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Abstract—In this paper we propose a highly parallel GPU-
based bounding algorithm for computing the exact diameter of
large real-world sparse graphs. The diameter is defined as the
length of the longest shortest path between vertices in the graph,
and serves as a relevant property of all types of graphs that are
nowadays frequently studied. Examples include social networks,
webgraphs and routing networks. We verify the performance of
our parallel approach on a set of large graphs comprised of
millions of vertices, and using a CUDA GPU observe an increase
in performance of up to 21.1 X compared to a CPU algorithm
using the same strategy. Based on these results, we provide
a characterization of the types of graphs that are well-suited
for traversal by means of our parallel diameter algorithm. We
furthermore include a comparison of different GPU algorithms
for single-source shortest path computations, which is not only
a crucial step in computing the diameter, but also relevant in
many other distance and neighborhood-based algorithms.
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I. INTRODUCTION

The field of graph traversal algorithms has been stimulated
by the arrival of Graphics Processing Units (GPUs), as they
deliver high performance at a relatively low cost [1]. The trend
of ever increasing memory has made it possible to run algo-
rithms on very large real-world graphs consisting of millions
of vertices and edges. Although today’s frameworks make
the GPU easily accessible to programmers, developing high
performance algorithms for traversing graphs is a challenging
task due to strict guidelines of the parallel architecture.

The diameter of a graph is defined as the longest shortest
path length, or alternatively as the highest eccentricity value
over all vertices. In turn, the eccentricity of a vertex is the
length of a longest shortest path connecting that vertex to any
other vertex. The diameter is traditionally computed using the
All-Pairs Shortest Path (APSP) algorithm, running in O(mn)
time for graphs with n vertices and m edges. To reduce
computation time at the cost of exactness, estimation methods
that base the diameter on eccentricity values determined from
a set of randomly selected vertices can be used [2]. We are
specifically interested in exact diameter computation, allowing
us to observe the actual paths that realize the diameter. Our
parallel implementation is based on the observations and
bounding strategies proposed in [3], [4], which drastically
reduces the total number of eccentricity computations which
have to be performed to find the exact value of the diameter.
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Graph representation is important when optimizing algo-
rithms on the GPU, and the main challenge lies in fully
utilizing the parallel architecture [5] of the GPU. In previous
work, the APSP problem for graphs (and thus the diameter
problem) was solved in parallel by means of the Floyd-
Warshall algorithm, based on graph implementations using
adjacency matrices [6], [7], [8], [9]. Although it is common to
represent graphs as an adjacency matrix, when dealing with
sparse graphs with a large number of nodes and edges, the
use of adjacency lists is necessary to reduce the usage of
unnecessary space [9], [10]. Most methods break up the APSP
into multiple Single-Source Shortest Path (SSSP) problems
and then compute the length of these paths in parallel.

In case of the diameter, we are interested in the longest
shortest path length, and a parallel version of Dijkstra’s
algorithm could be used [11], [12]. However, when dealing
with unweighted graphs, Dijkstra’s algorithm is essentially the
same as Breadth First Search (BFS), and the SSSP algorithm
for traversing the graph can be simplified and optimized
further, which we will discuss in this paper. We will attempt
to characterize structural properties of the graph that influence
the extent to which a GPU algorithm for traversing the graph
can efficiently be applied. In our experiments, we will apply
our GPU algorithm to a variety of large real world graphs of
different types, including social networks, citation networks,
communication networks and web graphs, using the sequential
CPU algorithm as a performance baseline.

The main contribution of this paper is exposing the parallel
nature of our bounding strategy for finding the diameter, and
its well-suitedness for GPU implementation. Instead of focus-
ing on solving multiple SSSP problems in parallel like [7],
[8], [9], [10], [13], we focus on reducing the number of SSSP
problems to solve. An adjacency list is used to represent sparse
graphs efficiently as previously done by [9], [10], with the
addition of having padded each individual list to more easily
comply with GPU memory access optimizations. We propose
multiple algorithm variants that improve upon [1], [14] in
providing best-of-both-worlds variants that are reproducible
through provided pseudo code, and additionally we give a
metric to choose a specific variant at different stages of the
algorithm. Furthermore, the proposed algorithm follows the
most strict definition of access optimization restrictions in
terms of coalescing, meaning it will perform well on CUDA
GPUs of any given compute capability.



The rest of this paper is organized as follows. We cover
background knowledge on the subjects of graph diameter
and the GPU programming model in Section II. Related
work is presented in Section III. Section IV discusses the
algorithm for computing the diameter on the GPU, as well
as different single-source shortest path algorithms. Results of
applying these algorithms as well as the diameter algorithm
are discussed in Section V. We conclude with a summary and
suggestions for future work in Section VI.

II. BACKGROUND

This section offers some insight into the knowledge used
in this paper. Section II-A discusses the graph diameter
and Section II-B covers the important parts of the CUDA
programming model.

A. Graph Diameter

Let G(V,€) be an undirected graph with vertices V =
{0,...,n — 1} and edges &€ C V x V. We use n for the
number of vertices and m to denote the number of edges. The
distance between vertices u,v € ) is the length of the (or
a) shortest path that connects them. The eccentricity of vertex
v €V is the greatest distance between v and any other vertex
w € V — {v}. The diameter D(G) of graph G equals the
maximum eccentricity of any vertex v € V. In other words,
the diameter is the length of a longest shortest path in the
graph. We focus on the largest weakly connected component
(WCC) of a graph, which is the largest subgraph of G that is
connected when all edges are considered to be undirected.

In order to find the diameter of a graph, traditionally the
shortest path must be calculated between all pairs of vertices.
The Single Source Shortest Path (SSSP) problem finds such a
path from source vertex v € V to every vertex w € V — {v}.
The All Pairs Shortest Path (APSP) problem finds a shortest
path from any vertex v € V to any vertex w € V — {v}.

B. Compute Unified Device Architecture

The Compute Unified Device Architecture (CUDA) is a
parallel programming framework developed for graphics cards
made by NVIDIA. The architecture we focus on is called
Fermi [15], [5], [16]. Distinction is made between the different
Fermi architectures by their compute capability. We consider
compute capability 2.0 from now on, which is determined by
the graphics card used during the experiments.

In order to write efficient programs with the CUDA
programming model one must take notice of its key
components. Section II-B1 will discuss the programming
model and Section II-B2 will discuss the memory model.

1) Programming Model: CUDA functions or kernels are
executed by threads organized in a hierarchical structure as
illustrated by Figure 1. A warp consists of 32 threads that are
executed in parallel. When branching the threads belonging
to the same warp, they synchronize implicitly at the next
instruction that must be executed by all threads of that warp.
Execution is sequential until that time. A block consists of
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Figure 1 CUDA Programming Model

warps and is executed on a single streaming multiprocessor
(SM). Multiple blocks may be assigned to the same SM. A
grid consist of the blocks that execute the kernel.

There is an indexing scheme in place in order to identify
threads and blocks. Using this indexing scheme, branching is
supported at the thread and block level.

2) Memory Model: The hierarchy of the programming
model is also of influence in the memory model as illustrated
in Figure 2. Threads within a block can communicate or share
data through shared memory. Each block is allowed to access
global memory, through which blocks can communicate and
share data. The host can transfer data to and from global
memory and constant memory.
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Figure 2 CUDA Memory Model

Table I shows the scope and lifetime of data located on
different memories. A parallel mechanism requires memory
accesses to be optimized by the programmer. This regards
global and shared memory. Assume that global memory is
divided into consecutive 128-bit segments. We say that global
memory accesses are optimized or coalesced, when the fol-
lowing rules are obeyed by each thread:

1) Access 4-byte values,

2) Access consecutive addresses (4-byte spacing),

3) Threads in a warp must access the same segment.

TABLE I Scope and lifetime of different types of memory
Memory | Scope | Lifetime

Register | Thread | Kernel
Local Thread | Kernel
Shared Block Kernel
Global Grid Program
Constant | Grid Program



This is the most strict definition of coalescing, which applies to
compute capabilities < 1.2. Later compute capability coalesc-
ing requirements are relaxed and therefore subsume the rules
given above. This also holds for the even further relaxed access
requirements to shared memory. This means that regardless
of memory type and compute capability, these rules lead to
optimal bandwidth. This was important to mention because
our algorithm is complacent toward the stricter phrasing of co-
alescing with regard to the bounding strategy, as will become
clear later on, and is therefore suitable to run on GPUs with
different compute capabilities. When access patterns make it
impossible to obey the aforementioned rules, shared memory
can be used as an intermediate step in instances, as its rules
are less constricting. We speak of a bank conflict in the context
of shared memory when one or both of the following rules are
broken assuming the same segmentation as for global memory:

1) Access 4-byte values,

2) Threads in a warp must access different addresses in the
same segment, or

3) Access the same offset within different segments.

Algorithm optimization is greatly determined by how well the
previously discussed guidelines and restrictions are followed.

III. RELATED WORK

Shortest path problems are fundamental in the field of com-
binatorial optimization and have many applications [17]. There
are many sequential algorithms solving the SSSP problem.
Dijkstra’s algorithm solves this for positive weighted graphs
in time complexity O(nlogn + m) [18], and for positive
weighted planar graphs in O(n) time [19], which in both
cases is optimal [20]. Parallel implementations of Dijkstra’s
algorithm exist but are oriented towards CPUs and work-
efficient parallel processes [11], [12]. A different approach is
required for the GPU architecture as it uses a much greater
number of parallel processes or threads, as demonstrated
in [10]. As the diameter of a graph can easily be derived from
the result of an APSP algorithm, parallel algorithms based
on the Floyd-Warshall algorithm could be used to determine
the diameter [6], [7], [8], [9]. Most of these algorithms use
adjacency matrices, which prohibit the study of large graphs
with millions of nodes.

Parallel BFS implementations have been proposed by [1],
[10], [21], [22], [23], and the hierarchy of the programming
model has been further exploited by [23], and [14]. There are
two reoccurring components they all have in common. Each
BFS implementation uses level synchronization and the typical
FIFO approach is replaced by a so-called frontier keeping
track of vertices already visited. Each vertex is assigned a
thread that uses the frontier to store the distance to the source
vertex at each level. Both optimizations regard hardware
correspondence.

IV. METHODOLOGY

Using CUDA, we developed an algorithm for the GPU
for calculating the graph diameter. Graph representation is
discussed in Section I'V-B and is key in high performance GPU

computing. In Section IV-C we discuss a parallel eccentricity
algorithm separately, as it is the dominating component of the
diameter computation, runtime wise. To reduce the number
of eccentricity computations, we start with the proposal of
a highly parallel bounding strategy in Section IV-A and
elaborate on the components it consists of. We finish by
discussing algorithm variants in Section IV-D.

A. Diameter Bounding Strategy

The graph diameter problem can be broken down into
many SSSP problems, pruning and bounding strategies help to
reduce the search space of the problem, which becomes very
important when working with millions of vertices and edges.
In spite of the sequential nature of the diameter procedure
proposed in Algorithm 1, the individual functions that it
consists of are highly parallel.

Although the diameter procedure runs on the CPU, all
computations are done on the GPU. The CPU is only used
to launch kernels and to monitor the stopping condition. Each
function is contained in its own kernel, as crowding kernels
with multiple functions causes individual threads to use more
shared resources than necessary. In turn, this reduces the total
number of threads, referred to as occupancy, that can execute
the kernel and thus impacts performance negatively.

Algorithm 1 Diameter computation using CUDA

procedure DIAMETER()

B[0,...,n—1] <0

Bul0,...,n—1] +n

F[0,...,n—=1]«+0

while max(B;[0,...,n—1]) # max(B,[0,...,n—1]) do
vertex <— SELECT_CANDIDATE(C, By, By,)
eccentricity <— ECCENTRICITY (vertex, F')
UPDATE_BOUNDS_KERNEL (eccentricity, By, Bu, F')
UPDATE_CANDIDATES_KERNEL(C, By, By,)

return max(B;[0,...,n—1])

Frontier array F' stores shortest distances to the source
vertex but we first select a vertex from array C' holding
candidates. We compute the eccentricity for that candidate
(see Section IV-C), and with the aid of arrays B, and B;
we do the bookkeeping of the respective eccentricity upper
and lower bound for each remaining candidate. These bounds
are determined using observations made by [3], stating that
every vertex is reachable from vertex v in less steps than its
eccentricity value £(v), i.e., the length of its longest shortest
path. Let d(v, u) be the distance between vertex v and u, then
it takes exactly d(v,u) steps to reach u from v and at most
an additional e(v) steps to reach every other vertex from wu.
Furthermore, it is impossible for an upper bound to be lower
than the global lower bound, and vice versa in undirected
graphs. The number of candidates can be reduced using these
upper and lower bounds, and we come back to this later.

Candidate selection is of great influence on our bounding
strategy. The eccentricity of a selected vertex determines
the extent to which the bounds can reduce the number of
computations that come afterwords. Different strategies have
been investigated in [3]. We choose a candidate by alternately



selecting a vertex with the global highest bound and selecting a
vertex with the global smallest bound. This seems to contribute
the most with regards to pruning candidates.

Algorithm 2 shows the functions for the bookkeeping of
candidate vertices and bounds. We update the upper and
lower bounds with the eccentricity value determined from
the previous selected vertex at each iteration of the diameter
procedure. As bounds grow toward each other, the eccentricity
of a vertex is determined when the lower bound is equal to
the upper bound, without having to explicitly compute the
eccentricity for that vertex. Candidates are pruned when they
can no longer contribute to finding the diameter, cf. the bounds
discussed in [3].

Algorithm 2 Updating of bounds and candidate vertices

> T is the total number of threads
> TID is a unique global thread id
function UPDATE_BOUNDS_KERNEL(eccentricity, By, By, F)
for i <— TID ton—1:7 <+ i+ T do
By [i] < max(B[i], max(F[i], eccentricity — F[i]))
By [i] < min(By[t], eccentricity + F[i])

function UPDATE_CANDIDATES_KERNEL(C, By, By,)
upperbound < max(By[0,...,n—1])
lowerbound <+ max(By[0,...,n—1])
for i < TID ton—1:i<+ i+ T do
if Cli] =1 and (By[i] = B;[i] or
(Bu[i] < lowerbound and By[i] - 2 > upperbound) ) then
Cli] + 0

A precondition to the functions shown in Algorithm 2 is
that frontier F' must contain the distance of the path from
the source vertex to every other vertex. This influences the
eccentricity function in that it cannot use a queue structure.
A queue is organized in such a way that the vertices with the
longest shortest paths are located at the beginning. Reorga-
nizing this queue in a coalesced fashion is not possible. Both
functions in Algorithm 2 have fully coalesced access patterns
maximizing bandwidth. This reveals their well-suitedness for
GPU optimization. Section V will show that in practice these
functions only account for a small portion of the total runtime,
yet contribute a lot. We leave the eccentricity function to
Section IV-C as this function is most dominantly present in
the total runtime, and it is more difficult to optimize on the
GPU.

B. Graph Representation

Although it is easy to develop an implementation with
optimized access patterns as discussed in Section II-B with
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Figure 3 Concatenated adjacency list example

an adjacency matrix representation, it takes O(n?) space. We
focus on sparse graphs, thus much space would be wasted. An
adjacency list does not waste space, yet poses many problems
when trying to optimize memory access patterns. Figure 3
shows how the index of each vertex is used to point to the
starting position of its own adjacency list. The representation
consists of three arrays. Array V} contains the base addresses
or starting positions of the adjacency lists, Vs contains the size
of each adjacency list and array E consists of the concatenated
adjacency lists.

Depending on the sparseness of the graph, an intermediate
representation can be considered where E is a matrix holding
a list of adjacency lists depicted by Figure 4. In this case
V, would become obsolete and each adjacency list can be
accessed using the vertex identifier as index. Matrix E would
be of size n x ¢, where { is the size of the longest adjacency
list. For memory access optimization reasons discussed in
Section II-B we must increase ¢ to the next multiple of 32.
As the compactness depends on the length of the longest list,
we further reduced it by using the representation where each
individual adjacency list is padded to a multiple of 32. This
can be achieved with a simple O(n) time algorithm. We have
identified this to be the most compact representation that can
still comply with access optimization rules.
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C. Eccentricity

The eccentricity of vertex v € V can be computed by the use
of one Breadth First Search (BFS), which takes O(m) time.
When talking about the BFS approach we have the notion of
levels. A level contains every vertex of which the distance to
the source vertex is the same. We refer to vertices as being
active when the edges of these vertices need to be traversed
at the current level in order to create the next. Distances are
stored in a frontier as the algorithm progresses.

We have based the eccentricity function shown by Algo-
rithm 3 on the BFS proposed by [10]. It should be used with
the graph representation described by Figure 3. We use the
frontier array F' of size n to keep track of active vertices at
each level, and thus need level synchronization.

The for loop in Algorithm 3 guarantees that each block is
responsible for a different section of frontier F'. This is shown
by Figure 5 for the instance that the kernel is launched with
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Figure 5 Frontier access pattern




Algorithm 3 Eccentricity function

> T is the total number of threads
> TID is a unique global thread id
function ECCENTRICITY_KERNEL(F', &level)
fori<+ TIDton—1:i+ i+ T do
if F'[i] = level then
for j < 0 to V[i] do
if F[E[V}[t] + j]] = —1 then
F[E[Vy[i] + j]] + level +1
if F' changed then
level < level + 1

function ECCENTRICITY (v)

level + 0

llevel < 0

Fl0,...,n—1] «+ —1

F[v] + level

while llevel = level do
ECCENTRICITY_KERNEL(F, level)
llevel < llevel + 1

return level

two blocks consisting of 32 threads. This access pattern is also
used in the other kernels and ensures coalesced access if the
number of threads that make up a block at kernel launch is a
multiple of 32.

D. Variants

We have focused on the parallelization of the eccentricity
function. Below, we discuss six different variations of
Algorithm 3 computing the eccentricity value. In the next
section, we compare the different algorithm variants.

Standard: The Standard eccentricity algorithm is shown
in Algorithm 3. A thread is assigned to each vertex. When a
thread makes a change in the frontier at the current level, we
know that there is a next level and therefore need to continue
another iteration of the while loop.

Pointers: The Pointers algorithm is an optimization of
Standard, realized by forcing some variables residing in
caches into registers. Also, array V; holding the starting
positions of the adjacency lists now holds actual global
memory addresses pointing to these starting positions instead
of integer index values. This reduces overall memory address
translation cost.

Busy-Wait: The Busy-Wait algorithm attempts to reduce
memory accesses by idling blocks at certain levels where they
have no work to perform. The frontier is read entirely at each
level, even though a small portion of the vertices need to be
traversed. A queue structure would not have this problem, yet
GPUs need this ambiguity in order to fully utilize the parallel
architecture. Each block is responsible for a disjoint section
of the frontier. Equation 1 is used to determine to whom the
section belongs that is written to:

block = |v/TB | mod B. (1)

Here, v is the vertex that is activated, 7'B is the number of
threads per block and B is the number of blocks that execute

the kernel. Figure 6 shows how the result of the equation is
stored in array A which is used to determine at the start (once,
so no polling) of each level if a block should traverse the
frontier or not.
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|:| Active|

Block 0
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Figure 6 Busy-Wait strategy

Textures: The Textures algorithm is a simple variation
with a fundamental difference. Array E holding the edges
no longer resides in global memory but in texture memory.
Texture memory is optimized for spacial locality, meaning
that the assumption is made that neighboring addresses are
likely to be accessed. This is the case when using adjacency
lists.

Warp: The Warp algorithm increases parallelism when
dealing with long edge lists by processing them with a warp in-
stead of by just one thread. A warp is a collection of 32 threads
which are executed at the same time [5]. Previously discussed
variations of the algorithm are thread-centric, whereas this
algorithm is warp-centric. Algorithm 4 shows a code snippet
that replaces the outermost for loop of the eccentricity function
in Algorithm 3. We first copy the appropriate section from the
frontier to an array in shared memory. This way the threads
within a warp can process the frontier in an optimized way at
the same time. Once an active vertex is found, the warp tra-
verses the edge list (the innermost for loop) with an optimized
access pattern when using the algorithm in combination with
the data representation presented by Figure 4.

Algorithm 4 Warp-Centric eccentricity function

> WID is the warp id within a block
> TID is the thread id within a block
> BID is the block id

> BS is the block size (#threads)

> GS is the grid size (#blocks)

for i <~ BID - BS ton—1:i+ i+ BS -GS do
cache[TID] + F[i + TID]
for w <— WID - 32 to (WID + 1) - 32 do
if cache[w] = level then
for ¢t <+ TID mod 32 to V;[i + w| do
if F[E[Vb[i + w] + t]] = —1 then
F[E[Vb[i 4+ w] 4 t]] = level + 1

Hybrid: The Hybrid algorithm attempts to combine the best
attributes of a thread-centric algorithm (Standard) and a warp-
centric (Warp) algorithm. At the beginning of each level during
the eccentricity computation a choice is made to use either the
thread or the warp-centric function. The result of this choice
depends on the number of active vertices and the length of the
adjacency lists.



TABLE II Real world datasets and their properties

Dataset N Nwee Mawece JAN C D Dgg I T S
Amazon0601 5 403364 3387224 3986507 1.1769 21 7.6 28 143.68 13.34
as-skitter 7 1694616 11094209 28769868  2.5932 25 5.9 6 138.85 8.75
cit-Patents 3 3764117 16511741 7515023  0.4551 22 94 | 111 4515.64  21.11
com-amazon 5 334863 925872 667129  0.7205 44 15 7 24.71 11.95
com-dblp 8 317080 1049866 2224385  2.1187 22 8.1 8 21.78 13.56
com-LiveJournal 1 3997962 34681189 177820130 5.1273 18 6.4 9 519.04 16.12
com-youtube 1 1134890 2987624 3056386  1.0230 21 6.5 2 17.26  13.66
Email-EuAll 2 224832 395270 267313  0.6763 13 4.5 3 8.95 5.85
roadNet-CA 6 1957027 5520776 120676 0.0219 850 500 | 181  12381.40 2.45
roadNet-PA 6 1087562 3083028 67150  0.0218 782 539 61 2508.87 222
roadNet-TX 6 1351137 3758402 82869  0.0220 1049 670 83 5194.15 1.84
soc-LiveJournal 1 1 4843953 68983820 285730264  4.1420 18 6.5 6 437.18  16.01
soc-Pokec 1 1632803 30622564 32557458  1.0632 11 53 3 110.88  14.01
web-BerkStan 4 654782 7499425 64690980  8.6261 669 10 5 153.72 2.06
web-Google 4 855802 5066842 13391903  2.6430 22 8.1 5 4738 12.25
web-NotreDame 4 325729 1497134 8910005 5.9514 46 9.3 3 16.35 4.05
web-Stanford 4 255265 2234572 11329473 5.0701 740 9.8 7 111.23 1.88
WikiTalk 2 2388953 5018445 9203519 1.8339 9 4 7 97.02 11.07

TABLE III Runtime and speedup of diameter components

V. EXPERIMENTAL RESULTS

In this section we report on two types of experiments. Using
real world graphs, we make a comparison between multiple
GPU algorithms and we assess their performance compared
to a typical sequential CPU implementation. We preferred a
GPU version over a parallel CPU version, because the access
patterns of the bounding strategy are optimal for a GPU and
thus seemed a better fit. We used The Little Green Machine
(LGM) supercomputer [24] for experimentation, which uses
Intel Xeon E5620 CPUs and NVIDIA GTX 480 GPUs. Each
GPU implementation runs at full occupancy (requiring 21
registers to prevent memory spilling). With regard to the GTX
480 this means that each of the available 15 streaming mul-
tiprocessors has 1536 threads executing a kernel in parallel.
In [25] a performance improvement was reported under lower
occupancy, yet this proved not to be true in our case.

The sequential CPU implementation obtained from [4] uses
a typical FIFO queue when computing eccentricity values
with the BFS graph traversal method. It utilizes the same
bounding strategy as proposed in Section IV. We elaborate
on the datasets used during experimentation in Section V-A.
Section V-B focuses on the diameter computation and its
components, and Section V-C further investigates the two
algorithm types that the Hybrid algorithm consists of.

A. Datasets

We have tested with eight different graph or network types,
namely social networks (1), communication networks (2),
citation networks (3), web graphs (4), product co-purchasing
networks (5), road networks (6), autonomous system graphs
(7) and collaboration networks (8). The datasets are obtained
from [26] and are described in Table II. Large real world sparse
graphs have been selected with 400,000 to 70,000,000 edges
and are either undirected or converted to undirected graphs.
Larger graphs would not fit into our 1.5GB of memory which
translates to roughly 400 million edges, without accounting for
space required for the algorithm. Table II shows the network
type N as enumerated above, the number of vertices 7.
and the number of edges M. in the WCC, the number of

Component ‘ Avg runtime %  Avg speedup
Initialization 0.09 39.96
Candidate selection 1.17 11.70
Eccentricity 97.13 5.55
Updating bounds 1.29 46.59
Updating candidates 0.31 46.38

triangles A\, the average clustering coefficient C, the diameter
D and the 90-percentile effective diameter Dgq. It gives the
total runtime 7" of the diameter computation in milliseconds,
the speedup factor .S in comparison to the CPU implemen-
tation, and the number of iterations I of Algorithm 1 it
takes to compute the diameter, i.e., the number of eccentricity
computations that are required to determine the exact diameter.

B. Diameter Computation Results

Each component of the diameter computation has been
tested separately of which the results can be seen in Table III.
The table holds averages over all tested datasets of the Pointers
algorithm. It shows that the Eccentricity component dominates
the total runtime and it also shows that the four components
contributing to the bounding strategy have very high speedups
and claim less than 3% of total runtime.

One relation between the graph properties that appeared to
influence the performance is shown in Figure 7. The relation
between D, Dy and the speedup factor can be explained
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Figure 7 The relation between D and Dgg
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by the imbalance in the division of labor among threads and
levels. Large difference in list lengths, a large diameter and
level synchronization result in loss of parallelism. Noticeable
of the two worst performing datasets is that they have an ex-
tremely low Dgo/D value in comparison to the other datasets
(see Table II). It also seems that Dgy/D = 0.4 performs
best with both thread- and warp-centric algorithm type. The
downwards slope in Figure 7 is due to the final three data
points, which coincidentally belong to the same network type:
Road networks. These networks appear to be characterizable
by this relation. A final conclusion can be taken from Figure 8
on a higher level. Social networks, collaboration networks and
citation networks generate datasets that all perform well. These
network types appear to be well-suited for graph traversal on
the GPU.

Figure 8 shows the speedup factors of our algorithms for
every tested dataset. From an algorithmic perspective, the
Pointers algorithm utilizes a crude optimization technique
by forcing faster memory instructions. In comparison to the
Standard algorithm this always seems to work. Although
the Busy-Wait algorithm has less memory transactions with
regard to the frontier, it is often slower than the standard
version. This can be explained by considering the time it takes
to run the additional control code. The performance of the
Textures algorithm is the least predictable. Texture memory
has a different cache than global memory and is optimized for
spacial locality. This type of caching strategy can apparently
be utilized in some instances. The Hybrid algorithm combines
the best attributes of two algorithm types, and was inspired
by the Warp algorithm performing very well during a small
portion of the algorithm. This is why the combination nearly
always comes out on top.

C. Adaptive Eccentricity Computation

Choosing which algorithm type to use at each level of the
hybrid algorithm depends on the length of adjacency lists and
the number of active vertices at that level. In an effort to
find out when to use which type we created an adjacency list
representation where each list is of equal length, and traversed
it. Figure 9 shows the speedup factor of the warp-centric type
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Figure 9 Relation between list size and the number of active vertices

compared to thread-centric. We have drawn the border of the
1%, 5% and 10x speedup on the lower two axes, which clearly
reveals two relations: (1) long adjacency lists favor the warp-
centric type (the reason is trivial as a warp should be much
faster than a thread in traversing longer lists), and (2) fewer
active vertices favor the thread-centric type, which does not
have the overhead of first having to transfer the frontier array
into shared memory and reading it multiple times from there.
The speedup of the warp-centric type solely comes from long
list traversal, thus its performance increases when there are
more active vertices, i.e., more lists to traverse, which reduces
relative overhead.

The result of Figure 9 was created by an unrealistic situation
where adjacency lists are of equal length. We have used the
Amazon0601 dataset to show multiple ways of indicating
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when to use which type of algorithm in Figure 10 on a
per level basis, by how many untraversed vertices are left
and the number of active vertices. The runtime percentage
is also compared of both algorithm types. An equal or smaller
percentage means an equal or shorter runtime, respectively.
We base our choice on the downward angle of how many
vertices are left, which can be understood by comparing a
similar visualization of the roadNet-PA dataset (where the
warp-centric algorithm never performs better), we also never
encounter a steep enough downward angle comparable to
the area where the warp-centric algorithm performs better in
Figure 10.

VI. CONCLUSION AND FUTURE WORK

We have introduced and analyzed a highly parallel GPU-
based algorithm to compute the exact diameter of large graphs
with millions of nodes and edges efficiently. The bounding
strategy has reduced the number of required BFS computa-
tions to compute the diameter from n to a constant number,
usually less than 10. We have seen that the bounding strategy
component of the algorithm is extremely efficient and well-
suited for GPU implementation, and in combination with BFS
reaches overall speedups of up to 21.1x compared to the CPU
implementation. The large graphs that we investigated have
varying characteristics, and we have attempted to characterize
which graphs are well-suited for traversal on GPUs, showing
the relevance of the graph’s Dgg/D ratio for the speedup.

We have furthermore investigated different approaches for
single BFS searches, in terms of data representation and
computation, to compute the eccentricity of a vertex, which
is the dominant component of the diameter algorithm and
many other distance-based graph properties. It turns out that
determining the best performing algorithm to compute the ec-
centricity highly depends on the stage of the BFS computation.
We therefore proposed a hybrid technique comprised of the
thread-centric and the warp-centric algorithm.

In future research we want to investigate a Floyd-Warshall
hybrid implementation where multiple eccentricity computa-
tions are performed at the same time, while still preserving the
bounding strategy. We have seen that the dominating compo-
nent of the diameter computation is the eccentricity function,
and dividing the work over multiple GPUs will definitely
increase performance. We furthermore want to extend our
GPU implementation such that it includes the computation of
the radius, center and periphery of weighted and unweighted
graphs.
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