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Abstract—Recent technological advances in commodity server
architectures, with multiple multi-core CPUs, integrated memory
controllers, high-speed interconnects and enhanced network in-
terface cards, provide substantial computational capacity and
thus an attractive platform for packet forwarding. However,
to exploit this available capacity, we need a suitable software
platform that allows effective parallel packet processing and
resource management. In this paper, we at first introduce an
improved forwarding architecture for software routers that
enhances parallelism by exploiting hardware classification and
multi-queue support, already available in recent commodity
network interface cards. After evaluating the original scheduling
algorithm of the widely-used Click modular router, we propose
solutions for extending this scheduler for improved fairness,
throughput and more precise resource management. To illustrate
the potential benefits of our proposal, we implement and evaluate
a few key elements of our overall design.

I. INTRODUCTION

Recent advances in server technology promise significant
speedups to applications amenable to parallelization. Router
workloads appear ideally suited to exploit these advances,
which has led to a renewed interest in the applicability of soft-
ware routers. Software routers offer several advantages, like a
familiar programming environment and ease of extensibility,
which offers the potential to serve as a single platform onto
which one can consolidate many network functions typically
implemented by various middleboxes. Examples are the single
server-based routers running open-source router software as
offered by Vyatta [1], which have even been touted as cheaper
alternatives to other commercial routers. However, the limita-
tion of software routers has always been performance. Which
is why the possibility of leveraging recent server advances to
further the reach of software routers has been of high interest
[2] [3] [4] [5].

The recent trajectory of server advances has been of growing
the available resource capacity through increased parallelism.
Multi-core CPUs increase the available CPU resources; multi-
ple memory controllers integrated in the CPU sockets increase
the available memory capacity; multiple I/O links and PCIe
buses do the same for I/O and – importantly, high-speed point-
to-point interconnects offer high-capacity access between com-
ponents.

However, precisely because the underlying hardware is
parallel, achieving high performance will rely greatly on
our ability to distribute packet-processing well across the
available resources (not unlike routing across a network – the
more alternate routes, the more a routing algorithm has to
work to make sure the network capacity is well exploited).
Traditionally, this is the job of the scheduler to decide which
set of tasks are assigned to which cores and when (if at all)
tasks must be moved between cores.

One of the major points of software routers is that they
can simultaneously support very different forms of packet
processing, with different resource characteristics, on a single

hardware architecture. For example, one can imagine having
multiple customers – for one we are performing encryption,
and for the other deep packet inspection. Since certain oper-
ations are more expensive (in terms of the server resources
they consume) than others we want to make sure that each
customer receives a fair access to the server resources. In
general, this requires proper abstractions for flexible and
efficient flow differentiation as well as resource allocation.
While, we also need scheduling techniques that make good
use of the resources so as to achieve high performance, and
can also support various scenarios of fair resource sharing and
isolation.

In this paper, we observe that neither traditional forwarding
architectures nor traditional schedulers are ideally suited to our
task, for the following reasons: (1) Traditional forwarding ar-
chitectures are not capable of taking advantage of recent server
advances (e.g. multiple I/O links, hardware classification and
multi-queueing in the network interface cards), and thus are
limited in exploiting the highest performance achievable. (2)
Schedulers are CPU centric. This can be problematic since one
of the distinguishing features of a packet-processing workload
is that it stresses more than just the CPU. This becomes even
more likely as the number of cores increases resulting in
bottleneck potentially being any of the CPU, the memory, or
the I/O, and hence being “fair” in terms of CPU may not
mean an adequate solution. (3) Schedulers fail to take into
account the heterogeneity in workloads. (4) Schedulers also
fail to consider the basic question of whether we can accurately
measure the resource consumption for different packets/flows
in a dynamically changing workload. We cannot hope to
allocate resources appropriately if we cannot first accurately
account for their consumption.

To this aim, we approach the limitations from two direc-
tions. On the one hand, we propose an improved forwarding
architecture that outperforms, in terms of throughput and
latency, the traditional way of packet forwarding, while it also
provides additional advantages for resource management and
scheduling. We then focus on understanding the limitations
of traditional schedulers and on quantifying their impact, thus
identifying the requirements for an improved scheduler design.

The paper is organized as follows. In Section II we dis-
cuss the limitations of traditional forwarding architectures
and propose an architecture that overcomes these limitations.
Section III focuses on the resource management. Finally
Section IV concludes the paper.

II. FORWARDING ARCHITECTURES

In this section at first we analyze the shortcomings of
the traditional forwarding architecture widely used in com-
modity software routers and propose an improved forwarding
architecture that outperforms, in terms of throughput and
latency, this traditional way of packet forwarding, while it also
provides additional advantages for resource management. Our
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Fig. 1. Server architectures based on point-to-point inter-socket links and
integrated memory controllers.

proposed architecture builds on the observation that recently
released network interface cards (NICs) [6] provide multiple
receive and transmit queues to support server virtualization,
but these multi-queue NICs can also be used to achieve
better parallelism and hence improve resource management
and scheduling in the forwarding engine of software routers.

Before going into the details of the forwarding architectures
we briefly overview the server architecture and software envi-
ronment we used to implement our extensions and carry out
our measurements.

A. Server Architecture
The hardware environment we use for our study is an early

prototype of the dual-socket 2.8GHz Intel NehalemTMserver
[7], since it implements the most recent advances in server
architecture. Figure 1 illustrates the high-level architecture
of our server. Multiple processing cores1 are arranged in
“sockets”; our server has two sockets with four cores per
socket. All cores in a socket share the same 8MB L3 cache,
while every core also has on its own a 256KB L2 and a
64KB L1 cache. A memory controller is integrated within each
socket and connects to a portion of the overall memory space
via a memory bus. The use of multiple sockets with integrated
memory controllers means that memory accesses are non-
uniform (NUMA). Dedicated high-speed point-to-point links
serve to connect the two sockets directly, as well as to connect
each socket to the I/O hub. Finally, the I/O hub connects to the
NICs via a set of PCIe buses. Our server has 2 PCIe1.1 x8 slots
which we populate with 2 NICs, each holding two 10Gbps
ports [6]. These network cards can provide us upto 32 transmit
(Tx) and 64 receive (Rx) queues, while they support both the
Receive Side Scaling (RSS) [8] as well as the Virtual Machine
Device queue (VMDq) [9] mechanisms for distributing the
arriving packets into the desired Rx queues.

These servers represent the next-generation replacement for
the widely deployed Xeon servers, i.e., these servers conform
to the informal notion of a “commodity” server.

Our server runs Linux 2.6.24.7 with the Click Modular
Router [10] in polling mode—i.e., the CPUs poll for incoming
packets rather than being interrupted. We use Click to perform
the packet forwarding and processing functions of our router
as it has been shown to offer a good tradeoff between ease of
programming and performance.

Click is a modular software architecture that offers a flexible
approach for implementing software routers on Linux and
FreeBSD. We use Click only in the Linux kernel-mode due
to the need for the best performance we can get from our

1We use the terms “CPU,” “core” and “processor” interchangeably.
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Fig. 2. Experimental configuration.

architecture. From a high-level perspective the Click imple-
mentation consists of packet processing elements and packet
queues, connected in a data-flow like configuration. Elements
include the code for performing a packet processing function.
A number of elements that can be connected in any structure
and order needed. Typically, a configuration will have a set
of input, forwarding, and output elements, each separated by
packet queues.

In addition, Click supports multi-threading inside the Linux
kernel [11], that is, different elements in the same config-
uration can be scheduled on separate cores, providing an
excellent platform for developing and experimenting with our
forwarding and resource management methods. To further
justify our choice of Click over native Linux we refer to the
results reported in [12] that show how limited the standard
Linux kernel is, as far as its ability of effectively parallelizing
the packet forwarding process, and then of exploiting the
overall capacity of multi-core systems.

Figure 2 illustrates the topology of our experimental con-
figuration. In our experiments we used two servers, one acted
as traffic generator while the other as the actual router. With
regard to the generated traffic, we use a synthetic workload of
min-sized (64B) packets as it stresses the system the most.

For performance measurements we instrument our server
with a proprietary performance tool similar to Intel VTune
[13] and somewhat to Oprofile [14].

B. Traditional Forwarding Architecture
Figure 3 illustrates the packet forwarding configuration used

in traditional software routers with single-queued NICs [15].
In this configuration a separate input process (INx) and output
process (OUTx) is needed to move the packets between the
Rx and Tx rings and the packet processing part (PPx) of the
software. Besides polling the packets in, the input process
also classifies the packets and determines to which flows the
packets belong to, and places them into the appropriate down-
stream queue where the packet waits to be processed by the
packet processing and forwarding function(s).

After a packet gets scheduled to be processed by the
next “stage” (i.e. PPx), which in the simplest case includes
manipulating the TTL and checksum field of the IP header
and modifying the link-level header, it gets enqueued into the
second down-stream queue where it again waits until all the
packets in front of it are removed by the output process, and
the output process gets scheduled to dequeue the given packet
and move it to the output queue of the card.

The disadvantages of this configuration can easily be spot-
ted: (1) to forward a packet it needs to be processed by three
separate software sections, thus it waits three times to be
scheduled, resulting in high latency; (2) besides high latency,
the throughput is also going to be unavoidably below what
might be achieved by the given hardware architecture: on the
one hand, because scheduling and context-switching of the
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Fig. 3. Traditional software routers’ forwarding architecture

three different processes (input, packet processing/forwarding,
and output) are introducing extra cycles needed to forward
a packet, while on the other hand for load-balancing pur-
poses the three different processes handling a packet might
be executed on different cores, and as a consequence the
packets have to “switch cores” either via the shared last level
cache (L3 in our architecture) or even worse, via the main
memory; (3) in the case of flow-based resource management,
as classification of the packets only happens after a packet
has gone through the expensive input operations, and the input
process has no control over which flow’s packet to poll in next,
it is practically impossible to guarantee a flow-based service,
while the configuration is also exposed to DoS attacks; (4)
resources need to be allocated very carefully to the schedulable
processes, in order to avoid under-utilization by allocating
resources in an unbalanced way to the processes, resulting
in unnecessarily high packet loss. For example, allocating too
many resources to the input processes results in a high number
of packets which pile up and eventually are dropped from the
queues down-stream of the input processes; (5) last but not
least, contention over the input and output ports occurs when
separate cores want to access the same port at the same time.

C. Proposed Forwarding Architecture
A packet-processing workload involves moving lots of

packets from input to output ports besides also undertaking
different packet processing functions required. The question is
how should we distribute this workload among the available
cores to make optimum use of our multi-core architecture.
With this aim, the three main objectives of our proposed
architecture are basically: (1) to entirely bind all the operations
needed to forward a packet to a single CPU core; (2) to
achieve better parallelism in the execution; (3) and to create
a configuration that allows us to more accurately measure the
cost of forwarding and thus to more easily and accurately
distribute the computational load among all the resources in
the system. We discuss the first two objectives in more detail
in this section, while the third one in Section III.

We propose two broad changes to face the previously
described challenges and to overcome the drawbacks of tra-
ditional forwarding architectures. First, we extend the Click
architecture to leverage the multiple hardware queues available
on modern NICs. For this we developed a lock-free device
driver for 10Gbps multi-queue NICs and extended the Click
modular router with multi-queue support both on the input
(PollDevice) and output (ToDevice) side. Our multi-queued
Click extension allows us to bind our extended polling and
sending elements to a particular HW queue (as opposed to
a particular port). As shown in [16], the use of multiple Rx
and Tx queues and how the forwarding paths are distributed

PP
0
 OUT
00


PP
2


OUT
20


PP

1


OUT
10


OUT
01


OUT

11


OUT

21


OUT

31


OUT

30


PP

3


IN
00


IN

31


IN

21


IN

11


IN
01


IN

30


IN
20


IN
10


Legend:
 Schedulable elements (processes)


Implicit functions (invoked by schedulable elements)
PP

X 


 / OUT

XY


IN

XY


Fig. 4. Proposed software router forwarding architecture

across the cores is key to improve both the throughput as
well as the latency of our software router, while it also helps
to perform more accurate resource management, as it will be
demonstrated in the remainder of the paper. The second change
is that we extended the ToDevice element so that it can receive
packets from an up-stream Click element without the need
of an internal packet queue in the forwarding configuration
and without the need of scheduling it separately, further
simplifying the complexity of the forwarding architecture as
well as the scheduling computations (i.e. we extended the
ToDevice element with a push input and took care that the
batching of packets still works in the extended version too).

Figure 4 shows our proposed forwarding architecture we
created by using our extended Click elements. In this configu-
ration we have k input and k output queues, where k represents
the number of CPU cores in the system (4 in the example in
Figure 4), or in a flow-based scenario k might represent the
number of separate packet flows the router provides service
for. When packets arrive on a network card, some of their
Ethernet and/or IP header fields are looked up and a hash
function decides into which queue they are placed. In the
most widely-used case (i.e. Receive Side Scaling, RSS [8]),
the packets are distributed in the available input queues based
on a hash function, which function also ensures that packets
belonging to the same flow end up in the same input queue,
thus avoiding packet reordering within a flow. In addition,
packets can also be placed in the queues based on specific
values of some header fields, thus providing a flow-based
separation of the packets and supporting distinguished (QoS)
packet processing (e.g. by using VMDq the packets can be
classified by their destination MAC address).

To forward a packet at the front of a given input queue
the multi-queue PollDevice element (i.e. the IN element in
Figure 4) needs to be scheduled at first. As a consequence, this
input element polls the packet in from the queue and pushes
it down for processing to the subsequent packet processing
elements (represented by the PPx rectangle in Figure 4). After
the packet has been processed by these elements, it gets finally
pushed to our modified multi-queue ToDevice element, which
moves the packet to the associated HW queue’s Tx ring, from
where the packet is DMAed directly to this hardware queue
on the NIC without the interaction of the CPU, before finally
transmitted out on the wire. In this configuration we need to
only schedule every packet once (via the IN element) and after
that the packets are forwarded in one step regardless of which
output port they are routed to (the arrows among the IN, PP,
and OUT elements represent simple function calls). This has
a number of advantages that we discuss in parallel with the
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evaluation of the architecture in Section II-D.

D. Evaluation

In order to illustrate the importance and advantages of our
forwarding architecture, we created some simple experiments
shown in Figures 5, 6, and 7. In all of these experiments we
performed only minimal forwarding, that is, traffic arriving
at port i is directly forwarded to a pre-determined port j –
there is no routing-table lookup nor any other form of packet
processing. This minimal forwarding configuration is impor-
tant, because it only uses the minimal subset of operations that
any packet-processing application incurs, and because there is
no additional processing, the difference in forwarding rates of
the different experiments clearly represent the impact of the
changes we have applied to the forwarding paths. (Note, that
we have labeled every element in Figure 5, 6, and 7 with the
identity of the core processing that element.)

In [16], we have demostrated how the input and output
processing parts of the forwarding paths should be allocated to
cores, and how hardware multi-queueing should be exploited
for improved performance and parallelism. For completeness,
we summarize and expand on these principles here. We
showed that significant performance loss occurs when multiple
CPU cores are involved in the forwarding of the packets (e.g.
one core is performing the input processing, while the other the
output processing), compared to when a single core is doing
all the work to forward and process a packet. This performance
drop is extremely significant (∼67%) when the different cores
are residing on different sockets and are not sharing any CPU
caches, causing a memory access everytime the packet is
moved from one core to the other. The performance drop
is somewhat mitigated (∼33%) when the cores are sharing
the same CPU cache, as accessing the cache is much faster
than going to the memory. Thus, to achieve high forwarding
performance, it is critical to make sure packets stay on the
same core all the time while inside the router.

With the experiments in Figure 5 we demonstrate the per-
formance gain that comes from using our 1-phase forwarding
mechanism (experiment B) as opposed to the traditional 2-
phase mechanism (experiment A). There are two factors that
contribute to the increased performance. On the one hand, we
have to schedule every packet only once instead of twice, while
on the other, packets do not have to be enqueued into and
then dequeued from an internal software queue. Both of these
factors also contribute to a lower latency, which unfortunately
we are not able to measure accurately due to the lack of an
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accurate latency measuring device.2
The experiment in Figure 5 showed the performance im-

provement gained by enforcing packets to stay on the same
core and by using the proposed 1-phase forwarding mecha-
nism. However, this configuration seem unrealistic in the sense
that every forwarding path has only one output port where its
packets can leave the router. To overcome this, we have to
make sure that every core has parallel access to every output
port, which can simply be achieved by using multiple output
queues on every port. More precisely, we have to allocate k
queues on every output port, where k represents the number
of cores in the system. The k queues are needed to avoid
contention among different cores accessing the same output
port, and to make sure that whichever core has polled a packet
in is able to push it out without the need of an internal queue
and a second scheduling phase. In Figure 6 we show how
important it is to have multiple output queues in order to avoid
contention and to be able to keep the packets on the same
core for all the time. As the bar-graph shows, the performance
improvement is well above 100%.

As just illustrated, having multiple output queues helps
to keep packets on the same core and to avoid output port
contention, but the input ports are still unshared, which can
lead to load-balancing problems. For example, some cores
might be under-utilized while others might be overloaded due
to unbalanced arrival traffic. In addition, if we have more cores

2With Click we were able to measure the average time a packet spends in
the internal queue under high load, which is approx. 8600 cycles (3 µsec), but
we could not measure the latency gain of reducing the scheduling iterations
from two to one per packet. Measuring latency is subject of future work.
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than ports the packet processing has to be pipelined to exploit
all the available cores, like in Figure 7(A), which can result in
core switching and a difficult resource allocation problem. To
overcome these problems, we also need multiple input queues.
By allocating k queues on every input port we can make sure
that every core has parallel access to every input port and thus
it significantly simplifies the resource management. Figure 7
demostrates how important multiple input queues are for high-
performance packet forwarding.

III. RESOURCE MANAGEMENT

In the previous section we showed the throughput and
latency gains one can achieve with our proposed forwarding
architecture. In this section we are going to discuss the other
advantages the architecture has to offer from the perspective
of resource management.

The objective of proper resource management in software
routers is to provide flexible and efficient flow differentiation,
resource allocation, and scheduling in order to ensure fair
resource sharing, isolation, as well as high performance. In
Section II-D, we demonstrated that we can achieve efficient
flow differentiation by using hardware classification and multi-
queueing available in current NICs. In this section we show
how the current Click scheduler and resource allocator might
be improved by providing a more predictable system behavior,
a guaranteed service (i.e. a guaranteed packet rate and/or
bandwidth), higher per-flow and overall throughput and better
fairness amongst the forwarding paths competing for the same
resources.

A. Resource management in Click
In Click the base unit of scheduling are the Tasks. A Task

is considered to be a chain of elements, which practically
compose a part of a forwarding path (FP), that are traversed by
a packet within a single scheduling step and it starts with an
explicitly schedulable element. These explicitly schedulable
elements have a so called run task function that is called
upon scheduling, after which the element executes its packet
processing function(s) and hands the packet over to the next
element downstream in the router configuration. Thus, these
other elements are scheduled implicitly, by calling either their
push or pull functions (i.e. they do not have any run task
function). A packet is processed and handed over to the
next element until it either ends up in a Click queue inside
the configuration or in one of the output ports’ (or output
queues’) Tx ring. In these cases the CPU is released and
another element within the same thread, with a run task
function, at the front of a Task, is scheduled. These schedulable
elements are responsible for either the input (e.g. PollDevice,
FromDevice) or output processing (e.g. ToDevice) or for
unqueueing the packets from an internal Click queue (e.g.
Unqueue, RatedUnqueue, etc.). Note, that in our proposed
forwarding architecture the PollDevice element (i.e. INXY in
Figure 4) is the only schedulable element.

The CPU scheduler currently implemented in Click is based
on the Proportional-Share (PS) Stride scheduling algorithm
[17]. The implemented scheduler holds the following, mainly
positive, characteristics that also apply to most PS schedulers
in general:

• Each task reserves a given amount a resources (repre-
sented in Tickets in the Stride scheduling algorithm as
well as in Click) and it is guaranteed to receive at least
this amount of resources when it is not idle. In general PS
schedulers, resources reserved for a Task ususally mean

a given number of CPU cycles-per-second. In current
Click the reserved resources mean the number of cycles
it takes to execute a Task. Hence, because in Click the
Tasks are non-preemptive they can hold the CPU, and thus
put load on the other resources (e.g. memory and I/O),
as long as they need, regardless of how long it takes to
execute them. As a consequence, Tasks in Click with the
same amount of tickets are scheduled equally often, but
because of their different resource needs they consume
different amounts of the different resources. This way of
scheduling results in an unfair resource usage, for which
we propose a solution below.

• An idle Task cannot “save tickets” to use it when it
becomes active.

• For work-conserving purposes, tickets unused by idle
Tasks are distributed among the active Tasks within the
same thread. These active Tasks are not charged for these
extra resources.

• To do a context-switch between Tasks is an expensive op-
eration, therefore it is recommended to avoid scheduling
an idle Task if possible. To this aim, Click implements
an adjust ticket mechanism, that dynamically changes the
actual ticket value of a Task between 1 and its allocated
ticket value (1024 by default) in correlation with the
number of packets processed recently by the Task in
question.

As far as resource allocation is concerned, Click currently
provides two mechanisms for that. On the one hand, it lets the
user to statically define which Task should be run within which
kernel thread. This method is useful for experimentation,
but it is very limited when it comes to dynamic resource
management in real forwarding scenarios. On the other hand,
Click also provides a method where the recent CPU usage of
every Task is measured, and based on this measurement the
Tasks (if needed) are redistibuted among the available threads
for load-balancing purposes.

Although this latter method provides more sophisticated
resource management than the static method, it still lacks a
number of significant features, such as, it does not take into
account the cache hierarchy, it only measures the recent cycle
usage of the Tasks also including in the measurements the
cycles used when the Task was practically idle and consumed
only a few cycles, while it does not maintain any statistics
about the real cost of forwarding a packet by any given Task.
In addition, it does not use any other metric, besides CPU
cycles, to describe a Task.

B. Scheduling based on different resources
In previous work [2], [3], [5], we have shown that in

multi-core architectures the bottleneck of packet processing
can as easily be at the memory or I/O as at the CPUs and
hence resource allocation needs to be able to handle the case
where any of these is the scarce resource and not the CPU.
Therefore, we find it necessary to not only measure the CPU
cycles used by the Tasks, but also other metrics describing the
utilization of resources, like memory and I/O bandwidth, cache
miss rates at any level of the cache hierarchy, instructions-
per-second, etc. and then use these metrics for resource
allocation and scheduling calculations. To this end, we use
performance monitoring counters to determine the utilization
of the resources. These hardware counters are commonplace
on modern processors, they are very low overhead counters
and were originally introduced for profiling and performance
analysis and are therefore suitable for our purposes, that is, to
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Fig. 9. Resource usage with fair CPU scheduling

measure the cost of forwarding a packet on multiple resources.
In our hardware architecure, every Hyper-Thread (there are
two Hyper-Threads per core when Symmetric Multi-Threading
is enabled) possesses 3 fixed and 4 customizable counters, but
there are over 500 events these counters can measure, using
time-division multiplexing.

One additional great advantage of our proposed forwarding
architecture is, that it makes it possible to measure the resource
utilization of packet forwarding very accurately and cost
effectively. This comes from the fact that every packet is
forwarded from the input to the output port in one “go” and on
a single core, that is, we have to read and store the values of
the counters only once per packet and only on a single CPU.
To get the correct resource utilizations we recommend to reset
the counters just before a Task gets scheduled and read them
just after the Task finishes running.

To demonstrate the resource usage of different scheduling
principles (i.e. default Click, fair CPU, and fair memory
scheduling) 3, we at first measured the resource utilization
of different workloads. In the second step, we calculated
the resource usage of the demonstrated scheduling principles
based on the previously measured resource utilizations. The
workloads we use for evaluations in the remainder of this
section are the followings:
(1) Minimal forwarding (FWD): This is the same application
that we used in Section II-D, that is, traffic arriving at port i
is directly forwarded to a pre-determined port j – there is no
routing-table lookup nor any other form of packet processing.
(2) IP routing (RTR): We implement full IP routing including
checksum calculations, updating headers and performing a
longest-prefix-match lookup of the destination address in an
IP routing table. For this latter, we use Click’s implementation
of the popular D-lookup algorithm [18] and, in keeping
with recent reports, a routing table size of 256K entries.
For synthetic input traffic, we generate packets with random
destination addresses so as to stress cache locality for IP

3Scheduling based on other metrics might be used as well, but due to lack
of space we only focus on these now.
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Fig. 10. Resource usage with fair memory scheduling

lookup operations.
(3) IPsec packet encryption (IPsec): Every packet is en-
crypted using AES-128 encryption, as is typical in VPNs.
(4) CRC calculation (CRC): 32 bit CRC is calculated over
the whole packet and appended to the end of it.

Our selection represents commonly-deployed packet-
processing applications that are fairly diverse in their com-
putational needs. For example, minimal forwarding stresses
memory and I/O; IP routing additionally references large
data structures; encryption is CPU-intensive; while CRC is
memory-intensive.

Figure 8 shows the achieved packet rates and resource
utilization with 64B packets of three different forwarding
paths/workloads (FWD, RTR, and IPsec) co-scheduled on the
same CPU by the default Click scheduler. As this default
scheduler does not take into account any cost parameters the
FPs are considered to be equal and are scheduled equally
often, thus resulting in the same throughput. However, as
every FP uses different amounts of resources their individual
resource consumption are significantly unbalanced and unfair.
To overcome this fairness issue, Figures 9 and 10 show the
packet rates and resource consumptions in the case of a fair
CPU and a fair memory scheduler, respectively. As the graphs
show, the packet rate of the cheaper workloads (i.e. FWD and
RTR) increases while for IPsec it decreases accordingly to
their CPU and memory needs.

As one might notice, all the resources except the one the
scheduling is based on are unbalanced. Although, it is possible
to devise a scheduling algorithm that equally balances the load
over multiple resources, we find it unnecessary. The main
reason for this is, that in a real-time scenario there will be
always one resource at a given time that is mainly responsible
for the contention. Although, this resource might change over
time due to the change of the arriving traffic to the FPs, it
is simpler and more efficient to equip the scheduler with the
ability to schedule the Tasks based on different resources, but
base the scheduling on only one at a time, instead of all of
them, including the ones below their saturation point. That
is, in an overload scenario if we schedule and fair-share the
saturated resource, we ensure that the saturated resource is
used equally, which might result in unequal usage of the other
resources, but as they are still below their saturation point, this
unequal resource usage will not cause any performance drop
for any of the FPs.

C. Granularity and Frequency
In Figures 9 and 10 we showed the effect of scheduling the

Tasks based either on their CPU cycle or memory bandwidth
consumption. The question “how this might be implemented?”
comes naturally. One part is, what we have already described
previously, to measure the resource consumption of every Task,
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while the other is to set when the packets should be scheduled.
Scheduling a packet happens via the Task that is allocated to
the hardware input queue the packet resides in. For this latter
part we have two tools available, one is the Ticket value of the
Tasks while the other is the BURST value of the schedulable
elements standing at the front of the Tasks (i.e. PollDevice, or
INXY in Figure 4). In the current implementation both of these
parameters are static (i.e. Ticket=1024, BURST=8), but with
some simple extensions it is possible to set them dynamically
by the scheduler. The Ticket value is the parameter that directly
represents how often a Task should be scheduled relative to the
others. The higher this value is the more often the Task is going
to be scheduled (in a linear proportion). The BURST value
is the parameter for batching. That is, when a schedulable
element is scheduled it processes as many packets as there
are available upto the value of the BURST parameter. The
advantage of batching is well-know, it reduces the overhead
of context-switching, and thus improves the performance.

To demonstrate how significant batching is in Click we
ran experiments with minimal forwarding workload and 64B
packets with different batching values. Figure 11 shows the
performance gain as the function of the increasing batching
value. Besides demostrating the performance gain, this set
of experiments also helps us to determine the exact cost
of context-switches. Using linear-regression we found that it
takes approx. 6100 cycles to perform a context switch in Click
on our machines, which includes recalculating the virtual time
when the currently finished Task should be run again, putting
the Task in the right place of the working queue and fetch
the next Task from this working queue and run it. The cost of
the context-switch is important to know for accurate resource
management, as this value has to be included in the cost of
forwarding a packet.

However, it is important to note that with batch processing
of the packets, we decrease the responsiveness of the system
and make the scheduling granularity coarser, which might not
be favourable after a certain point. That is, the administrator of
the system needs to determine a maximum value, preferably
in terms of CPU cycles, for how long a Task can keep the
resources when it is scheduled, in order to avoid too coarse
switching of Tasks resulting in poor responsiveness. Let R
represent this maximum value. To this end, we recommend
to determine the highest burst rate for every Task and use that
burst rate every time the Task gets scheduled. The maximum
allowed burst value of every Task can be determined according
to the following equation:

BURSTi = bR−CCS

CCi

c;

where CCS indicates the cost of a context-switch (i.e. 6100
cycles in our case), and CCi the CPU cost of Taski.
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Principle #1

D. Co-scheduling principles
Today’s general purpose operating systems adapt timeslice-

based multiprocessor scheduling to be aware of resource
contention and take steps to mitigate it. This means that
timeslices need to start at the same time on each core, thus
such schedulers require synchronization across all the cores.

As described above, the Click Tasks cannot be preempted,
eliminating the possibility of timeslice-based scheduling. This
has the advantage of better resource utilization compared to
timeslice-based scheduling. Namely, when in the latter case a
process terminates earlier than when its timeslice would have
finished, the given CPU is going to be idle for the remaining
time of the timeslice. In Click’s scheduler, the resources are
handed back as soon as a Task finishes processing the packets.
However, because of the lack of synchronized timeslices across
all the cores, it is virtually impossible to have a global
scheduler that can accurately co-schedule exact Tasks running
on separate cores, which might lead to unpredictable system
behaviour as there is no control over what tasks, with what
characteristics are going to run at the same time.

To overcome this unpredictability, we propose to co-
schedule Tasks with the same or similar characteristics on the
same core (Principle #1), thus ensuring that the given core
is always using approximately the same amount of shared
resources (i.e. memory, cache, I/O) regardless which Task is
running at a given time.

To demostrate the importance of this co-scheduling principle
we ran three experiments, each with 4 forwarding paths, 2
IPsec and 2 CRC, distributed on 2 cores, each Task (FP) being
allocated 50% of the CPU resources, emulating a scenario
where the CPU is the bottleneck. Figure 12 illustrates the
total memory and I/O utilization for the three experiments
(as well as the CPU utilization, but because both cores were
running at 100% all the time, this has less relevance). The
first bars (called ”50/50”) are the baseline numbers, in which
experiment the two IPsec FPs were sharing a core, and the
two CRC FPs were sharing the other. The arriving packet
rate for every FP was identical and consisted of only 1024B
packets. In the second experiment (called ”20/80 Similar”)
the FP-to-core allocation was the same, but on both cores one
of the FPs received only 25% of the other FPs packet rate,
resulting in a 20 / 80 resource usage due to the proportional-
share scheduling mechanism. As the results show, the total
memory and I/O utilization has not changed, due to the fact
that the Tasks sharing the same core have the same resource
usage characteristics. In the third experiment, we allocated one
IPsec and one CRC FP to every core and generated 20% of
the traffic on both cores to the IPsec FP, while 80% to the
CRC. As the results show, because the CRC workload has
different characteristics (higher memory and less CPU needs)
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Fig. 13. Performance improvement when complying with Principle #2

it used more memory and because of the higher packet rate
more I/O bandwidth as well. This phenomenon can be critical
in the case when the CPU is the resource saturating at first,
but the memory is near its saturation point as well, and when
the arriving traffic pattern changes the bottlenecked resource
might fluctuate between CPU and memory 4.

Recent Intel processors support the Hyper-Threading (HT)
Technology [19] (a.k.a Simultaneous Multi-Threading (SMT)),
delivering thread level parallelism for more efficient use of the
resources and higher processing throughput. Our server archi-
tecture supports two threads per core, thus in total 16 threads.
The key behind the improved performance of Hyper-Threading
is the ability to fetch instructions from multiple threads in
a cycle, thus instructions from more than one thread can be
executed in any given pipeline stage at a time. However, to
really see improvement in the performance with SMT switched
on, we found that carefull resource allocation is needed in
the case of a parallelized software router architecture. Our
finding is that Tasks with more diverse (or complementary)
characteristics executed on adjacent threads 5 result in more
significant performance improvement than Tasks with similar
characteristics (Principle #2). Figure 13 shows the results
of our experiments on this. In these experiments we had 4
FPs, 2 IPsec and 2 RTR, and 2 cores each with 2 threads,
thus 4 threads in total. In the first case (called ”Similar”)
we allocated the identical FPs to the adjacent threads, while
in the second case (called ”Complementary”) one thread on
every core was executing an IPsec FP, while the other a RTR
FP. The left graph in Figure 13 shows the packet rate for
every FP, while the right graph shows the improvement in
the packet rate of the Complementary experiment over the
Similar one in percentage. As we can see for the IPsec FPs
the improvement is nearly 30%, for the RTR it is nearly
12%, while the total packet rate improvement is slightly above
12%. This improvement comes from the fact that the adjacent
threads were executing workloads with different characteristics
(i.e. a CPU-intensive IPsec, and a less CPU-intensive, but
more memory-intesive RTR), and while their instructions were
stressing separate resources the parallelism provided by Hyper-
Threading managed to more efficiently utilize these resources
(i.e. while the RTR workload was waiting for data to be
fetched from the memory the IPsec workload managed to carry
on with execution in parallel).

IV. CONCLUSION

The performance of modern multi-core commodity archi-
tectures clearly indicates its viability for high performance

4The saturation point of the resources can be determined by benchmark
experiments.

5We call the two threads running in parallel on the same core ”adjacent
threads”. Some literature call them ”physical” and ”logical” threads.

packet forwarding. However, as we demonstrated in this paper,
a software router platform has to be designed in a way that pro-
vides effective parallelism and proper resource management
for workloads with diverse resource characteristics.

Our proposed forwarding architecture enables full paral-
lelization of the resources, while it also improves performance
by simplifying the basic structure of the forwarding paths,
made possible by hardware multi-queues. Although this archi-
tecture is not equipped with the ability to deal with overloaded
output ports at the moment, the problem can easily be solved
by using an auxiliary queue in the output element that is only
used when packets cannot be moved to the output port. These
extensions are the subject of our future work together with
accurately measuring the latency gain of our architecture.

Our results in Section III clearly indicate that we need to pay
attention to the utilization of multiple resources, and not only
the CPU, when allocating resources to different workloads.
For predictable system behaviour we identified Principle #1,
recommending to co-schedule workloads with similar charac-
teristics within the same thread, while for improved perfor-
mance co-schedule workloads with different characteristics on
adjacent hyper-threads (Principle #2).

Our proposed architecture is capable of performing flow-
based packet processing, while it can also be used as a
forwarding plane of virtualized software routers, such as
introduced in [5].
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