
HAL Id: inria-00484083
https://inria.hal.science/inria-00484083v1

Submitted on 17 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Visual, Open-Ended Approach to Prototyping
Ubiquitous Computing Applications

Zoé Drey, Charles Consel

To cite this version:
Zoé Drey, Charles Consel. A Visual, Open-Ended Approach to Prototyping Ubiquitous Computing
Applications. Proceedings of the 8th IEEE Conference on Pervasive Computing and Communications
(PERCOM’10), Mar 2010, Mannheim, Germany. �inria-00484083�

https://inria.hal.science/inria-00484083v1
https://hal.archives-ouvertes.fr

A Visual, Open-Ended Approach to Prototyping Ubiquitous Computing Applications

Zoé Drey

Thales/INRIA

Talence, France

zoe.drey@inria.fr

Charles Consel

ENSEIRB/INRIA

Talence, France

charles.consel@inria.fr

Abstract—By nature, ubiquitous computing applications are
intimately intertwined with users’ everyday life. This situation
is challenging because it requires to make the development of
applications accessible to end-users. Furthermore, ubiquitous
computing consists of a variety of areas, including home au-
tomation and assisted living, raising a need for an open-ended
approach.

We present Pantagruel, a visual programming language that
is end-user oriented. Our approach is open-ended in that Panta-
gruel integrates a language to describe a ubiquitous computing
environment. Such description takes the form of a taxonomy,
defining the entities relevant to a given ubiquitous computing
area. This description serves as a parameter to a sensor-
controller-actuator development paradigm. The orchestration
of area-specific entities is supported by high-level constructs,
customized with respect to taxonomical information.

We have implemented a visual environment to prototyping
ubiquitous computing applications. Furthermore, we have devel-
oped a compiler for Pantagruel that targets a domain-specific
middleware. Our environment leverages a 2D renderer to enable
the simulation and of applications. We successfully simulated a
range of applications in various ubiquitous computing areas, such
as home automation, assisted living and building management.

Keywords-End-User Visual Language, Ubiquitous Computing
Prototyping, Programming paradigms for Ubiquitous Systems.

I. INTRODUCTION

Ubiquitous computing aims to address end-user needs per-

taining to various areas such as assisted living, home automa-

tion or energy management. Because it requires expertise in

many fields (e.g., networking, multimedia, and systems), pro-

gramming ubiquitous computing systems is very challenging.

Even more challenging is the fact that this programming must

be made accessible to end-users because ubiquitous computing

applications are intimately involved in our everyday life.

Also, the spectrum of potential application areas requires the

development process to be open-ended, enabling new entities,

whether devices or components, to be integrated.

This paper presents Pantagruel, an expressive approach

to developing orchestration logic of an open-ended set of

entities. A Pantagruel program is parameterized with respect

to a taxonomy of entities describing a ubiquitous computing

environment. Our visual programming environment includes

a simulator that allows programs to be tested prior to their

deployment.

Our approach consists of a two-step process: (1) a ubiq-

uitous computing environment is described in terms of its

constituent entities, their functionalities and their properties;

(2) this description takes the form of a taxonomy that drives

the development of an application.

The environment description allows our approach to be

instantiated with respect to a given application area. This

description defines the classes of entities that are relevant to

the target area. For each class, it specifies an interface to access

its functionalities. Because the orchestration logic is written

with respect to the environment description, entities are com-

bined in compliance with their description. To facilitate the

programming of the orchestration logic, we have developed

a visual tool that uses a sensor-controller-actuator paradigm.

An orchestration logic collects context data from sensors,

combines them with a controller, and reacts by triggering

actuators. We assessed the usability of this paradigm with

a successfull user study conducted with 18 non-programmer

participants. Furthermore, our visual programming environ-

ment offers the developer an interface that is customized with

respect to the environment description. Information about the

environment entities is exploited to guide the programmer in

defining sensor-controller-actuator rules. Finally, Pantagruel

programs are compiled and executed on a platform dedicated

to ubiquitous computing applications.

II. OUR APPROACH

We now describe the key features of our approach.

A. An open-ended approach

We define a novel approach to visual programming of

ubiquitous computing applications that is parameterized with

respect to the description of a ubiquitous computing environ-

ment. In doing so, our approach addresses a range of areas.

An environment description consists of declarations of

entity classes, each of which characterizes a collection of

entities that share common functionalities. The declaration of

an entity class lists how to interact with entities belonging

to this class. The generality of these declarations makes it

possible to abstract over a range of variations, enabling the

re-use of an environment description.

Specifically, the declaration of an entity class consists of

attributes defining a context and methods accessing the entity

functionalities. A context element may either be constant,

external or applicative, according to the kind of information

it exposes. Let us introduce each kind of context.

An information may be assigned once and for all to an

entity instance at deployment time. This first kind of context

information is said to be constant. A constant is used to desig-

nate the location of an entity instance, its name, or any other

information that remains unchanged throughout the life-cycle

of the ubiquitous computing environment. The environment

continuously evolves over time and is periodically sensed by

entities, whether hardware or software, as is done by a motion

sensor, for example. This second kind of context information

is said to be external. Finally, context information can also be

assigned values during the application execution. This third

kind of context information is called applicative.

These three kinds of contexts are respectively interfaced via

constant, volatile, and write attributes. Furthermore, attributes

are typed to make their purpose explicit. As for methods, they

are the interface declarations to the actions provided by an

entity, that can be viewed as an actuator. They can also affect

the applicative context. For example, the zoom method of a

webcam may update the device status.

The declarations form a taxonomy describing a given en-

vironment. This is illustrated by the taxonomy extract for the

assisted-living area displayed in Figure 1.

SmartDoor
volatile state : DoorState

datatype entity class

MotionSensor
volatile detected: Bool

Alarm
beep()

AlarmClock
write genre: Music
volatile time: Time
trigger()

FixedDevice
constant room: Location

DoorState: OPEN, CLOSEDMusic: COUNTRY, JAZZ, ROCK

Location: KITCHEN, BEDROOM, BATHROOM, DRESSROOM, OUT

inherits

TimeTracker
write todolist: Task list
volatile panicbuttonpressed: Bool
volatile taskexpired: Bool
init(Task list, Time list) {todolist}
terminateAll() {todolist}
terminate(Task) {todolist}
updateDisplay()

Task: BREAKFAST, BUS, DRESS, SHOWER, LAUNDRY, LUNCH

Figure 1. An extract of a taxonomy for assisted living

A given taxonomy is used to define concrete environments

by instantiating entity classes, as will be illustrated in our

demonstration, summarized in Section III-B.

B. A visual development environment

We now present our visual environment dedicated to the de-

velopment of orchestration rules. To implement our paradigm,

the Pantagruel development environment offers a panel di-

vided in three columns: sensors, controllers, and actuators.

This panel is shown in Figure 2. To develop an application,

the programmer starts by identifying entities that need to be

orchestrated in this application. This is achieved in the visual

language by creating sections accross the 3-column panel,

each representing an entity available in the concrete envi-

ronment. Then, the developer defines conditions on context

elements provided by the entity interface in the sensor column,

combining them in the controller column, and triggering ac-

tions on an entity in the actuator column. For readability, rules

are numbered in the controller column (e.g.,R1). A key feature

of our approach is to drive the development of orchestration

rules with respect to an environment description. In doing

so, the development environment provides the programmer

with contextual menus and on-the-fly verification to guide the

definition of rules.

Legend

section Ri

AND

rule name section name

Figure 2. Editing of orchestration rules

C. A compiler towards a ubicomp platform

To allow Pantagruel programs to be simulated and tested,

we have developed a compiler that leverages an architecture

description language (ADL), dedicated to distributed systems,

named DiaSpec [1]. Given an architecture description, the

compiler for this ADL generates a dedicated programming

framework in Java, which provides extensive support to dis-

cover and interact with distributed entities. The compilation

process of Pantagruel consists of two stages: (1) an environ-

ment description is translated into a DiaSpec description (2)

orchestration rules are compiled into Java code, supported

by a DiaSpec-generated programming framework. To allow

Pantagruel applications to be tested, we leverage an existing

entity library that implements the entity action interfaces. The

overall process is illustrated in Figure 3 and described in [2].

Pantagruel

DiaSpec
compiler

taxonomy

DiaSpec

orchestration
rules

Pantagruel
compiler

generated
framework

entity
library

DiaSpec
controller

DiaSpec
execution
platform

(e.g. DiaSim)compliant withparameterized with

} implementation of
the entity interfaces

Figure 3. Compilation process of Pantagruel

The applications can be executed in a simulator, called

DiaSim [3]. This simulator provides 2D rendering as illus-

trated by Figure 5. The simulated entities are displayed in a

2D model of the physical environment, and messages appear

above the entities when sensing or actuating is performed.

III. DEMONSTRATION

The goal of this demonstration is to show how to program a

ubiquitous computing application with Pantagruel. During this

demonstration, we will instantiate a concrete environment for

the assisted-living area, create Pantagruel orchestration rules,

compile them, and simulate the application using DiaSim.

A. Demonstrated applications

We will demonstrate two applications to assist Henrick, a

fictitious impaired person living autonomously in his apart-

ment (Figure 4).

TIMETRACKER MOTIONSENSORTAGREADER

ALARMCLOCK

SMARTDOORALARM

TAG

MIXINGVALVE

Figure 4. A 2D model of Henrick’s apartment

The first application aims to assist Henrick to taking a

shower. It involves the following entities: a motion detector,

a smart door, a mixing valve, and a time tracker. If Henrick

has been detected in the bathroom and the bathroom door is

closed, then the mixingvalve regulates the water temperature

to 35 degrees Celsius and then runs automatically. If Henrick

is not under the shower, then the mixing valve is stopped. If

the mixing valve is running, the time tracker automatically

removes the shower task from its registered tasks.

The goal of the second application is to control the lights of

Henrick’s apartment. It relies on the following entities: lights,

motion detectors, and an outside light sensor. If the luminosity

is lower than a predefined threshold, the lights of a given room

are turned on when Henrick enters this room, and turned off,

when the room is empty.

B. Demonstration Steps

1) Creating a concrete environment: The first step of our

demonstration shows how to create a concrete environment

for which orchestration rules will be developed. It consists of

(1) importing an existing Pantagruel taxonomy, (2) creating

entities in a predefined 2D model of a house, described with

structural characteristics (i.e.,walls and areas). This concrete

environment is created using the DiaSim editor; it enables to

locate a person moving in the different rooms of the house.

Figure 5. Edition of Henrick’s apartment using DiaSim

2) Creating Pantagruel programs: In this step, we show

how the Pantagruel orchestration editor is parameterized by

the taxonomy, guiding the developer in the creation of pro-

grams that are syntactically correct and well-typed. As pre-

sented in Figure 6, each graphical element is associated with a

contextual help, allowing the developer to write conditions and

actions according to the available interface in the taxonomy.

The Pantagruel visual editor is also connected to DiaSim,

allowing entities created in the 2D model to be available in

the editor.

Figure 6. Orchestration guided by the taxonomy

3) Compiling and simulating Pantagruel programs: This

step shows the compilation of a Pantagruel program presented

in the previous step. The generated program is then given to

DiaSim in order to be simulated. To do so, a predefined library

of simulated and actual entities is provided, implementing

the entity interaction interfaces, as declared in the Pantagruel

taxonomy.

REFERENCES

[1] W. Jouve et al., “High-level programming support for robust
pervasive computing applications,” in PerCom, 2008.

[2] Z. Drey et al., “A taxonomy-driven approach to visually proto-
typing pervasive computing applications,” in DSL-WC, 2009.

[3] J. Bruneau et al., “Diasim, a parameterized simulator for perva-
sive computing applications,” in Mobiquitous, 2009.

