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Abstract—The availability of end devices of peer-to-peer stor-
age and backup systems has been shown critical for usability and
for system reliability in practice. This has led to the adoption of
hybrid architectures composed of both peers and servers. Such
architectures mask the instability of peers thus approaching the
performances of client-server systems while providing scalability
at a low cost. In this paper, we advocate the replacement of
such servers by a cloud of residential gateways, as they are
already present in users’ homes, thus pushing the required stable
components at the edge of the network. In our gateway-assisted
system, gateways act as buffers between peers, compensating
for their intrinsic instability. This enables to offload backup
tasks quickly from the user’s machine to the gateway, while
significantly lowering the retrieval time of backed up data. We
evaluate our proposal using real world traces including existing
traces from Skype and Jabber as well as a trace of residential
gateways for availability, and a residential broadband trace for
bandwidth. Results show that the time required to backup data in
the network is comparable to a server-assisted approach, while
substantially improving the time to restore data, which drops
from a few days to a few hours. As gateways are becoming
increasingly powerful in order to enable new services, we expect
such a proposal to be leveraged on a short term basis.

I. INTRODUCTION

While digital data clearly dominates, backup is of the utmost
importance. More specifically, online (i.e. off-site) backup is
often preferred over simple backup on external devices as it
ensures data persistence regardless of the damage cause (e.g.
failures, burglars or even fires). To enable their deployment,
online backup systems should run in the background and
provide reasonable performances so that archives can be stored
safely in reasonable times. While cloud backup systems are
increasingly adopted by users (e.g. Amazon S3 or DropBox),
their peer-to-peer alternatives, potentially offering virtually
unlimited storage for backup [1], [2], are still not appealing
enough performance-wise, as e.g. retrieval times for saved data
can be an order of magnitude higher that the time required for
direct download [3].

Indeed, peer-to-peer backup systems are limited by the low
to medium availabilities of participating peers and by the slow
up-links of peers’ network connections. This limits the amount
of data that peers can transfer and places peer-to-peer systems
way behind datacenter-based systems [4]. Not only this may
impact the reliability of the stored content but also this does
not provide a convenient system for users. We focus on this
problem and investigate a new way of performing efficient
backup on commodity hardware in a fully peer-to-peer way.

In this paper, we propose a new architecture for peer-to-peer
backup, where residential gateways are turned into a stable
buffering layer in between the peers and the Internet. The
residential gateways are ideal to act as stable buffers: they
lay at the edge of the network between the home network
and the Internet, and are highly available since they remain
powered-on most of the time [5]. Our approach relies on
the high availability of gateways to compensate for the end
peers instability. Our approach enhances the backup system’s
performance along two lines:

• The network connection can be used more efficiently
(i.e. the available bandwidth can be exploited typically
21h/day instead of only 6 to 12h/day on average). This
leads to significant enhancements. For example, we ob-
serve that the time to backup a 1GB archive is reduced
from around one week in a pure peer-to-peer system to
around one day in our system.

• Additionally, the gateways, offering a high availability
(86% on average, according to our measurements), can
act as rendezvous to allow any two peers to communicate
efficiently, even if they are not up at the same time. In
our application, this enhancement mainly has an impact
on the time to restore, which is reduced from a few days
to a few hours.

Our proposal differs from existing approaches [4], [6]–[10]
by taking into account the low-level structure of the network.
Indeed, most peer-to-peer applications ignore the presence of
a gateway in between each peer and the Internet. As a result
they do not leverage the presence of the gateway while it
can greatly improve the overall performance of the system.
We believe that leveraging the gateway storage space may
render peer-to-peer systems viable alternatives for backup.
This should provide a reasonable solution even when peers
experience a low availability as long as they connect frequently
enough to the system. Using those gateways as buffers between
peers participating in a backup or restore operation, enables to
implement a stable rendezvous point between transient peers.

The remainder of this paper is structured as follows. In Sec-
tion II, we briefly review some pieces of work that motivated
our proposal. In Section III, we detail our architecture and
sketch the storage system. Section IV introduces a framework
for comparison of our proposal to that of competitors, and
Section V presents our evaluation study. We discuss respec-
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Figure 1. Availability of residential gateways mesured on a French ISP. The dataset has been acquired sending pings to a random sample of gateway IPs.

tively some specific points and related work in Section VI and
Section VII. Finally, we conclude the paper in Section VIII.

II. BACKGROUND

Peer-to-peer storage systems initially relied on the set of
all participating peers, typically constituted of users’ desktop
PCs, without any further infrastructure [6], [7]. However, it
has been acknowledged since then [11], [12] that those pure
peer-to-peer architectures may fail to deliver reliable storage
by exploiting the resources of peers, mainly due to the low
availability of peers and the slow up-link of their network
connections. One straightforward solution is to exclude peers
with a low availability or a slow network connection to access
the service [13]; this nevertheless excludes many participants
and significant amounts of exploitable resources [1], [2].

In order to move towards practical system deployment
while still leveraging users’ resources, hybrid architectures,
where both servers and peers coexist, have been very recently
proposed in various contexts [14]. The problem of sharing
files while mitigating the load of central servers is addressed
in [15], which proposes a BitTorrent like server-assisted ar-
chitecture where central servers act as permanently available
seeders. Lastly, a server assisted peer-to-peer backup system
is described in [4]. In their system, which can be referred to as
CDN-assisted, the CDN enables to reduce the time needed to
backup data, while the use of peers guarantees that the burden
of storage and communication on the data center remains low.
In this last approach, a peer uploads data to a set of other peers
if they are available, and falls back on the datacenter otherwise,
thus using the datacenter as a stable storage provider.

Residential gateways connect home local area networks
(LAN) to the Internet. They act as routers between their WAN
interface (Cable or DSL) and their LAN interfaces (Ethernet
and WiFi). They started to be deployed in homes to share
Internet access among different devices and got additional
functions as services (VoIP, IPTV) were delivered over the
Internet. It is now fairly common to have home gateways
embedding a hard drive, acting as Network Attached Storage
to provide storage services to other home devices and offering
some other ones to the outside world [5], [16].

III. A GATEWAY ASSISTED SYSTEM

A. Stability of residential gateways

As residential gateways provide not only Internet connec-
tivity, but also often VoIP, IPTV and other services to the

home, the intuition tells us that they remain permanently
powered on. To confirm this assumption, we extracted a trace
of residential gateways of the French ISP Free, using active
measurements1. We periodically ping-ed a set of IP addresses
randomly chosen in the address range of this ISP, which
has a static IP addressing scheme. We obtained the uptime
patterns of 25, 000 gateways for 7.5 months, covering week-
patterns [17], [18], and holidays. We plot the availability of
those devices against time, in the classical representation of
availability, on Figure 1a. Some clear acquisition artifacts
appear due to both the unreliability of the ICMP monitoring
and temporary failures on the path between our platform and
the targeted network. Yet, the trace confirms the common
intuition about the stability of those devices, in spite of a few
users having power-off habits (on a daily or a holiday basis, see
Figure 1c), thus slightly reducing the average availability. The
average availability of gateways in this trace is 86%, which
confirms the results observed in [5], where the authors used
traces from a biased sample (only BitTorrent users) [19]. This
has to be contrasted with the low to medium availabilities of
peers generally recorded in the literature, as e.g. 27% in [4],
or 50% in [20].

This increased stability makes gateways appealing candi-
dates for backing peer-to-peer services. The intuition is that
data is temporarily stored on gateways to compensate for peers
transient availability. In this paper, we advocate the use of
gateways as buffers and not storage. This choice is motivated
by the increasing number of devices embedding storage,
within the home and attached to a gateway. Dimensioning the
storage of the gateway accordingly would be costly and would
break the peer-to-peer paradigm by creating a central point in
charge of hosting resources of attached devices durably: the
contributed resources would no longer scale with the number
of clients. In our buffer model, each device is required to
provide a portion of its available space [1], [2], to participate
to the global backup system.

B. System rationale

In this paper, we propose to decentralize the buffer logic
implemented in [4] by a CDN, in order to provide a reliable
backup system despite the dynamic nature of peers composing

1This trace and additional information can be found at the following
URL http://www.thlab.net/∼lemerrere/trace gateways/ . To the best of our
knowledge, this is the first trace tracking availability of gateways.
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Figure 2. A global picture of the network connecting the peers to the service. Those end-devices are available 6− 12h/day. If we allow the gateway, which
is available 21h/day, to perform buffering, we can benefit from the speed difference between local links (7MB/s) and ADSL links (66KB/s).

the network. Our system is specifically tailored for the cur-
rent architecture of residential Internet access. Indeed, most
previous works assume that peers are directly connected to
the network (see Figure 2a) while, in most deployments, a
residential gateway is inserted in between the peers in the
home network and the Internet. Hence, a realistic low-level
network structure is composed of (i) peers, connected to the
gateway through Ethernet or Wifi, (ii) residential gateways,
providing the connection to the Internet, and (iii) the Internet,
which we assume to be over provisioned (architecture depicted
on Figure 2b). In our approach, we propose to use storage
resources of residential gateways, thus creating a highly avail-
able and distributed buffer to be be coupled with peers.

Such an architecture is appealing as it takes into account
(i) the availability that differs between peers and gateways,
and (ii) the bandwidth that differs between the LAN and the
Internet connection. Firstly, the peers tend to have a low to
medium availability (i.e. from 25% or 6 hours/day on average
on a Jabber trace, to 50% on a Skype trace we introduce
later on) while gateways have a high availability (i.e., 86%
or 21 hours/day on average). Secondly, peers are connected to
the gateways through a fast network (at least 7MB/s) while
the Internet connection (between gateways and the Internet)
is fairly slow (i.e. 66 kB/s on average for ADSL or Cable).
Our architecture exploits the major difference of throughput
between the LAN and the Internet connection (WAN) by
offloading tasks from the peer to the corresponding gateway
quickly, thus using the Internet connection more efficiently
(i.e. 21h/day instead of only 6 − 12h/day on average).

This enables the large-scale deployment of online storage
applications by fixing the issues provoked by the combination
of slow up-links and short connection periods (as in the case
of pure peer-to-peer). These issues are becoming increasingly
important as the size of the content to backup increases
while ADSL bandwidth has not evolved significantly over
the past years. For example, uploading 1GB (a 300 photo
album) to online storage requires at least 4h30 of continuous
uptime. Hence, these applications require users to change
their behavior (e.g let their computers powered for the whole
night to be able to upload large archives); this limits their
deployment and makes automated and seamless backup close
to impossible. Our approach precisely aims at combining
peers’ fast but transient connections with gateways’ slow but
permanent connections. Following this logic, if peers upload

directly to the Internet, they can upload on average 1.4-
2.8GB/day (Fig. 2a); if we consider that the gateway is an
active equipment that can perform buffering, a peer can upload
148-296GB/day to the gateway and the gateway can upload on
average 4.8GB/day (Fig. 2b). We then advocate that turning
the gateway into an active device can significantly enhance
online storage services, be they peer-to-peer or cloud systems.

In the last part of this section, we propose the design of
a gateway-assisted peer-to-peer storage system (GWA) based
on these observations, and relying on two entities: (i) users’
gateways, present in homes and providing Internet connec-
tivity, and (ii) peers, being users’ devices connected to the
Internet (through a gateway) and having some spare resources
to contribute to the storage system.

C. Gateway-assisted storage system

We consider a general setting to backup data to third parties
on the Internet, generic enough for us to compare approaches
from related work in the same framework.

The content to be backed up is assumed to be ciphered
prior to its introduction in the system, for privacy concerns.
The content can be located in the distributed storage system
through an index, which can be maintained, for example by a
distributed hash table connecting each piece of content stored
to the set of peers hosting it. We consider that users upload
data from one peer, under the form of archives. In order to
achieve a sufficient reliability, the system adds redundancy
to the content stored. To this end, it splits the archive into
k blocks, and adds redundancy by expanding this set of k
blocks into a bigger set of n blocks using erasure correcting
codes [21] so that any subset of k out of n blocks allows
recovering the original archive. This enables to increase the
file availability as the resulting system-wide availability is

A =

n∑
i=k

(
n

i

)
p̄i(1 − p̄)n−i (1)

where p̄ is the average availability of peers, which is smaller
than A. In the rest of this paper, we set a target At for the
system-wide availability so that n must be the smallest n
ensuring that A > At. Intuitively, the availability targeted
by the application is the portion of time a backed up data
is online for restore. High availability rates have been shown
cumbersome to reach in dynamic systems [11], so a reasonable
trade-off should be considered [3].
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Figure 3. Backup operation: buffering a block at a random gateway

For a backup operation, the client peer uploads the file and
the redundancy blocks to other peers as follows:
1. Prepare. As soon as it gets connected, the client peer
starts pushing the archive at LAN speed to its gateway,
which buffers the data. At this point, the data has been
partially backed up but the final level of reliability is not
yet guaranteed.
2. Backup. In our system, the gateway is in charge of adding
the redundancy; this allows faster transfer from the peer to the
gateway as a lower volume of data is concerned. Once done,
it starts uploading data to other gateways, at WAN speed
(left-hand side of Figure 3). Gateways are active devices that
can serve peer requests thus ensuring data availability and
durability even if data is not fully pushed to remote peers.
Therefore, data can be considered totally backed up when all
blocks have reached the selected set of independent remote
gateways.
3. Offload. Finally, remote gateways offload, at LAN speed,
the content to their attached peers (right-hand side on Fig-
ure 3) as soon as the attached peer becomes available.
A user can request access to its data at anytime; the success

of immediate data transfer from the storage system to the
requesting peer depends on the targeted availability of the
backup, that has been set by the system administrator. To
reclaim backed up data, the role of all elements in the systems
are reversed and the restore is performed as follows:
1. Fetch. To access a data, the requesting client peer informs
its gateway of the blocks it is interested in. The client gateway
carries on the download on behalf of the client peer by
contacting the remote gateways handling peers where the
data was uploaded. If the data was offloaded to some peer, it
is fetched as soon as possible by the corresponding remote
gateway.
2. Restore. Then the remote gateway sends the data to the
requesting client gateway.
3. Retrieve When the client gateway has succeeded in getting
the whole content (the data has been restored), it informs the
client peer that its retrieval request has been completed, as
soon as it connects back.

IV. A COMPARISON FRAMEWORK FOR BACKUP SCHEMES

We extensively evaluate our approach through simulations,
taking as inputs execution traces of large-scale deployed
systems. This section first presents the experimental setup,
the competing approaches, namely pure peer-to-peer (noted
P2P hereafter) and CDN-assisted (noted CDNA), and the
performance metrics.

A. Parameters and data sets

The setting we described in previous section comes with
the following set of parameters:

Network Bandwidth: On the WAN side (Internet connec-
tion), the bandwidth is heterogeneous and set according to the
traces from a study of residential broadband networks [19]; it
exhibits an average of 66 kB/s2. On the LAN side, we assume a
constant bandwidth of 7 MB/s, capturing both wired and WiFi
connections in home environments. The LAN bandwidth only
impacts our gateway-assisted approach, as other approaches
suffer from the bottleneck at the WAN interface since they
upload data directly to devices in the WAN (peers or CDN).

Backup and Restore requests: The backup and restore user
requests are modeled with Poisson processes, which are known
to match user requests [20], of parameters λbackup and λrestore
that represent the rate of backup and restore requests in the
system. Each request is related to one archive. We assume that
all archives have the same fixed size for all peers, typically
representative of some large multimedia content (we make this
size vary). As a result, the behavior of peers is assumed to be
homogeneous: we are not aware of any trace giving hints about
the real behavior of users within peer-to-peer storage/backup
systems.

Peer availability: In order to model the up-time of personal
computing devices (i.e. peers), we rely on two instant mes-
saging traces. We only remove from the traces the peers with
an availability lower than 1%, since these have a behavior
not compatible with a backup application running in the
background (e.g. people that have tried Skype only once but
never use it again).

• Skype In this trace [20] of about 1269 peers over 28
days, the average availability of peers is 50%, which
represents a medium availability when considering peer-
to-peer systems.

• Jabber In this trace, provided by the authors of [4], the
average availability is 27%. We used a slice of 28 days
containing 465 peers.

All peers strictly follow the behavior of the trace. In particular,
since our backup application runs in the background, client
peers are not assumed to remain connected during the whole
backup (their presence follows the IM/Skype trace), as op-
posed to the assumptions made in [4]. Note that these traces
may however over-estimate uptime period since people using
Skype are likely to be online more often than the average user.

Gateway availability: To model the up-time of residential
gateways, we rely on our gateway trace presented in Sec-
tion III. Since the gateway and peer traces have been obtained
independently, they do not capture the correlation between the
behavior of a peer and of the associated gateway. Hence, we
randomly assign a gateway to each peer. In order to avoid
unrealistic scenarios where the peer is up while the gateway
is down, we assume a gateway to be available when one of its
attached peers is up, to allow communication between them:

2Note that all amounts of data and bandwidth are given in bytes.
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we rely on the gateway trace only for gateway to gateway
communication.

Redundancy Policy: As explained previously, the redun-
dancy policy is based on erasure correcting codes and is
entirely determined by the number of blocks k each archive is
split into and by the targeted availability At, which is set by
the administrator. The backup is thus considered as complete
when there are enough redundancy blocks n backed up in the
network to guarantee a system-wide availability of at least
At. The relation between the availability of peers and the
values k and At has been studied in papers studying in details
redundancy policies [11], [21], [22].

B. Competitors

We compare the performance of our GWA scheme against
the two main classes of related backup systems, namely P2P
and CDN Assisted, within the same simulation framework.

P2P The vast majority of peer-to-peer storage protocols
historically presents a purely decentralized system with one-to-
one uploads/downloads, without servers [6], [7]. They assume
that gateways are passive devices that cannot store and forward
but only route packets. This protocol is similar to the protocol
we described in the previous section but does not have active
gateways acting as buffers.

CDNA A possible enhancement consists in introducing a
CDN to mitigate the low availability of peers [4]. The CDN
is a central service in the core network, having unbounded
capacity. We consider the most peer-to-peer variant of the
protocol in [4] (i.e. the opportunistic one). In this protocol,
the peers upload content to other peers in priority and upload
to the CDN only when the whole bandwidth is not used (i.e.,
not enough remote peers are available). This enables to lower
time to backup by avoiding waiting times. However, the CDN
does not upload the content to remote peers, but client peers
eventually upload again to remote peers thus uploading twice
in some cases. Indeed, pricing schemes at CDN implies that
uploading from the CDN should be avoided so as to reduce
costs. A schematical view is given in Figure 4. The CDN never
fails, hence, a single copy of the content on CDN is enough
to ensure an availability of 100%. As a result, a data backup
is successful as soon as s fragments have been uploaded to
the storage server and t fragments have been uploaded to the
peers so that the targeted availability is guaranteed, as stated
in (2).

t∑
i=k−s

(
t

i

)
p̄i(1 − p̄)t−i > At (2)

p̄ is the average availability of a peer and At is the targeted
availability.

C. Simulation setup & Performance Metrics

We implement a cycle-based simulator to compare our
GWA architecture with the two aforementioned alternatives.
Depending on the simulated architecture namely P2P, GWA or
CDNA, the system is respectively composed of only peers,
peers and gateways, or peers and a CDN. Devices transfer

Internet
6-12h/24h

66 kB/s

Figure 4. A global picture of the network connecting peers and CDN, as
used in [4]. Note that the CDN (Server) has an infinite capacity and 100%
availability. However, since the bandwidth used at the CDN is billed, the
CDN is not used as a relay but as another kind of end-storage (i.e. it does
not upload content to other peers but only stores content temporarily until the
backing up peers have uploaded content to enough peers.)

their data depending on their upload bandwidth and on their
behavior, which are trace-driven for peers and gateways while
CDN is always up. We evaluate the time for each backup or
restore request to be completed, while measuring the storage
needs of the system.

In our simulations, the redundancy policy relies on the
following values kskype = 16, kjabber = 8, At = 0.7,
p̄skype = 0.5 and p̄jabber = 0.27 leading to nskype = 35 and
njabber = 33. We assign to each peer a set of n distinct remote
peers in a uniform random way, for example using the hashing
scheme of a distributed hash table. When a given peer requests
a data backup operation, the n encoded blocks are placed on
its set of n remote peers.

At each cycle, backup and restore requests are generated
among peers according to the previously defined Poisson
processes. Note that a backup request is uniformly distributed
among the set of online peers, while a restore request is
uniformly distributed among the set of peers whose data
has already been fully backed-up (i.e. all blocks have been
offloaded on remote peers). The rate of backup requests is set
so that each peer requests to store about three archives of 1GB
per month on average (i.e. λbackup = 0.4 and λrestore = 0.05
for the Skype trace).

Once all backup and restore requests have been distributed
among the peers, each device (i.e. peer or gateway) transfers as
much data as its upload bandwidth allows for the duration of
the cycle (i.e. since residential connections are asymmetric, we
assume that the system is bounded by the upload bandwidth
of devices). If the remote device is offline, the client device
has to wait until its reconnection.

Our simulations were conducted with a cycle time-step set
to 5 minutes. Figures report the average behavior over 50
simulations. We evaluate the three systems according to the
following four metrics:

Time to backup, noted TTB. A backup request is considered
successful when the data is stored safely. Safe storage is
achieved when n blocks have been uploaded to the CDN and
the remote peers for CDNA, to the remote gateways for GWA,
and to the remote peers for the P2P thus satisfying the targeted
availability described earlier. The time to backup is evaluated
as the difference between the time the nth block has been
downloaded and the time of the backup request.
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Figure 5. CDF of Time to Restore and Time to Backup for two traces of Instant Messaging.

Time to offload, shown on the same plots as TTB. A variant
measure for both CDNA and GWA is the time to fully offload
an archive to the remote peers. This means that no data is left
on the CDN or on gateways, accordingly. We note this variant
CDNAp and GWAp respectively.

Time to restore, noted TTR. A restore request is considered
successful as soon as the data is restored safely at the user’s
place, that is to say when at least k blocks have been retrieved
on the client peer, or on the gateway of the client peer
for GWA. The time to restore is evaluated as the difference
between the time the kth block has been downloaded and the
time of the restore request. We measure this time for random
files after a long enough period, so that the selected files have
been offloaded to peers. This represents the worst case for
TTR, and this assumption reflects the fact that restore requests
are more likely to happen long after backups.

Data buffered. It describes the size of the buffer that is re-
quired on gateways, for dimensioning purposes. We measured
the maximum and the average amount of data stored on those
buffers.

V. RESULTS

A. Time to backup & restore results

We first evaluate the performance of our approach to backup
and restore data w.r.t. time. We plot the experimental cumu-
lative distribution function (CDF) for TTB and TTR arguably
the most critical metrics from the users’ standpoint. CDF(t)
represents the cumulative number of requests that have been
completed after t hours.

Figure 5a depicts the TTB for the Skype trace. Results show
that our gateway assisted approach improves the TTB over the

CDNA approach3. Both considerably improve the performance
over the P2P approach. Our GWA completes 90% of backup
in 30 hours, the CDNA completes 90% of backups in 60 hours
and the P2P completes 90% of backups in 140 hours. A
consequence of this improvement is that data is backed up
faster, reducing the window of potential losses.

Along the performances of P2P, CDNA and GWA, we also
indicate those of CDNAp and GWAp. In GWA and CDNA,
once the data is backed up (i.e. it is stored safely at some
place being the remote gateways or the CDN), the backup
process continues by offloading the data hosted on the remote
gateways or on the CDN to the remote peers (i.e. until no data
is left on the remote gateways or on the CDN). This process
takes some time and its total duration is shown as GWAp and
CDNAp. It is interesting to observe that while the CDNA does
not enhance this time when compared to P2P (P2P curves
and CDNAp curves are superimposed on all plots), our GWA
approach improves this time significantly, reducing it from 140
hours to 90 hours (for 90% of backups to be offloaded).

We plot the time to restore for the Skype trace on Figure 5b.
Results show that the TTR of our GWA approach is signifi-
cantly reduced when compared to GWA and P2P approaches.
Our GWA allows 90% of restores to be completed in less
than 3 hours while both CDNA and P2P require 40 hours to
complete 90% of restores. This makes the system much more
user-friendly, when it comes to retrieving lost files.

In order to show that these results are not trace-dependent,
we run the same set of experiments on a trace exhibiting a

3Note that results for CDNA are consistent with simulations made in [4],
with an improvement factor between 2 and 3 over P2P storage
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Figure 6. Results (Skype trace), as a function of availability target, 90th percentile. Labels follow the order of the curves.
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Figure 7. Results (Skype trace), as a function of k, 90th percentile.

lower peer availability, namely the Jabber trace. We observe
similar results. Previous observations hold as the time to
backup (Figure 5c) for our GWA is reduced when compared
to both CDNA and P2P. Similarly, the time to restore is also
reduced (Figure 5d). Overall, the absolute times are increased
when compared to results observed over the Skype trace
because of the lower average availability of peers in this trace
(25% instead of 50%).

Note that the absence of full convergence in some cases is
due to some peers leaving the network for good before the
backup is complete and because the trace duration is limited.

In the remaining part of this section, we evaluate the
impact of other parameters, namely the targeted availability
At, the number of blocks k, the number of peers involved
in the system and the amount of data to backup and restore
(i.e. the archive sizes) on both the TTB and TTR. We vary
parameters one by one, keeping the other parameters to the
values previously defined. Previous results have shown that
some small part of backups may take significantly more time
to complete than average; this somehow introduces a bias in
observation of the system. In the following results, we will
then consider the 90th percentile for all approaches, in order
to gain clear insights from systems’ trends (i.e. the times
displayed are the time so that 90% of the operations have
been completed). The behavior, for one set of parameters, of

the remaining 10% can be seen on the previously described
CDF.

B. Influence of targeted availability

On Figure 6a, we plot the opposed variations of TTB and
TTR when the targeted availability changes. We observe that
the TTB increases when the targeted availability increases.
This is due to the fact that achieving a higher availability
for the file requires uploading more data, to introduce more
redundancy. However, as shown on Figure 6b, increasing the
targeted availability (i.e., the amount of redundancy intro-
duced) helps to reduce the TTR. As a result the targeted
availability is a tradeoff between having a low TTR and
keeping the TTB reasonable. We observe that the improvement
of our GWA approach is very significant over CDNA or P2P
approaches. This is due to the fact that our approach represents
a paradigm shift: the data is now considered as restored when
stored in the home of the requester (on its gateway). Indeed,
this prevents exterior factors such as block losses in the system
from having any impact. When the requesting peer comes back
online, it can seamlessly fetch data in order of minutes from its
gateway, making this step nearly transparent when compared
to operations at WAN speed.

Another aspect is impacted by the availability setting of the
storage system: increasing the targeted availability requires to
store more redundancy blocks thus increasing the storage costs
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Figure 8. Results (Skype trace), with a varying network size, 90th percentile
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Figure 9. Results (Skype trace), with a varying amount of data to backup, 90th percentile

per peer, as shown on Table I. Hence, keeping the targeted
availability reasonably low helps to keep storage costs per peer
low thus increasing the total amount of data that can be backed
up. In the remaining simulations, we choose to use a medium
value of 0.7 for that targeted availability.

Table I
ADDITIONAL STORAGE COSTS INDUCED BY VARIOUS TARGET

AVAILABILITIES, WHEN COMPARED TO OUR REFERENCE TARGET OF 0.7

Target availability 0.5 0.7 0.9 0.95 0.99 0.995
Jabber (k=8) −12% - 27% 39% 67% 79%
Skype (k=16) −11% - 14% 20% 34% 40%

C. Influence of code length k

Increasing the code length k (i.e. the number of blocks
required to decode) slightly improves both TTB and TTR,
as shown on Figures 7a and 7b. However, increasing k also
increases some side costs such as coding and decoding costs.
As a consequence, we choose to set k = 16 to leverage the
code properties while retaining low coding and decoding costs.

D. Influence of the size of the network

Next, we evaluate the influence of the number of peers
participating in the system by varying the number of peers
from 200 to 1269 (all the peers of our trace). We also set the
parameters for the restore and backup events so that on average

each peer performs around 3 backup requests per month and
3 restore requests per year, similarly to what was done for
all other simulations. Our results are shown on Figures 8a
and 8b. Both TTB and TTR remain constant. Our simulations
are limited by the total number of peers present in the trace;
yet, we observe on this moderate scale that our system is
likely to be scalable in the number of participating peers,
as no bottleneck occurs at some gateways, which could have
increased the TTR. Note that these constant TTB and TTR
are consistent with the fact that the load (backup and restore
requests) per peer is constant.

E. Influence of the amounts of data to backup and restore
In order to assess the gains with respect to the usability

of GWA, we plot the evolution of the TTB (Figure 9a)
and the TTR (Figure 9b) as the amount of data to backup
increases. Our architecture enables to leverage the difference
of bandwidth between the local network and the Internet
connection in order to use the uplink more efficiently (21h/24h
instead of only 12h/24h); clearly, in this case, it enables users
to backup larger amounts of data (here by a factor of 2). Note
that our simulations are limited by the trace length (28 days).

F. Resulting needs for storage dimensioning on buffers
For dimensioning purposes, we evaluate how much disk

space should be provisioned on the gateways in order to imple-
ment our backup service. Figure 10 shows the CDF of maximal
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storage at gateways resulting from 1GB archive backups, at
any time, on the Skype trace (i.e. the worst case space occupied
on any gateway at any simulation step). Storage needs remain
within reasonable bounds: 99% of gateways have stored at
most 2.5GB of data at anytime. In a deployment scenario, if
we limit the provisioned storage to 2.5GB at each gateway,
the remaining 1% of gateways could ask peers pushing blocks
to delay their query until their buffers have emptied, without
impacting performance since it would impact less than 1% of
peers and would occur only exceptionally.
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Figure 10. Maximal storage measured on gateways at any time (Skype trace)

Buffers are used in burst mode for relatively short periods
of time, as shown on Figure 11, which plots the average of
the same storage functionalities for the whole trace period:
the average is negligible compared to the maximum presented
on the previous figure. Furthermore, we observe that data is
effectively offloaded since nothing remains on buffers when no
new backups are requested (on the simulations, we performed
backups only for the 13 first days) thus confirming results
shown on previous curves for GWAp.
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Figure 11. Average storage measured on gateways (Skype trace)

These results are related to our model where each gateway
hosts one peer. The storage requirements would increase if
multiple peers are behind each gateway. However, we study
residential gateways, which are shared among a very small
number of users. The storage requirements increase at most
linearly with the number of users and hence would remain
rather low as only a few peers are behind each gateway.

VI. DISCUSSION

Our results clearly indicate that our proposal efficiently
distributes the centralized buffer scheme of [4], while increas-
ing general backup performances and represents a significant
improvement over previous approaches.

The Web architecture, in particular when considering CDN,
relies on cache servers close to clients [23]. However, these
servers are located within the Internet and cannot benefit from
the difference of throughput between the local home network
and the Internet: our system relies on the specific place of
the gateway in between the home network and the Internet to
leverage this difference. Moreover, cache servers are generally
passive (e.g., HTTP proxy) while in our system, the gateway
is not only a cache but also an active participant that can serve
directly other peers when data is requested.

Additionally, from the user’s standpoint, our storage system
could enable the bandwidth usage to be smoothed to provide
users with a more transparent service (i.e. using the upload
for backup when users are not using their computer/Internet
connection). Indeed, using an important part of the upload
bandwidth to quickly complete the backup operation, may
severely affect the user’s experience of Internet browsing or
activity. A user’s gateway is able to upload, as long as there is
some available bandwidth and even if the user’s computer is
turned off (typically nightly). A similar advantage, appealing
for Internet and service providers [24], is that such an ar-
chitecture enables the implementation of scheduling policies
for delaying transfers from gateways to the Internet so as to
smooth the usage of the core network.

Lastly, this method also solves another issue that might
appear when the distributed application operates worldwide.
It has been shown that peers’ availability patterns can vary
according to local time (depending on geographical location)
[17], [18]; in systems where some resources are insufficiently
replicated, this could lead to an asynchrony of presence be-
tween a requesting peer and another peer hosting the resource.
At best, the overlap of presence of both peers is sufficient to
download the file, while it may also require a few sessions to
complete, due to insufficient time overlap. As our GWA pro-
posal relies on the hosting peer to upload the requested file
to a more stable component (its gateway), asynchrony is no
longer an issue as gateways provide stable rendezvous point
between requesters and providers. This is of interest for delay
tolerant applications such as backup, allowing the service to
be operated with much lower costs on storage. Beyond the
practical problem of using gateways in home environments,
our solution then makes the case for leveraging clouds of
stable components inserted in the network, to make them act
as buffers in order to mask availability issues introduced in
dynamic systems.

VII. RELATED WORK

We compared our approach to the peer-assisted one pre-
sented in [4] that leverages a central server and offloads backed
up data to peers when they become available. Such a server-
centric approach is also to be found in [14], where authors
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propose an hybrid architecture coupling low I/O bandwidth
but high durability storage units (being an Automated Tape Li-
brary or a storage utility such as Amazon S3 [25]) with a P2P
storage system offering high I/O throughput by aggregating
the I/O channels of the participating nodes but low durability
due to the device churn. This study provides a dimensional
and system provisioning analysis via an analytical model that
captures the main system characteristics and a simulator for
detailed performance predictions. The simulator does not use
real traces but synthetic ones, mainly to be able to increase
the failure density and to reveal the key system trends. This
work explores the trade-offs of this hybrid approach arguing it
is providing real benefits compared to pure P2P systems [6]–
[10]. Durability of the low I/O bandwidth unit is considered as
perfect, but it always comes at a certain cost. In our approach,
we do not assume we have such nodes and show that our
approach is sustainable under real availability traces. Finally,
FS2You [15] proposes a BitTorrent-like file hosting, aiming to
mitigate server bandwidth costs; this protocol is not designed
to provide persistent data storage.

The increasing power of residential gateways has enabled
numerous applications to be deployed on them. This may allow
savings in terms of power. One widely deployed system is
the implementation of BitTorrent clients in those boxes (see
e.g. FON [26]), which avoids the user to let her computer
powered on [16]. Another example is the concept of Nano
Data Centers [5], where gateways are used to form a P2P
system to offload data centers. Similarly, some approaches
were proposed to move tasks from computers to static devices
as set-top boxes, for VoD [27] and IPTV [28]. Yet, those
applications fully run on gateways while, in our approach,
the gateway only acts as buffering stage.

VIII. CONCLUSION

This paper addresses the problem of efficient data backup
on commodity hardware. It has been widely acknowledged
that availability of transient peers is a key parameter, that can
by itself forbid a realistic service deployment if too low. We
propose to address this inherently transient behavior of end
peers by masking it through the use of more stable hardware,
already present in home environments, namely gateways. Our
experiments, based on real availability traces, show that this
architectural paradigm shift, significantly improves the user
experience of backup systems over previous approaches, while
remaining scalable.

We also provide a new trace of gateway availabilities, which
is of interest for trace-based simulation of systems built upon
gateways. As future works, it would be interesting to acquire
a trace of user behaviors with respect to storage demand in
peer-to-peer systems.
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