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Abstract—State-of-the-art mobile devices, such as smart-
phones and tablets, are highly versatile and must deliver high
performance across a multitude of applications. The perceived
performance and resulting user experience can make or break a
design. It is therefore vital that device design and optimisation
take into account the expectations and perceptions of the end
user, as well as the types and requirements of the applications
running on the device. Traditionally, device optimisation focuses
on low-level metrics, such as CPU floating point performance or
GPU frame rate, rather than on the aspects most important to
the end user.

In this work, we investigate the applicability of Quality of
Experience (QoE) to system optimisation. We define a set of
measurable QoE metrics, and run a set of experiments around a
web browser and two graphics benchmarks. Using the results of
these experiments, we show the advantages of using QoE as an
optimisation metric by demonstrating the ability to optimally
trade CPU performance for energy usage whilst taking into
account the user experience. We investigate two GPU benchmarks
to determine the ideal number of cores for energy efficiency,
whilst ensuring a sufficiently high frame rate to maintain a high-
quality user experience. We then look at the system as a whole,
and the feasibility of using QoE to optimise performance and
power consumption for the complete system, without sacrificing
user experience. We achieve up to 60% savings in system energy
usage with limited impact on the user experience.

I. INTRODUCTION

The processing capability of modern smartphones is in-
creasing rapidly, as is the number and performance of the
individual components [1], [2]. However, the power consump-
tion is also rising, whilst battery capacity is not scaling at
the same rate, and therefore there is ever-present pressure to
deliver more power-efficient designs. Modern smartphones and
tablets make use of a System-on-Chip (SoC) which combines
the Central Processing Unit (CPU), Graphics Processing Unit
(GPU), and memory system on a single piece of silicon. These
SoCs are designed to be incorporated into many different
types of system and hence are not tuned for any particular
application. It is therefore vital that these can be optimised in
situ in order to trade off device performance for energy usage.

There are numerous strategies to balance and trade off
system performance and power consumption, such as Dynamic
Voltage and Frequency Scaling (DVFS) and heterogeneous
multi-processing [3], [4]. In these approaches, the system
configuration is adjusted on the basis of low-level metrics
such as the number of Floating-point Operations Per Second
(FLOPS) or load on a particular core. However, these metrics
give very little indication of how well the device performs
for the end user who has little or no interest in the computa-
tional performance or memory bandwidth and is much more

concerned with the responsiveness of the system for every-
day activities [5]. Specifically, the performance perceived by
the end user depends heavily on the applications running, how
well the device is able to run these applications, and the user’s
expectations and preconceptions [6].

As we shall see, the low-level system performance is
generally of little importance to the user. Thus it becomes
possible to change the optimisation criteria to target low-power
operation without affecting user experience. For example, it
becomes possible to reduce the frame rate of the GPU as long
as it remains above the minimum level required to perceive
fluid motion [7]. Understanding the limits of human perception
provides a basis for trading device performance for battery life
without the user even being aware that this trade-off is taking
place. However, the system must have knowledge of the limits
of human perception and application requirements.

The notion of Quality of Service (QoS) is used to provide
performance guarantees for a system. However, QoS focuses
on temporal resource sharing, e.g. interconnect or memory
bandwidth and latency. As it focuses on low-level performance
metrics, it alone is insufficient to ensure user satisfaction.
Quality of Experience (QoE), on the other hand, takes into
account the perceptions of the end user and can be used as
part of user-centric system optimisation. However, there are
difficulties in determining which metrics to focus on and in
modelling human perception [5], [8].

As the main contributions of this paper, we demonstrate
the applicability of QoE to system level design, and highlight
the range of trade-offs that can be made when the performance
is measured in a user-centric way. The main contributions are:

1) Development of a set of metrics which can be used
to measure the user experience for web browsing and
3D graphics.

2) Presentation and evaluation of QoE as an optimisation
tool for system level design.

3) Establishing a link between system power consump-
tion, low level performance indicators and QoE.

The rest of the paper is organised as follows. QoE is
discussed in Section II. The simulation framework used to
obtain empirical results is described in Section III, focusing on
the CPU, GPU and memory models. The experimental results
are presented in Section IV. Section V focuses on related work
in this field and Section VI concludes the paper.



QoS
Resource 
Allocation

Service QoE

Resource 
Requirements

User 
Requirements

High level 
performance, e.g. 
frame rate, web 

page time

Low level 
performance, e.g. 

bandwidth, latency

Fig. 1: Relationship between QoS, QoE, user requirements and
system resources.

II. QUALITY OF EXPERIENCE

When consumers use a device, they have certain expecta-
tions such as the device’s ability to play a particular game,
long battery life, or simply being responsive. As long as the
device is able to live up to these expectations, the user remains
satisfied. If, however, the device is unable to satisfy the user’s
expectations he/she will become increasingly dissatisfied with
it and will rate it very poorly for large disturbances in the de-
livered service. This has been highlighted by Fiedler et al. [6]
who artificially generated QoS disturbances for web browsing
and monitored user satisfaction. Therefore, great care needs
to be taken when designing the system and corresponding
QoS schemes that try to ensure a high quality service without
disruption.

QoS schemes provide a mechanism for dividing up the
available system resources to ensure that each component in
the SoC, such as a CPU or a GPU, gets at least the minimum
resources it requires, e.g., high bandwidth or low latency. As
the load on the system increases beyond that which can be
sustained, QoS sets the order of resource allocation failure,
and the more important devices will receive their required
resources first and at the expense of less important components.
It is, however, no simple task to determine which components
are the most important since this changes dynamically as the
services delivered by the system change, and therefore require
run-time adjustment.

CPU governors adjust the DVFS state based on the type of
governor and the performance of the CPU [9], [10]. They are
efficient at targeting high performance or extreme power effi-
ciency. However, they are inadequate at preserving high user
experience whilst operating at the minimum power required
to do so. As we discuss in Section IV-B, by using the user
experience to control the optimisation of the system, rather
than lower-level metrics, it becomes easier to target the ideal
operating point.

In Section IV we show that there is merit in explicitly
using user experience for system optimisation. Hence, we need
a set of measurable system level metrics which can be linked
to the user experience. Specifically, a set of them needs to
be defined which are able to quantify the user experience and
provide an estimation of the experienced performance. We call
this set of metrics Quality of Experience (QoE), which is a
term used frequently by the telecommunications industry when

referring to a delivered end-to-end service, such as streaming
video [11]–[13]. More recently, applications are being viewed
as delivering a service or set of services [14], and it is to
the delivered services which we wish to apply QoE. QoE does
not appear to have been explored in the context of system-level
optimisation.

The relationship between QoS and QoE is presented in
Figure 1 and illustrates how QoE can be used for system
optimisation. The dashed box shows the system boundary and
illustrates that the subjective requirements come from outside
the system, i.e., from the user of the device. QoE is a measure
of how the user perceives and reacts to the services provided by
the device. QoE is used as a part of a feedback loop to measure
the performance of the services provided by the system in a
user-centric manner. It is then used to influence the resource
allocation, which in turn alters the performance of the delivered
services. A similar feedback loop is used for QoS. QoS is able
to act upon objective requirements such as the distribution
of bandwidth but is unaware of the subjective, user-specific
requirements - QoE is designed to encompass precisely these.
Understanding how the end user interprets device performance
enables the system to make sensible, user-centric resource
allocation decisions which can be combined with those taken
by traditional QoS mechanisms to ensure proper operation, and
high user satisfaction. Fiedler et al. [6] present a link between
the time taken to load a web page and the Mean Opinion
Score (MOS) for a group of users. This provides us with an
established link between QoS and QoE for a real scenario and
shows how a disturbance can have a pronounced effect on the
user experience.

It is worth noting that there is no single, universal measure
of user experience as this depends heavily on the types of
applications running [15]. As an example, a GPU-intensive
task, such as a 3D game, will require a sufficiently high frame
rate to ensure that the user is satisfied with the performance.
This is quite different to, say, a file retrieval task or the display
of a still picture, where frame rate is an irrelevant concept.
Therefore, whilst there is a set of measurable metrics which
give an indication of the user’s satisfaction and the quality of
their experience, those of relevance vary as the applications
running on the device change.

In order for systems to be able to optimise their perfor-
mance for user experience, multiple requirements must be
fulfilled:

1) As stated in Section I, a set of metrics which are
correlated with the user experience but remain mea-
surable from within the confines of the device must be
determined. We measure Cycles-Per-Instruction (CPI)
for the CPU when rendering web pages, the frame
rate of the GPU, as well as energy usage for the CPU,
GPU and memory controller in Section IV.

2) Metrics which are of relevance must be selected at
run time based on either observed traffic or explicit
notification from a higher level within the system.
In our experiments we pre-determine the metrics
as we control both the system and the workloads.
Specifically, our QoE metrics are webpage render
time and the ability of the GPU to render at a
sufficiently high frame rate.



III. EXPERIMENTAL SETUP

To demonstrate the feasibility of applying QoE to system
level design, we concentrate on performance/power trade-
offs. We use full-system simulation to explore these trade-
offs as detailed simulation offers flexibility and observability,
without sacrificing accuracy. The simulation framework mod-
els a realistic and representative system and is able to run
full-system workloads on detailed and accurate models. This
section describes and justifies the simulator choice and system
design used in this work.

We use gem5 [16], an event-driven full-system simulator
that facilitates architectural exploration. It features a realis-
tic out-of-order CPU model, cache models, and a Dynamic
Random-Access Memory (DRAM) controller model alongside
a multitude of peripherals. For the purpose of this study it
has also been augmented with a detailed GPU model which
is capable of rendering real frames, thereby producing traffic
patterns representative of a real device.

A. System Architecture Models

We use a detailed cycle-based out-of-order CPU model
that has been configured to perform like an industry-leading
embedded processor. The CPU model takes into account the
internal resource contention of the CPU, and the performance
varies accordingly. The CPU model is detailed enough to
boot full operating systems, as well as to produce realistic
interactions with the memory system.

The GPU is a detailed cycle-level model of a commercial
GPU which has been verified against real hardware. The GPU
model renders frames from memory dumps captured from a
real device which contain all of the information required to
render the frame, and therefore has no interaction with the
CPU. As the GPU is functionally correct and renders real
frames, the time it takes for the GPU to calculate the frame
varies with frame complexity and interactions with the memory
system. The GPU is connected to the rest of the system via
two L2 caches which handle the coherency between the GPU
and the rest of the system (see Figure 2).

The memory controller simulates the architecture of a
DRAM controller, as well as the memory itself. For these
experiments, the DRAM model has been tuned to resemble
a dual-channel LPDDR3 controller and associated memory
(see Table I) which is found in high-end consumer devices.
The memory controller is configured to use First-Ready First-
Come-First-Serve (FR-FCFS) when servicing the incoming
requests as well as using an open-row policy. Therefore it will
prioritise accesses to open rows, and thus attempt to maximise
the row hit rate which results in higher memory efficiency.

An LCD controller reads the system frame buffer at 60 Hz
and drives a display at a resolution of 1920x1080 (Full HD).
All other peripherals needed to run the unmodified Android
operating system are on a separate IO-bus which is connected
to the rest of the system via a bridge.

B. System Architecture and Workloads

The system architecture simulated in gem5 is shown in
Figure 2, and the settings used are summarised in Table II.
The system uses a single core ARMv7-compatible out-of-order

Channels Dual
Bits per Channel 32
Clock Rate 800 MHz (1600 MT/s)
Banks per Rank 8
Ranks per Channel 1
Row Buffer Size 1024 bytes
tRCD, tCL, tRP 15 ns
tRFC 130 ns
Refresh Cycle Time 64 ms
Scheduling FR-FCFS
Row Policy Open
Total Bandwidth 12.8 GB/s

TABLE I: DRAM Configuration
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Fig. 2: System Platform.

CPU based on the detailed CPU model discussed in Section
III-A. This system is chosen to be representative of current
SoCs such as the OMAP series by TI [2] and the Exynos
series by Samsung [1], and also has similarities with the model
system for ARM’s CCI interconnect [17]. As the CPU and
GPU models are scalable, the system is expandable and is
able to cover future, multi-core workloads.

We use BBench [18] as our main CPU workload. BBench is
a browser-based benchmark which loads a subset of the most-
visited websites using an operating system’s native browser.
System performance is evaluated by measuring the time taken
to render each web page and scroll to the bottom of the page.
A faster page load time is representative of a higher QoE [6].
The GPU frames used for this paper are a 3D game benchmark
called Taiji and a navigation benchmark, Navi. Taiji is from
RightWare’s Basemark ES 2.0 [19] and Navi is from 3DMark
Mobile 2.0 [20]. Both frames are rendered in Full HD and
represent typical resolutions used for current high-end devices.
These benchmarks have been selected as they represent a set
of real use cases which cover both gaming and navigation and
provide a varied set of bandwidth requirements.

We use SimPoints [21] for the CPU which break down
the CPU workload into multiple smaller chunks based on the
phases detected in the workload. Each SimPoint is assigned
a weighting based on how frequently the CPU is in the
phase. These SimPoints are simulated in parallel, and their

CPU Clock 200 MHz-1.7 GHz, 100 MHz steps
CPU Voltage 0.925V-1.3V
L1 Cache Size 32 kB Inst & 32 kB Data
L2 Cache Size 1 MB

Total: 1536 MB
System Memory OS: 1024 MB

GPU: 512 MB
Memory Bus Clock 800 MHz
Operating System Android 4.1.1
Kernel Version 3.5.0-rc7

TABLE II: System Configuration



results combined to give a prediction for the overall workload.
This allows simulation speed to be vastly increased without
a significant impact on the accuracy of the results, thereby
allowing accurate profiling of larger applications.

C. Power Consumption Estimation

System dynamic power consumption is estimated for the
CPU, GPU, and DRAM. We estimate the power using sim-
plistic, ad-hoc techniques, as established tools, such as Mc-
PAT [22], do not provide representative data for our target
system.

The CPU power is estimated using the legal DVFS op-
erating points for the Samsung Exynos 5 Dual [1]. These
frequencies and corresponding voltages have been taken from
the Linux kernel [9]. We calculate V 2f for each DVFS point,
which ensures that the differences between power points is
representative of a real device. We include the power con-
sumption in CPU caches as they are part of the same voltage
and frequency domain.

The GPU power consumption is estimated on the basis
of the number of active cores and the time taken to render
the frame. Specifically, the power consumption of a GPU is
relatively constant when active, and, therefore, we only need
to measure the active time to determine the overall power
consumption for a particular core configuration [23].

We assume that the average energy per bit accessed in
the DRAM is constant and use it to estimate DRAM power
consumption. We base the power consumption of the DRAM
on power figures provided by Micron [24] which state that
a 2-channel LPDDR3 memory will consume 9.2 pJ/bit at
800 MHz. We do not use CACTI-D [25] for calculating the
DRAM power as we do not require an extremely detailed
power analysis.

IV. EXPERIMENTAL RESULTS

This section discusses the results of the experiments per-
formed on the CPU and GPU individually. This leads onto
the optimisation of the system based on the characteristics
observed.

A. CPU and GPU Analysis

The SimPoints for the CPU are evaluated for a set of
different voltage and frequency points, which allows us to
observe the change in performance and energy consumption
for the CPU. In Figure 3 we present the trade-off between
benchmark run time and the energy consumed by the CPU,
shown relative to a CPU frequency of 1.7 GHz, which is the
maximum operating frequency for the Exynos 5 Dual [1]. The
energy is estimated by multiplying V 2f for each of the DVFS
operating points by the run time, assuming a roughly constant
load for the duration of the benchmark. There is a non-linear
relationship between the benchmark slowdown and the energy
consumed, and the relationship is split into two key parts.
For small reductions in CPU frequency there is a significant
decrease in CPU energy usage across the benchmark for a
modest increase in overall benchmark run time. For larger
CPU frequency reductions, there are diminishing returns as
the run time increases more rapidly than the power savings.
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Fig. 3: Energy consumption and CPU frequency as a function
of system slowdown.
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Fig. 4: CPI vs. geometric mean of web page times for BBench
as CPU frequency varies.

Small reductions in frequency allow large energy savings, with
minimal performance loss, and therefore it is possible to trade-
off the performance of the CPU for energy consumption effi-
ciently. The non-linear relationship exists because the average
memory access latency does not vary significantly as the CPU
frequency is adjusted. Therefore, the benchmark spends a large
proportion of time waiting for data from main memory, and
the CPU idles, wasting energy. Modest reductions in the CPU
frequency result in fewer wasted cycles whilst still performing
a similar amount of work in a given time period. Once the CPU
frequency has been reduced significantly, the CPU is unable
to process the data at the rate that the memory can supply
it and the run time increases significantly, resulting in poor
energy-efficiency.

Taking the energy-delay product, we determine that the
ideal DVFS point in terms of total energy consumption is
at a CPU frequency of 800 MHz. Operating at 800 MHz
results in an increase in run time of 35% and a decrease in
energy consumed of over 60% relative to 1.7 GHz. In order
to relate this reduction in energy and performance to QoE,
Figure 4 shows the geometric mean for web page render times
in BBench as the memory latency seen by the CPU is varied,
and shows the relationship between CPI and web page render
time. As the memory latency increases, the time taken to render
each web page increases, as does the CPI of the CPU for a
given frequency. This not only demonstrates that the CPU is
able to operate more efficiently at lower frequencies due to
the relative decrease in memory latency, but also provides us
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Fig. 5: Amount of time where GPU can be powered off
for Navi and Taiji. Note that the y-axis labels have been
deliberately removed.

with a link between low-level system metrics and higher-level
user experience. It thus provides a QoE-specific reference for
the results presented in this paper (similar to the link shown
between MOS and QoS disturbance in [6]) and allows QoE to
be used as per Figure 1.

The GPU is dual-ported, and hence the number of GPU
cores is varied from 2 through 16 in increments of 2, thereby
ensuring that the load on each port is equal. Please note that
there is no other traffic present in the system so these results
apply specifically to the GPU in isolation. The GPU should
render the frame before the deadline imposed by the screen
refresh rate is reached. If the GPU fails to render the frame
in time, then the frame will be skipped, thereby resulting in a
decreased overall frame rate and a decreased user experience.
On the other hand, if the GPU completes frame rendering
significantly before the deadline, then it can be power-gated,
saving energy [23], [26]. Therefore, in order to determine
the ideal GPU configuration it is important to understand the
relationship between the number of cores and the time taken
to render different GPU frames.

Figure 5 shows, for varying core counts, the time for which
the GPU can be powered off as it has completed rendering
before the deadline. Please note that the frame times have
been obfuscated. The results shown assume a target frame
rate of 60 Frames Per Second (FPS), which is shown as a
horizontal dashed line in order to demonstrate the maximum
amount of time the GPU can be powered off. Values above
the x-axis indicate that GPU can be powered off whilst values
below the x-axis show GPU configurations where performance
is insufficient to achieve 60 FPS. It can be seen that Navi
requires at least 8 cores to render at 60 FPS, and that Taiji
requires 6 as, otherwise, the frame takes longer to render than
the allowed time per frame.

The run time has been used to calculate the energy con-
sumption for the GPU for each of the core configurations when
rendering each of the two frames. These results, which again
assume a screen refresh rate of 60 Hz, are summarised in
Figure 6, and are presented in terms of GPU efficiency, i.e.
the performance in frames per second per Watt. These results
demonstrate that it is important to minimise the number of
active GPU cores in order to keep energy usage low.

As the GPU generally requires a large amount of data to
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Fig. 6: Performance per Watt for Navi and Taiji as the number
of cores is varied.

render a frame and is able to process vast quantities in parallel,
it has a large impact on the dynamic power consumption of
the DRAM. However, once the GPU has reached its maximum
allowed frame rate, such as 60 Hz, it will request roughly the
same amount of data (this can be seen in Figure 9). Therefore,
whilst the dynamic DRAM power consumption increases, the
total energy consumed in the DRAM remains roughly constant
per frame rendered.

B. System Optimisation

We investigate how the additional GPU traffic affects the
performance of the CPU and compare to the results from Sec-
tion IV-A. We then use this to determine what the ideal CPU
frequency and GPU core count should be in order to minimise
the overall system power consumption, whilst maintaining
a sufficiently high QoE. Without the GPU rendering in the
system, the most energy-efficient operating point for the CPU
was 800 MHz. The GPU frames Navi and Taiji required 8 and
6 cores, respectively, in order to render at 60 Hz or more. In
this section, we change the frequency of the CPU in 200 MHz
steps from 400 MHz to 1400 MHz, as well as running at the
maximum frequency of 1700 MHz. Simultaneously, we run the
GPU in 6 and 8 core configurations for Taiji or the 8 and 10
core configurations for Navi. This allows us to observe which
configuration is best for the complete system. Please note that
the DRAM controller uses First-Ready First-Come-First-Serve
(FR-FCFS) scheduling, and no attempt is made to prioritise the
CPU traffic over the GPU traffic. All trade-offs are investigated
statically and no adjustments occur at run-time.

Figure 7 shows the change in CPI for the CPU as the
load placed on the shared memory changes with the GPU
core count. The results clearly demonstrate that the addition
of the GPU has significantly increased the latency to main
memory, thus reducing the performance of the CPU. It can also
be seen that Navi requests more bandwidth from the memory
than Taiji, as it has a larger impact on the CPI of the CPU.
If we compare the CPI measured here to the CPI shown in
Figure 4, we see that we should expect roughly 4.2 seconds
on average for a page to load and scroll for 8 core Navi, and
3.7 seconds for 6 core Taiji. For reference, using the CPI of the
CPU-only run at 800 MHz - which is 0.99 - we estimate the
mean time for a web page to be approximately 3.1 seconds.
When running at the maximum clock frequency of 1.7 GHz
without a GPU the average web page time is 2.4 seconds, and
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Fig. 7: CPI for BBench with varying GPU core count.

therefore reducing the CPU frequency to 800 MHz leads to a
30% increase in the average render time.

The increase in the CPI of the CPU manifests itself in
an increased run time for the benchmark. The overall impact
on user-perceived CPU performance is shown in Figure 8. It
is worth noting that the impact of additional GPU cores has
little influence on the run time for the CPU once the maximum
frame rate has been reached. Therefore, there are similar run
times for 8 and 10 core configurations for Navi, and 6 and 8
core configurations for Taiji.

The addition of a GPU has a significant impact on the
overall memory bandwidth consumed, and hence increases
the power consumption of the memory. This is illustrated
in Figure 9. The memory power consumption is similar to
the change seen in CPI, and this is to be expected as the
contention between the CPU and the GPU is in the shared
memory. However, the power consumption is averaged across
the run time, and therefore the overall energy usage increases
significantly as the run time of the benchmark rises due to
resource contention.

Figure 10 shows the relationship between the slowdown
of the benchmark (shown relative to 1.7 GHz) and the energy
consumed in the CPU. The frames rendered on the GPU, the
number of GPU cores, and the DVFS points of the CPU are
changed. For reference, the CPU-only runs from Figure 3 are
shown using a fine dotted line at the bottom of the diagram.
First of all, it is apparent that for any scenario which includes a
GPU, the CPU energy usage increases as the overall run time
for the benchmark increases due to the intensified resource
contention. The increased load has a secondary effect on the
CPU performance as the CPU spends a larger proportion of
time waiting for data from memory. Therefore, the higher the
GPU-induced load on the shared memory, the smoother the
trade-off between run time and energy usage. There is also a
tight grouping between the 8 and 10 core GPU configurations
for Navi, and the 6 and 8 core configurations for Taiji, which
is to be expected given the previous figures.

The addition of the GPU shifts the ideal point for certain
GPU core configurations and frames. Specifically, for Taiji
in the 6 and 8 core configurations the most energy-efficient
CPU frequency (determined by minimising the energy-delay

product) shifts from 800 MHz to 1 GHz, as does the 10 core
configuration for Navi. The 8 core configuration for Navi
remains most efficient at 800 MHz. Therefore, as the load
induced by the GPU increases, the ideal operating point for
the CPU increases. This motivates the need for dynamic run
time adjustment of system configuration based on both QoS
and QoE measurements (see Figure 1). Run-time adjustment
based on QoE requires measurable metrics, such as the CPI of
the CPU and the frame rate of the GPU. As previously stated,
the metrics of interest change as the applications running on
the device change, and therefore run time adjustment also is
needed to keep track of the ever-changing requirements and
demands placed on the system. Finally, a set of knobs which
can be adjusted in order to tweak the system performance is
required.

We compare standard Linux CPU governors to our results.
The Performance [9] governor will choose a CPU frequency
near the top left of Figure 10, whilst the Powersave governor
will choose the bottom right [10]. The OnDemand governor
will try to use the lowest DVFS point possible given the load
on the CPU but does not take into account the user experience
when switching the frequency. QoE provides a user-centric
measure of performance which would allow a governor to
choose an experience-optimised DVFS point.

V. RELATED WORK

QoE has been investigated in the context of telecom-
munications and networks. Collange et al. [13] present a
methodology which allows passive estimation of QoE for large
scale networks, and demonstrate their approach with ADSL
traffic traces. They use the packet loss for the ADSL traces
to try and estimate the user experience. However, as their
approach is designed to work with lossy networks, it is less
suited for SoC interconnects as these are usually designed not
to lose packets.

The recent work by Jagathessan et al. [27] presents the
notion of Application Defined Computing. Specifically, they
tune the performance of generic hardware to the characteristics
of the applications running by adjusting the brokering used
for the DRAM controller. This allows them to demonstrate
both a decrease in overall system power consumption and an
increase in performance. As we have shown in Section IV-B it
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Fig. 8: Run time for BBench with varying GPU core count.
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Fig. 9: Dynamic DRAM power for BBench with varying GPU core count.
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Fig. 10: Relative slowdown vs. relative energy consumed by
the CPU as the load placed on the shared memory varies due
to the GPU traffic. The points on the lines show the different
DVFS points for the CPU.

is important to take into account the performance of the CPU
and the GPU when optimising the system.

Other work underlines the need to observe, learn from and
react to user behaviour. Falaki et al. [5] present the results
from a survey of 255 smartphone users which illustrate the
diversity in the way that different people use their smartphones.

This clearly demonstrates that it is important to understand
which applications are of the greatest importance to a particular
user before optimising the device for any particular scenario.
It supports our claims in Section II where we state that the
metrics of importance vary with each application and user.

Carroll et al. [28] show that, in addition to the GSM and
Wifi modules, the CPU and GPU are two of the biggest
consumers of power in a mobile device. Therefore, it is
important to focus on reducing the power consumption of these
key components which are found in every smartphone. Bircher
et al. [29] demonstrate that for certain benchmarks the memory
and memory controller are able to consume more power than
the CPU core. This work considers CPU, GPU as well as
memory power as it can have a marked impact on overall
system power consumption.

Shye et al. [30] present work which explores the activity
of a set of users on a real device, and apply the findings to
construct a power model. This power model is then used to
demonstrate that the power consumption varies between users
as each of them places different demands on the device. The
authors then demonstrate that reducing both screen brightness
and CPU frequency gradually over time, rather than making
a step change, has less impact on the end user experience
and allows them to save over 10% of the system power.
This underlines the importance of taking into account user



behaviour and preferences.

Wijnants et al. [8] investigate the link between QoS, in the
form of technical parameters, and QoE for a multi-player game
which relies on location sensing and player communication
over a 3g connection. They demonstrate a clear link between
artificial distortions in the QoS aspects and the enjoyment and
absorption reported by a group of players. They also note
that it is important to minimise the communication latency
as it showed the largest impact on the user satisfaction. They
illustrates that it is important to consider both the services that
are delivered by the device, and the context in which they
are presented when optimising the performance of the system.
Therefore, it is vital to consider the system as a whole as we
do in our work.

VI. CONCLUSIONS

This paper demonstrates for the first time that Quality
of Experience (QoE) can be used as an embedded system
optimisation tool. We selected system-level metrics which
allowed measurement of QoE from within the confines of
the device. Using these, we demonstrated that a relatively
small decrease in the frequency of the CPU, which results
in a small decrease in the perceived performance, is able to
offer significant power savings. It is important to understand
the user-centric performance reduction as this gives a much
clearer idea of how the performance affects the end user. When
evaluating the performance of the system as a whole, we have
shown that the optimal operating point for the CPU shifts as
the load placed on the shared memory by the GPU changes.
Whilst this shift was only by 200 MHz, it is worth noting that
this effect was produced by having only one other master in the
system. Therefore, it is important that the system configuration
can be dynamically adjusted.

Our future work includes the characterisation of applica-
tions based on their demands and the type of service they
provide to the end user. This will provide the basis for a frame-
work which allows the system configuration to be adjusted at
run time taking into account the types of applications running
on the system, their demands, and the requirements of the end
user.
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