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Abstract

Making applications aware of the mobility experienced by the user can
open the door to a wide range of novel services in different use-cases, from
smart parking to vehicular traffic monitoring. In the literature, there are
many different studies demonstrating the theoretical possibility of per-
forming Transportation Mode Detection (TMD) by mining smartphones
embedded sensors data. However, very few of them provide details on the
benchmarking process and on how to implement the detection process in
practice. In this study, we provide guidelines and fundamental results that
can be useful for both researcher and practitioners aiming at implementing
a working TMD system. These guidelines consist of three main contribu-
tions. First, we detail the construction of a training dataset, gathered by
heterogeneous users and including five different transportation modes; the
dataset is made available to the research community as reference bench-
mark. Second, we provide an in-depth analysis of the sensor-relevance
for the case of Dual TDM, which is required by most of mobility-aware
applications. Third, we investigate the possibility to perform TMD of
unknown users/instances not present in the training set and we compare
with state-of-the-art Android APIs for activity recognition.

1 Introduction

The term “context-aware computing” was coined first in 1994, and denoted as
“the possibility to exploit the changing environment with a new class of appli-
cations that are aware of the context in which they are run” [17]. In recent
years, such possibility has become more and more concrete thanks to the per-
vasive diffusion of smartphone devices enabling anytime/anywhere computing
and Internet connectivity. Moreover, modern smartphone devices are typically
equipped with a wide range of embedded sensors, through which it is possible
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to sense the surrounding environment, and also to detect the user’s location and
the activity being performed.
In this work, we focus on a specific problem of the Human Activity Recognition
(HAR) discipline [14], i.e. on how to infer the transportation mode experienced
by the user, on the basis of the smartphone sensors. Many popular mobile AP-
Plications (APP) include functionalities of automatic Transportation Mode De-
tection (TMD) [3], for instance related to the execution of automated actions in
response of detected locations and mobility-aware events; we cite, among other,
the popular If This Than That (IFTTT) framework [1]. In large-scale urban
scenarios, TMD techniques are also employed to enable the seamless gathering
of mobility traces on a voluntary basis, avoiding the need of external sensing
infrastructures, and at the same time minimizing the annoyance for the users
[19].

At present, TMD is performed by two different techniques, namely GPS
based [15] or sensor based [3]. Other studies complement the devices data with
external information about the scenario (e.g. the transportation system map)
[18]. Moreover, there exists a vast literature on the design and analysis of pattern
matching techniques aimed at maximizing the accuracy of the detection process
[15][6][19]. Among the non-research related initiatives, it is worth remarking
that the Android operating system, since version 4.0, offers convenient APIs to
the APPs that can be informed about the current transportation mode, although
the set of recognized actions is limited to four classes (WALKING, STILL, VEHICLE,
BIKE).

At the same time, the existing studies on TMD techniques still suffer of two
main limitations. First, their results are hard to compare due to the diversity
of the data/sensors used, and, in some cases, results are not generalizable due
to the limited number of users involved in the experiments. At the best of
our knowledge, no dataset has been released for public usage and validation
by the research community which can address these shortcomings. Second,
all these works assume that the recognition must occur among all the available
transportation modes in the training set, which is clearly the hardest case for the
classifier. However, in several realistic use-cases the APP must only distinguish
between two classes; this is the case, for instance, of smart parking systems that
must distinguish between WALKING and VEHICLE modes, in order to trigger the
proper actions (e.g. send a notification about a new free/busy spot) [12][16].
In this paper, we provide results that can serve as guidelines for researchers
and developers interested in practically designing and implementing Dual TMD
systems. More in details, we provide three main contributions:

• We build a new dataset called US-TMD (Unconstrained Sensors Trans-
portation Mode Dataset) comprising 13 users, with nearly 32 hours of total
recordings, and we make it publicly available to the research community.
We also detail the methodology adopted for the dataset population and
the preliminary data filtering and pre-processing.

• We perform a detailed study of Dual TMD over the dataset, and we report
the results about what sensor is relevant to which transportation mode.
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• We investigate the relationship between user-aware and user-agnostic train-
ing process, and we show by experimental results that a model trained over
the proposed dataset is able to recognize actions from unknown users with
high accuracy.

Finally, we integrate our results with a state-of-the-art comparison with the
Google Activity Recognition API which has been collected during the data
acquisition process.
The rest of this paper is organized as follows: in Section 2 we present the related
work from literature for Transportation Mode Detection; Section 3 introduces
our dataset, and the acquisition/pre-process methodology we used; Section 4
presents the main analysis performed on the dataset (class-vs-class tests, leave-
one-out tests and Google API comparison) and Section 5 concludes the work,
and discusses future works on the topic.

2 Related Work

Research on context aware computing has been revamped in the last few years,
mainly thanks to the pervasive diffusion of modern smartphones which are
equipped with a wide set of embedded sensors. We identify three different
methods for assessing the user transportation mode: GPS-based, sensor based,
or external-source based. The former is quite popular, mainly due to the wide
availability of GPS in modern smartphones and for its accuracy in discriminat-
ing between motorized vehicles and pedestrian activities [15]. However, it suffers
from heavy battery consumption and scarce accuracy in indoor environments or
urban canyons [19], due to fading and multipath signals which lower the GPS
accuracy. Moreover, it is unable to correctly classify transportation modes with
similar speeds [3].

Sensor-based approaches are often based on Machine Learning (ML) tech-
niques and on training set of classified instances. For location-awareness, the
magnetometer showed good performance in locating the user through finger-
printing maps [11], while the barometer has been used for locating the altitude
from the ground level [4]. For TMD, the most used sensor is certainly the
accelerometer, which provides the best trade-off between the accuracy of the
activity recognized and the energy consumption [3] [13] [9]. External-source
based approaches enhance the robustness of TMD algorithms by extra-source
information that are relative to the current user location. In [18], the authors
consider external transportation network data such as real time bus locations
in addition to the GPS data, in order to distinguish among different motorized
transportation modes with similar speed readings. In [7], the authors introduce
a two step detection approach, where mobility events are detected by analyzing
the cellular signal strength, and then -in case of real location change- the trans-
portation mode is classified by means of the GPS and the accelerometer. We
also highlight that there is a wide literature on the algorithms for TMD, includ-
ing both the application/evaluation of well-known ML techniques (e.g. Random
Forest is largely used in [3][15][18]), and the design of novel recognition schemes
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[6].
However, at the best of our knowledge, no prior study addressed the problem
of Dual TDM (i.e. the case when we must discriminate with high accuracy
between two classes only). Moreover, few studies provided extensive analy-
sis about the sensor relevance when classifying a specific transportation mode.
The most similar works are [2] and [8]. In [2], the authors presented a study on
activity recognition through sensor values, although people involved in the ex-
periments have to carry several sensors at fixed positions of the body. Authors
of [8] present a study on the classification of human daily activities, such as
WALKING and WORKING. They also present the results of the RF classifier about
the feature importance. However, similarly to [2], they make assumption about
the location and orientation of the devices. Finally, concerning freely accessible
datasets in this context, the GeoLife dataset [20] constitutes a valid resource
for many transportation modes but it collects only GPS data and with a low
recording frequency (1-5 sec.). Hence, being able to thoroughly compare dif-
ferent methods for TMD is currently impossible due to the lack of common
and shared benchmarks with recording sessions collecting both GPS-based and
sensor-based measures.

3 US-TMD Dataset

In light of the lack in the literature of a common benchmark for TMD, we have
collected a large set of measurements belonging to different users and through
a simple Android APP. the US-TMD is built from people of different gender,
age, and occupation. Moreover, we do not impose any restriction on the use
of the application, hence every user records the data performing the action as
she/he is used to, in order to assess real world conditions. We openly release the
dataset, so that other researchers can benefit from it for further improvements
and research reproducibility.

Sensors data are collected from thirteen volunteer subjects, ten male, and
three female. Table 1 summarizes the data collected by users by looking at
five dimensions: gender, age, occupation, device model, and Android version
installed while they collected data. The set of classes considered is composed of
WALKING, CAR, STILL, TRAIN and BUS. This follows common practices in litera-
ture [3] [15].

The raw sensor data collection is performed by the application which reg-
isters each sensor event with a maximum frequency of 20 Hz. Events occurs
every time a sensor detects a change in the parameters it is measuring, provid-
ing four different information, such as the name of the sensor, the timestamp,
the accuracy and the raw data from the sensor. The length and content of the
raw sensor data depend on the type of sensor, which we record as

< timestamp, sensori, sensorOutputi >

We save each of these measurement on CSV file on the Android device, which
is then uploaded to our server for the data processing.
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ID Sex Age Occupation Device Android Version

U1 M 30 student LG G2 5.0.2

U2 F 27 student
Sony XPERIA Z3
Compact D5803

6.0.1

U3 M 30 student Nexus 5 7.0

U4 M 36 office worker Huawei Honor 5X 6.0.1

U5 M 36 stage director Huawei P8 Lite 6.0.1

U6 M 27 researcher
Samsung galaxy

s3 neo
4.4.2

U7 M 32 cameramen Samsung S7 6.0.1

U8 F 32 bartender Huawei Tag-l01 5.1

U9 F 24 student Motorola Moto G 5.1

U10 M 22 student Huawei P9 7.0

U11 F 31 office worker Nexus 5 7.0

U12 M 31 researcher Samsung Galaxy S6 6.0.1

U13 M 60 retired Nexus 5 7.0

Table 1: Dataset variability in terms of users’ age, sex, occupation, device model
and Android version.

In total, our dataset is composed of 226 labeled csv files representing the
same number of activities corresponding to more than 31 hours of data: 26%
of data is annotated as walking, 25% as driving a car, 24% as standing still,
20% as being on a train, and 5% as being on a bus. More detailed information
about the dataset can be found in its website1, where we also report the total
recorded time for each user in the dataset.

Although some sensors may not be useful for the purpose of TMD, we collect
data from each sensor available in the mobile devices considered, and offer them
in our public dataset. Indeed, since we aim to provide a common benchmark for
TMD we leave the selection of the sensors data to use open to new judgments
(depending on the classes to distinguish and to the trade-off between accuracy

1http://cs.unibo.it/projects/us-tm2017
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(a) Sensors row data (b) Windows partitioning

(c) Features extraction (d) New data predictions

Figure 1: The Main process behind the construction of a TMD system. a) Firstly,
row data belonging to different sensors are collected through the APP while the
subjects are freely performing their activities. b) the time series for each sensor
are then split in time windows of a fixed size. c) For each window, standard and
robust numerical features are extracted (such as min, max, mean and standard
deviation) the ML model is trained on the extracted features for each sensor.
Finally, in d) activities from new streaming sensors data can be predicted.

Bus Car Still Train Walking Total

01:44:35 07:53:50 07:29:35 06:20:25 08:20:25 31:48:50

Table 2: Dimension of dataset in terms of recording times for class.

and resource consumption) but still providing comparability with a common and
comprehensive test set which has been missing so far. The analysis we perform
in Section 4 better details which of these are more important than others in
classifying an action.

As described in In Figure 1, the first step for creating the features which
will be used to construct the machine learning model is to partition the dataset
in time windows. The size of the time window depends on the types of actions
to be recognized, and in this work we set it to 5 seconds, which is a common
value for similar task also for related works in literature [3]. If the adopted
time of the sliding window is too short, the window data may not have covered
the information of a complete action. On the other hand, if the width of the
sliding window is too long, it will not only make the data sophisticated, but also
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increase the amount of calculation.
In the study presented in this paper we aggregate data in 5 second windows,

but we also offer to the research community the raw 20-Hz measurements so
anyone can clusterize the data as needed. Also, windows of 5 seconds have
already been used in literature [3], in which the authors also studied the benefits
of overlapping windows. We compute for each window four features based on
the multiple raw sensor readings, the maximum (max), the minimum (min), the
mean (mean) and the standard deviation (std). Therefore, for each window we
end up with a total of Λ · 4 features, where Λ is the total number of sensors
which reported a value in the given time window. Missing values are then filled
with average values on the training set for each sensor.

4 Evaluation

In this section we present performance evaluation regarding classification on
our dataset. Although the dataset offers many sensors, we have decided to
perform an analysis on a subset of them, motivated by the following rationale.
Basically, some of the sensor introduce noise, as they are not representative
of the transportation mode but of the location in which the data has been
recorded. Therefore, since the ML algorithm may wrongly leverage some biases
contained in this sensors we have decided to excluded them from our analysis.
The excluded sensors are: light, pression, magnetic field, gravity and
proximity.

From the remaining sensors, we have created three evaluation datasets,
namely D1, D2 and D3. D1 is composed by the accelerometer, gyroscope
and sound; D2 contains all the others but the speed, which is added in D3.

For each Di, we build four models with four different classification algo-
rithms: Decision Trees (DT), Random Forest (RF), Support Vector Machines
(SVM), and Neural Network (NN). Since NN and SVM require precise param-
eters characterization ([10], [5]), we perform a 10-fold cross validation to find
the best parameters, and select those for the rest of our analysis. D1 is built
taking three low-battery-consumption sensors, among those typically available
in smartphones and which gave the best single-sensors accuracies. Increasing
the number of sensors used, as we did in D2, the accuracy can slightly increase,
while keeping the GPS, the most consuming sensor, out of our subset. D3 re-
ports instead the use of all the sensors, including the GPS. Before proceeding
with the training of the models a class representation balancing of the training
set may be needed. Indeed, since the bus has a much lower representation it
may be convenient for the model to favor other motorized classes in the pre-
diction. In this work we decided to truncate all the classes representation to
1:44:35 hours (which is the lower recorded time for the bus class) maintaining
the proportional contribution of each user.

Detailed values for overall accuracy in all different dataset and for all the
algorithms are reported in Table 3.

However, typically context-aware applications do not need to recognize all

7



Algorithm
Accuracy on

D1
Accuracy on

D2
Accuracy of

D3

Decision Tree (DT) 76% 78% 86%

Random Forest (RF) 81% 89% 93%

Support Vector
Machine (SVM)

76% 86% 90%

Neural Network (NN) 76% 87% 91%

Table 3: Overall accuracy with all four classification algorithm.

the classes as we did, since they generally need only a subset of them. There-
fore, the next analysis we perform is devoted to the class-to-class classification,
in which we perform a similar analysis but considering only two classes to dis-
criminate between.

4.1 Class-to-class classification

Obviously, reducing the amount of classes to be classified raises without any
exception the accuracy of any classification algorithm. However, in this paper
we report only the results from the RF, since it has shown the best results
also for this analysis. Figure 2 reports the accuracy when classifying all the
possible couples of classes. At first, it is straightforward to note how some cou-
ples are more challenging than others, especially for D1 and D2. For instance,
{Bus,Car}, {Bus,Train} and {Car,Train} highlight a considerable increase in
accuracy when switching from D1 to D2 and eventually to D3, hence confirming
the importance of the speed feature for motorized classes. On the other hand,
recognizing couples of activities in which one is Walking is easier even for D1.
Hence, for those tasks the importance of having the features obtained from the
speed is lower.

4.2 Sensor importance

To analyze deeper the results from the previous sections, and to understand how
and why some classes are easier to be recognized compared to others, we now
perform an analysis on the importance of each sensor in classifying a specific
set of 2 classes. We show the results from this analysis in Figure 3, where we
plot the 10 couples of classes on the x axis, for D1, D2 and D3, and on the
y axis we show all the possible features. Clearly, for datasets in which such
feature is not available, the corresponding square will be left blank. For D1,
the leftmost column of Figure 3, we can see how features obtained from the
accelerometer are by far the most important in recognizing the classes, followed
by the gyroscope. Features from the sound have instead less importance. Mov-
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Figure 2: Class-vs-class accuracy on the test set with respect to the three different
sensors sets D1, D2 and D3. Letters B, C, S, W, T stand for Bus, Car, Still,
Walking and Train respectively. Better viewed on colors.

ing to D2, the gyroscope loses importance, while the accelerometer (especially
the standard deviation) keeps its importance high. Moreover, also the linear
acceleration, obtained from the raw values of the accelerometer, is considered
important by the model. Finally, D3 still considers the accelerometer and the
linear acceleration as important features, but the just introduced speed is con-
sidered important as well, except for the standard deviation which instead have
low relevance for distinguishing the different classes. This somehow confirms the
results of [3] considering models with only the GPS. In addition, it is evident
how the speed is considered important by the model only for motorized classes.

An interesting aspect emerges, related to the fact that whenever one of the
classes to be classified is WALKING, features obtained from the accelerometer
and the gyroscope are identified as the most relevant and representatives of the
movement.

Consequently, a model the aim of which is to figure out if a user is WALKING
can be easily based on these sensors. On the other hand, when one of the classes
to be classified is STILL, also the sound can be helpful.

4.3 Leave one out Analysis

In this section we detail the last analysis we performed, which is called Leave
one out. In this particular analysis, we aim at understanding whether crowd
based models, based on raw data coming from a number of individuals, can be
used to classify the transportation mode of a user not taking part in the training
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Figure 3: Sensor importance on D1, D2 and D3 (from left to right) for each
class-vs-class setting. High intensity color stands for more important sensors.
Better viewed on colors.
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Figure 4: Leave One Out Test. For each user, the accuracy levels of the model
trained on all the other users and on the three sensors set D1, D2 and D3 (from
left to right) are reported. Blue bars stand for the accuracy results considering
only the class of interest for that particular user, red for the accuracy considering
all the classes. Test set results with all the users included and for each sensor
set are reported as dotted lines for comparison. Users are ordered from left to
right by number of classes to distinguish. Better viewed on colors.

phase. This would be important, for instance, to provide general models which
can be used by the final user, which might possibly refine it by adding data
from her/his own measurements.

Figure 4 reports the results from this analysis. For each user, red bar repre-
sents a scenario in which the training is performed on all the 5 classes, and the
recognition only on the classes available for such user. The blue bar represents
instead a case in which the training is obtained only from data relevant to the
classes to be recognized for the given user (although not including any data from
her/him). The three bars for each user are obtained by using D1, D2 and D3,
respectively. The first comment we can make is that if in the training there is
no data of a particular user, the accuracy of the model is quite low, well below
the average presented in Table 3. When instead the training is performed only
on the classes relevant for that user, the accuracy increases for each one.

Interestingly, there are some users which appear to be “easier” to be rec-
ognized than others, keeping their accuracy high regardless of D1, D2 or D3.
Others instead achieve higher accuracies only when using a model training on
their specific classes, which thus reduces the possible errors coming from wrong
classification.
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Figure 5: Google Activity Recognition API classification results. For each Trans-
portation mode on the x axis, percentage of inferred classes by the Google AR
API are reported. We report as unknown also the cases for the test examples
for which no response from the API is provided.

4.4 Google Activity Recognition

In this section we also provide performance evaluation, on the same dataset,
for the Google Activity Recognition API, which offer a convenient method for
Android developers to obtain the transportation mode of the device2. Basically,
an Android APP can register to such events, and be notified by the operating
system whenever a new transportation mode is detected. The Transportation
Mode classes that the service recognizes are IN VEHICLE, ON BICYCLE, ON FOOT

(referring to a user walking or running), RUNNING, WALKING, STILL, TILTING,
and UNKNOWN.

Even tough we can not directly compare the quality of our algorithms with
respect to the Google API (since the underneath algorithm has been trained on
a different training set and with unknown methodologies), we can still analyze
the results of the API on our test set. Since the set of classes differs between
the ones that Google aims to recognize and the ones we used in this paper, at
first we perform a mapping between the Google classes and ours. The RUNNING,
WALKING and ON FOOT are all three mapped on our WALKING class, VEHICLE can
refer to CAR, TRAIN and BUS, and STILL is kept as it is.

Figure 5 shows the classification results we detected for the Google Recog-
nition API on our test set. At first, we note that out of the 22904 5-seconds

2https://developers.google.com/android/reference/com/google/android/
gms/location/ActivityRecognition
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time windows we have in the dataset, Google Activity Recognition API only
classified 698 out of them, which represents roughly the 3 %. The TRAIN activ-
ity is often classified as STILL, while the BUS is often misclassified as ON FOOT

or RUNNING. WALKING is recognized better than other classes, as well as STILL

and CAR. Clearly, the Google API model has to embrace a wider set of users
and is much more conservative in its predictions (predicting unknown some-
times, since it is in an open-set scenario compared to ours). However, the much
lower number of time windows classified might still constitute an issue for cer-
tain applications. A possible improvement would be to select the classes to be
recognized by the APP and build a custom (eventually dual) TMD system as
detailed in this work, so that the reduced uncertainty between the classes would
lead to a sensible better accuracy with a constant prediction rate.

5 Conclusion

Context aware computing has risen to unprecedented levels, thanks to the pro-
liferation of smart mobile devices. In particular, Transportation Mode is often
considered as a valuable information for context aware applications, who can
better exploit the context by knowing the mobility of the user. In this paper,
we have presented three novel contributions: (i) we have provided an open
dataset, currently not available in the literature, that would help researcher to
better study solutions which exploit Transportation Mode information; (ii) A
class-vs-class accuracy, highlighting that for specific applications it is better to
limit the number of classes to the needed ones, rather than leveraging on tools
which recognize uninteresting classes for a given service; (iii) results on the pos-
sibility to use models trained on a crowd, which are later used to classify the
Transportation Mode of unknown users.

Our results indicate that custom Transportation Mode Detection algorithms,
tailored to the need of the application, always outperform those that recognize
a wider set of classes. We have also shown that for some specific actions, a
reduced set of sensors might still provide good classification accuracy, limiting
also the battery consumption, a crucial aspect in mobile devices.

Future work on this topic is related to new approaches for improving the
model transferability from one group of users to other individuals and the ability
to incrementally update the model for improving the classification accuracy.
Moreover, we foresee extending the open dataset, by including data from more
users for a better model generalization.
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