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Abstract— We consider the problem of online monitoring of 
transaction instances in enterprise environments, based on footprints 
left by the instances in system logs and using a state-based reference 
model of the transaction. Unlike existing approaches, we do not rely 
on any platform-specific knowledge, neither do we assume footprints 
to carry correlating identifiers, as injected through instrumentation. 
We outline a solution for tracking transaction instances at individual 
and aggregate levels, present preliminary results on theoretical 
analysis of monitoring precision and conclude with directions of 
ongoing and future research. 
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I.  INTRODUCTION 
Consider a travel company that starts off by offering 

attractive bargains on domestic air tickets to customers through 
its website. It has a small IT team managing a few custom-
written applications running on a handful of servers. As its 
customer base grows, the company decides to expand its 
offerings and starts selling international air tickets as well, and 
adds several new applications to their IT suite. With increasing 
market share over the years, it acquires a couple of competitors 
with their IT infrastructure, and positions itself to manage 
travel end-to-end, by not only arranging air tickets, but ground 
transportation and hotel accommodation as well. All this while, 
the once small and manageable IT infrastructure continues to 
grow and eventually becomes a complex mix of numerous 
legacy applications patched together with newly added 
software components, running on several hundred servers and 
databases, and integrated with a host of third-party products. 
The IT staff has increasingly less visibility into the 
infrastructure they are supposed to keep up and running, and 
they struggle with customer complaints of failed or time-
consuming transactions. Existing transaction monitoring 
products are considered but these are either platform specific 
and able to handle only a subset of the infrastructure, or require 
large-scale instrumentation, which the IT staff finds to be an 
unacceptable proposition in their environment due to licensing 
issues. Ultimately they resort to manual collation of 
information spread across a variety of infrastructure elements 
and applications, which is a time-consuming and labor-
intensive task, and essentially reactive in nature. 

Such scenarios are common in the complex enterprise 
environments of today, and consequently, ample motivation 
exists for a lightweight, non-intrusive and general-purpose 

management solution that is easy to deploy and can track 
transactions as they execute in an enterprise environment, end-
to-end, while imposing minimal requirements on the 
underlying applications and infrastructure. Such a solution 
should ideally (a) help discover and model transaction flow in 
the deployed environment and (b) monitor the environment to 
automatically draw conclusions regarding the status of 
transactions. Existing tools usually support these activities 
through instrumentation and/or platform-specific knowledge. 
However, we take a platform-agnostic approach and focus on 
environments where the only information available are 
footprints left by transaction instances in system logs, which 
may be custom-written and not necessarily generated by any 
specific middleware. Moreover, we do not assume these 
footprints to carry transaction identifiers (as injected through 
instrumentation) which would have allowed a footprint to be 
mapped to a specific transaction instance. While our larger 
research effort includes (semi-) automated discovery of 
transaction models from historical logs, in this paper we focus 
on the problem of online monitoring of transaction instances by 
observing footprints that are created in various system logs, 
using a state-based model of the transaction. In particular, our 
contributions are two-fold: (i) we propose a monitoring 
solution outline for tracking ongoing transaction instances at 
individual and aggregate levels and (ii) we present preliminary 
results of theoretical analysis that explores the precision 
bounds with which footprints coming from the same 
transaction instance may be correlated. 

The rest of the paper is organized as follows: In Section II, 
we introduce our notion of transaction models, and briefly 
discuss how such models may be obtained. Section III presents 
an overview of our monitoring solution, while theoretical 
analysis preliminaries are introduced in Section IV. Section V 
cites related work, while Section VI discusses directions for 
ongoing and future work. 

II. TRANSACTION MODELS 
 Transaction models may be obtained through log analysis 
techniques and domain-expert involvement. In our approach, 
historical log records carrying footprints of the transaction of 
interest are first analyzed to detect structurally similar log 
records. Such log records are then mapped to a common 
abstract form, which we call a footprint pattern. 
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 Fig1. Example ATM Transaction Model 

Next, sequences of patterns that seem to occur frequently are 
discovered, and these lead to sequences of “states”, where a 
state corresponds to a footprint pattern. Finally, the domain 
experts inspect these state machines, add/delete states as 
needed, label states with the activity names they correspond to, 
logically compose separate sub-models, and incorporate 
additional information in the footprint patterns when available 
(e.g. indicating that there is a variable or token of interest in the 
pattern). This yields the final transaction model that is used 
during monitoring. While the details of our model discovery 
approach are beyond the scope of this paper, we adapt 
techniques from a rich body of related work cited in Section V. 

A. Example 
To illustrate the notions of states and footprints, we present 

a simple example of a transaction model. The model, shown in 
Fig.1, represents the possible interactions of a user with an 
Automated Teller Machine (ATM). State 1 (“Started”) 
corresponds to the initiation of a new session for a user. First, 
the login credentials supplied by the user are verified (State 2), 
and in case of correct login (State 3), a set of banking services 
are offered to the user (State 7), certain selected services are 
performed (State 8), and the session completes successfully 
(State 9). In case of an incorrect login (State 4), the user is 
permitted a second login attempt (State 5). If this is successful, 
then the interaction follows states 7 through 9 as before. 
However, if the second login attempt is again unsuccessful 
(State 6), then the session is terminated (State 10).  

Fig. 1 also shows example footprint patterns corresponding 
to each state. The footprint pattern for a state may contain 
wildcard characters “[*]” denoting arbitrary strings, timestamps 
etc. and may also carry placeholders for tokens. For example, 
<name> in the footprint pattern of state 1 represents the name 
of the user as recognized from the ATM card.   The presence of 
such tokens cannot usually be detected through automated log 
file analysis, but may be indicated by domain experts. 
Moreover, footprints may not carry any such token at all e.g. 
the footprint patterns of states 2, 4, 5 etc. are devoid of tokens. 

III. MONITORING TRANSACTIONS 
We will now discuss challenges in monitoring transaction 

instances based on their footprints. Next, we will present a 

solution outline for monitoring ongoing transaction instances at 
individual and aggregate levels, using their footprints and a 
model of the transaction. 

A. Tracking Transaction Progress Via Footprints 
Given a model of the transaction we can use it to track the 

progress of transaction instances by observing their footprints. 
More specifically, we can match log records as they appear in 
different logs with the expected footprint patterns of different 
states in the transaction model. In case of sequential execution 
of transaction instances, this is simple to do; a new log record 
must have been written by the current transaction instance, and 
the state, whose footprint pattern matches the log record, is the 
current location of the instance. However, transaction 
monitoring becomes more challenging when several 
transaction instances execute concurrently, with interleaved log 
record footprints. It has been our experience that such 
footprints - particularly in legacy systems, or where 
instrumentation is not feasible - frequently do not carry any 
transaction identifier; at most, they may carry a token 
representing an item of interest e.g. line-of-business name, 
order number etc. However, these tokens may not be unique to 
one transaction instance, may not appear in every footprint of 
an instance, or may get transformed as the transaction instance 
flows from one application to another. For these reasons, when 
multiple transaction instances execute, we may not know 
which specific instance has produced a particular footprint. In 
such cases, our solution identifies the candidate transaction 
instances that may have produced a log record footprint and 
tries to narrow down the “possible” states of these instances to 
a localized part of the model. For large and complex 
transaction models, this carries significant benefits in terms of 
understanding transaction flow, performance, and debugging. 

There are situations however, when the overall distribution 
of instances over the different states of the transaction model is 
of more interest that the state of a particular instance. In such 
cases, we may compute bounds on the number of instances in 
the different states. Such information may drive dynamic 
resource allocation and load balancing strategies. 

B. Basic Approach and Supporting Architecture 
Let us first consider a sequence of log records corresponding 
to the ATM model in Fig.1 to informally explain our proposed 
approach. Suppose we have a record “Starting session for user 
John”, then a new instance, say T1, must have started, with 
token name=John. Next, if a similar record comes in for user 
Peter, then we can conclude that another instance, say T2, has 
started. Both instances are now in state 1. If log record 
“Verifying login information” corresponding to state 2 arrives 
next, both T1 and T2 are candidates for it; thus the possible 
states of T1 (as also T2) are states 1 and 2. If another instance 
of “Verifying login information” arrives, then two instances of 
this record have been received so far, and there are two 
candidate instances. Since each instance can reach state 2 only 
once (i.e. state 2 is not part of a cycle), both T1 and T2 must 
have reached state 2, and state 1, which precedes state 2, is 
removed as a possible state. Next, if a footprint “Log-in 
successful for user Peter” corresponding to state 3 is received, 
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the user name indicates that this log record was produced by 
T2. Hence, the possible state of T2 is updated to state 3. The 
overall idea is to use a combination of execution history (e.g. 
number of footprints received, and candidate instances for the 
same) and available token information to identify the possible 
states of ongoing transaction instances. 
 
To monitor transactions at aggregate level, we can assign a 
pair of counters [smin, smax] to each state s in the model, where 
smin and smax denote the minimum and maximum number of 
transaction instances currently in state s, respectively, and are 
both initialized to 0. Suppose at some point during execution, 
we have the following counts; state 1: [4, 4], state 2: [2, 2], 
state 3: [5, 5] and state 5: [3, 3]. If we now get a log record 
“Verifying log-in information” corresponding to state 2, it 
indicates that (a) a transaction instance has moved to state 2, 
so its count is updated to [3,3] and (b) since state 2 has only 
one immediate predecessor in state 1, the instance must have 
moved from state 1 to state 2, so the count of state 1 is reduced 
to [3,3]. On the other hand, if we next get a log record 
corresponding to state 3, we see that it has two immediate 
predecessors in state 2 and state 5, both of which have some 
instances. In this case, we cannot tell if the log record has been 
written by an instance moving from state 2 to state 3, or by an 
instance going from state 5 to state 3. So, while we increase 
the counts of state 3 to [6, 6], we can only reduce the lower 
bounds of both state 2 and state 5; thus the new bounds are 
state 2: [2,3] and state 5: [2, 3]. 
 
Our proposed system architecture for supporting transaction 
monitoring at individual and aggregate levels, as illustrated 
above, is shown in Fig. 2. The main components are (a) a set 
of probes and a probe manager (b) the monitoring engine and 
(c) a set of agents. 
 
A probe is associated with each log file where a transaction 
footprint may be recorded. It reads records as they appear in 
the log, and forwards the same to a probe manager. Assuming 
that each log record carries a timestamp, the probe manager 
sorts records received from various probes according to the 
record timestamps, and forwards a sorted sequence of log 
records to the monitoring engine. 
 
The monitoring engine maintains a list of ongoing transaction 
instances, and the states they expect next (the next expected 
states). When the engine receives a log record that 
corresponds to an initial state of the transaction model, it 
records a new transaction instance whose next expected states 
are those that immediately follow the initial state, and creates 
an agent that is henceforth responsible for tracking the 
progress of this instance. The engine also binds tokens, if 
present in footprint patterns, to their concrete values as 
obtained from matching log records. If the engine receives a 
log record that corresponds to some other (non-initial) state of 
the model, then it scans the list of ongoing instances to 
determine which candidate instances may have produced it, by 
considering the next expected states of these instances, and 

their token values. The agents corresponding to the candidate 
instances (called candidate agents) are forwarded the log 
record, along with information about all the candidate 
instances for this record. 
               

 
               Fig2. Monitoring System Architecture  
 
An agent keeps track of the current possible states of its 
associated transaction instance. If an agent receives a log 
record corresponding to state s, for which it is the only 
candidate, then its instance must be in state s. Otherwise, s is 
recorded as a possible state, and for each possible state, an 
agent maintains a count of the number N1 of footprints of that 
state witnessed by it, and the cumulative set of candidate 
instances A that may have produced these footprints. When 
N1=A for a state s that is not part of a cycle, the agent 
concludes that the instance has definitely reached state s, and 
accordingly updates the set of possible states, by removing 
states that precede s, or are unreachable from s. The next 
expected states (containing any state that follows a current 
possible state) are then determined, and updated at the engine. 
Subsequently, the engine reads the next record, and the cycle 
repeats. The engine also monitors aggregate count of instances 
at each state of the model. On reception of a log record 
corresponding to state s, the engine increments smin and smax, 
and decrements the bounds of the parent(s) of s as illustrated 
in the example above. 

IV. PRECISION MODELING PRELIMINARIES 
In this section, we highlight some of the theoretical 

challenges related to this study. Specifically, given a set of 
interleaved footprints generated by several ongoing transaction 
instances, we would like to investigate the theoretical limits on 
the precision with which we can correlate footprints coming 
from the same instance. 

Fig. 3 shows a simple system comprising of two states, a start 
state and a finish state. We assume that log records contain 
information on when transaction instances start being 
processed (arrivals at times y0(1), y0(2),… to state S0) and when 
they finish (arrivals at times y1(1), y1(2),… to state S1). 
However, due to absence of transaction identifiers, we have no 
knowledge of which of the instances have departed or in what 
order. We say that an n-match occurs whenever we pick n 
consecutive arrivals and n departures (not necessarily 
consecutive) and the latter “happen” to be the departures of the 
n arrivals picked. We consider n-matches that correspond to 
busy periods of the system, i.e., when the first of the arrivals 
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arrive to an empty system and the n-th departure leaves the 
system empty again. It should be obvious that there is no need 
to attempt matches across busy periods. The system in Fig 3, 
and the preliminary results shown next, serve as the basis for 
analysis of more elaborate system we currently study. 
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         Fig3. Arrivals and departures in a 2-state system 

  

If instances were processed in FIFO or LIFO order, then 
matching would have been trivial.  However, when the only 
information available is the size of a busy period, i.e., the 
number n of instances processed during the busy period, then 
any departure could be due to any of the arrivals in the busy 
period. Thus, the number Nm of possible n-matches equals the 
number of permutations of n objects nPn=n!. If, in addition, 
timestamps are also available, then causality arguments can be 
used to reduce the number of departure choices (or 
permutations), e.g., in Fig. 3 the fourth arrival (at time y0(4)) 
can only be associated with the third and fourth departures (at 
times y1(3), y1(4), respectively); the circled numbers at each the 
arrival instance in the figure represents the number of candidate 
departures for the arrival. If we were to write the biadjacency 
(0-1) matrix A={aij=1, iff departure j occurs after arrival i}, 
then the number of possible n-matches Nm “reduces” to: 

m 1
1 ( , ( )) !,

n

n
ni

N a i i n
π

π
=

≤ = ≤∏                  (1) 

where n(i) is the i-th element of a permutation of the set {1, 2, 
…, n}. The equality in the RHS of (1) can be attained when all 
departures in the busy period occur after all arrivals to the busy 
period have occurred. The equality on the LHS is trivially 
attained when the size of the busy n equals 1.When stochastic 
information is also known in terms of the distribution fT(t) of 
the residence time of an instance in state S0, then a most likely 
match can be selected. Due to space limitations, we do not 
elaborate further on this here, however, it can be shown, as 
expected, that (1) plays an important role in this case too and 
aids in deriving performance bounds. 

V. RELATED WORK 
Log Analysis and Model Discovery: [1] presents techniques 
for discovering similar records in a log and clustering them to 
simplify log complexity. The idea of process mining in the 
context of workflow management was introduced in [2]. The 
ProM framework [3] integrates a set of tools that support 

different mining techniques for model discovery. A survey of 
such techniques may be found in [4].   
Distributed System Monitoring: White box methods for 
monitoring generally depend on instrumentation techniques 
e.g. [5], [6]. Some commercial offerings having transaction 
monitoring capabilities are tied to specific technologies like 
SOA [10] and make use of product/domain-specific 
information and ARM instrumentation [9] to track call status. 
In contrast, our solution is platform-agnostic and non-
intrusive. There are black-box techniques e.g. [7], [8] which 
require no instrumentation; however, they generally do not 
focus on monitoring individual call flows end-to-end, but 
rather on the discovery of component-level dependency 
models. 

VI. ONGOING AND FUTURE WORK 
We have implemented the transaction monitoring solution 
proposed in this paper, and have carried out some empirical 
studies, details of which could not be provided due to lack of 
space. An extended version of the theoretical study in section 
IV can be found in [11]. Our current work focuses on run-time 
transaction model validation. In future, we would like to 
incorporate fault-tolerance capabilities into the solution. 
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