (at
times y1(3), y1(4), respectively); the circled numbers at each the
arrival instance in the figure represents the number of candidate
departures for the arrival. If we were to write the biadjacency
(0-1) matrix A={aij=1, iff departure j occurs after arrival i},
then the number of possible n-matches Nm “reduces” to:

m 1
1 (, ()) !,

n

n
ni

N a i i n
π

π
=

≤ = ≤∏ (1)

where n(i) is the i-th element of a permutation of the set {1, 2,
…, n}. The equality in the RHS of (1) can be attained when all
departures in the busy period occur after all arrivals to the busy
period have occurred. The equality on the LHS is trivially
attained when the size of the busy n equals 1.When stochastic
information is also known in terms of the distribution fT(t) of
the residence time of an instance in state S0, then a most likely
match can be selected. Due to space limitations, we do not
elaborate further on this here, however, it can be shown, as
expected, that (1) plays an important role in this case too and
aids in deriving performance bounds.

V. RELATED WORK
Log Analysis and Model Discovery: [1] presents techniques
for discovering similar records in a log and clustering them to
simplify log complexity. The idea of process mining in the
context of workflow management was introduced in [2]. The
ProM framework [3] integrates a set of tools that support

different mining techniques for model discovery. A survey of
such techniques may be found in [4].
Distributed System Monitoring: White box methods for
monitoring generally depend on instrumentation techniques
e.g. [5], [6]. Some commercial offerings having transaction
monitoring capabilities are tied to specific technologies like
SOA [10] and make use of product/domain-specific
information and ARM instrumentation [9] to track call status.
In contrast, our solution is platform-agnostic and non-
intrusive. There are black-box techniques e.g. [7], [8] which
require no instrumentation; however, they generally do not
focus on monitoring individual call flows end-to-end, but
rather on the discovery of component-level dependency
models.

VI. ONGOING AND FUTURE WORK
We have implemented the transaction monitoring solution
proposed in this paper, and have carried out some empirical
studies, details of which could not be provided due to lack of
space. An extended version of the theoretical study in section
IV can be found in [11]. Our current work focuses on run-time
transaction model validation. In future, we would like to
incorporate fault-tolerance capabilities into the solution.

Acknowledgements: We wish to thank Paul Klein, Shoel
Perelman, Dakshi Agrawal and Dinesh Verma for their
support, Paul Hurley for his complementary work (with
Chatschik) on transaction model discovery, and Arun Kumar
for fruitful discussions on transaction monitoring.

REFERENCES
[1] Logfile Clustering Tool. http://kodu.neti.ee/~risto/slct/
[2] R. Agrawal, D. Gunopulos and F. Leymann. Mining Process Models

from Workflow Logs. Int’l Conf. on Extending Database Technology.
LNCS vol. 1377, 1998.

[3] PROM. http://is.tm.tue.nl/~cgunther/dev/prom/
[4] W.M.P van der Aalst, B.F. van Dongen et al. Workflow Mining: A

Survey of Issues and Approaches. Data and Knowledge Engineering,
47(2):237-267, 2003

[5] M.Y. Chen, E. Kiciman, E. Fratkin, A. Fox, E. Brewer, “Pinpoint:
problem determination in large, dynamic internet services”, in Proc. of
DSN 2002, pp. 595-604.

[6] M. Schmid, M. Thoss et al. A Generic Application-Oriented
Performance Instrumentation for Multi-Tier Environments. Integrated
Network Management, 2007: 304-313

[7] M. Agarwal, M. Gupta, G. Kar, A. Neogi and A. Sailer. Mining Activity
Data for Dynamic Dependency Discovery in e-Business Systems. IEEE
eTransactions on Network and Service Management Journal (eTNSM),
Fall 2004

[8] M.K. Aguilera, J.C. Mogul, J.L. Wiener, P. Reynolds, A. Muthitacharon,
“Performance debugging for distributed systems of black boxes”, in
Proc. of 19th ACM SOSP 2003, pp. 74-89.

[9] ARM. http://www.opengroup.org/tech/management/arm/
[10] ITCAM for SOA. http://www-

306.ibm.com/software/tivoli/products/composite-application-mgr-soa/
[11] A. Anandkumar, C. Bisdikian, and D. Agrawal, “Tracking in a Spaghetti

Bowl: Monitoring Transactions Using Footprints,” IBM Research
Report RC24422, Nov. 2007.

882

