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Abstract—Wide white areas are defined as large regions
with very little to no infrastructure. For example, deserts
and large forest areas fall in this category. Many strategic
phenomena and activities take place in these areas (e.g.
mining, environmental monitoring) which necessitate data
collection and analysis. In this context, we propose a
network deployment scheme which aims at efficiently
linking sparse points of interest in a very wide white area.
The goal of the method is to minimize the cost of the
deployment while providing a fault tolerant network. The
proposed method is based on an algorithm which mimics
the evolution of a type of mold called physarum. Our
deployment problem is close to a Minimum Steiner Tree
(MST) problem known to be NP-hard, we thus compare
our results to a heuristic of MST.

I. INTRODUCTION

The lack of telecommunication infrastructures in
sparsely populated regions results in large unconnected
zones called white areas. Whites areas are often wide
regions with harsh climate, difficult access and little
to no communication infrastructure. However, in these
areas, strategic human activities are being carried out.
For instance, we can cite sandstorm monitoring, bushfire
alert, mining area monitoring, highway and pipeline
monitoring. All these applications have in common the
need for data collection and analysis.

In this work, we are interested in the deployment
of data collection networks, such as Wireless Sensor
Networks (WSN) [1] and Low Power WAN [2] in wide
white areas. The goal is to link points or areas of
interest to a data collection center. We aim at efficiently
deploying sensor and relay nodes such that all areas
of interest are covered, the network is connected and
properly dimensioned to handle the data traffic.

As in [3], we consider a set of potential relay nodes
distributed on the map of the considered region. The
relays can be randomly placed on the map [4], [5] or
form a grid [6]. Our goal is to chose a subset of relays
to connect the areas of interest with the data collection
center. These chosen relays are then to be deployed
on the ground to form the network. We thus aim at
minimizing the number of used relays and links. This
problem is equivalent to finding the Minimum Steiner
Tree (MST) covering all the points of interest and using

a subset of the relays [3]. The MST problem is proven to
be NP-hard [7], [8]. It is thus not applicable to scenarios
with a large number of potential relay nodes. Moreover,
it provides no fault tolerance due to its minimal prop-
erty: any node or link failure results in a disconnected
network. This aspect is problematic because WSNs and
LPWANs are known to be error-prone [1]. Moreover,
fault-tolerance is an essential characteristic in harsh
environments such as wide white areas where network
maintenance is either very difficult or impossible.

In this paper, we study the application of a heuristic
to deploy a network in wide white areas by selecting
nodes among a potential relay set. This heuristic mimics
the behavior of physarum mold [9], [10]. As detailed
in section III, this mold is able to construct a material
efficient, yet resilient, network linking food sources.

The main contributions of this work are:
• the adaptation of the physarum algorithm [9] to data

collection network deployment;
• the application of the algorithm to wide white area

scenarios;
• the tuning of the algorithm to obtain a good trade

off between deployment cost and fault-tolerance.
The remainder of the paper is organized as fol-

lows. Section II gives a survey of literature. Section
III introduces the physarum algorithm, and presents
how to adapt it to network deployment. In Section IV,
we present the algorithm evaluation setup and results.
Finally, conclusions and discussions are provided in
Section V.

II. RELATED WORK

In this section we review data collection network
deployment schemes of the literature. They fall into two
main categories: random and deterministic deployment
methods.

Many random deployment schemes have been pro-
posed in the literature. In [4], a survey is provided. Most
of the presented schemes aim at covering completely and
reliably a given area [11]. Different node probability
distributions are studied, they are non-homogeneous
point processes in most cases [4], [12]. In [12] a random



deployment scheme is proposed for covering an area
while taking into account the dynamic of the sensed
physical parameter. Nevertheless, these works focus on
the coverage of the full area instead of selected points
of interest in a wide area. Moreover, whereas random
deployment where nodes are scattered from the air can
seem practical for very wide areas, deterministic meth-
ods such as grid based placement requires O(log N)
times fewer sensors than random deployments [13]
where N is the number of sensors deployed in the
random scheme.

Deterministic deployments have been increasingly
applied in WSN applications [14]. Examples include
Pipenet [15] or SimpliMote [16] for pipelines monitor-
ing; A Line in the Sand [17]: a dense and distributed
WSN for intrusion detection and targets tracking; ATMS
[18]: an Authenticated Tracking and Monitoring System
where a WSN combines both terrestrial and satellite
links to secure uranium shipments from Australian ura-
nium mines to Europe. In [19] and [20], studies of
deployment patterns to achieve full coverage and k-
connectivity (with k ≤ 6) are presented. Nevertheless,
in this case as well, these works focus on the coverage
of the full area instead of selected points of interest in
a wide area. More recent works such as [21] focus on
deployments for a specific application but still aim at
covering the whole area.

In [3], the authors treat the problem of optimal
placement of relays on candidate locations in order to
connect sensors to the sink in WSNs. They show that
this problem is similar to the MST and thus NP-hard.
They propose to use known heuristics to solve this
MST problem. The problem treated in [3] is similar to
our problem, but we use a different approach which is
suited for wide white areas. We compare our results to
a heuristic which solves MST.

Most of the works presented in this section aim at
deploying a network for covering a target area, which
is often rather small. In our work, we consider the case
where there are few points of interest sparsely distributed
in a very large area. The number of potential relay is thus
very high. We present a new approach of deployment
based on the growth of the physarum mold which we
describe in the next section.

III. BIO-INSPIRED NETWORK DEPLOYMENT

In this section, we first present the background on
physarum, then we present the physarum algorithm and
its adaptation to network deployment.

A. Physiological concept of physarum growth

Physarum is a large, single celled amoeboid organism
that forages to join irregularly distributed food sources
[22] and transforms them into nutrients. Fig. 1a shows
an example of physarum connecting 36 food sources.

(a) Network on 36 food
sources [22]

(b) Nutrient dynamic

Fig. 1: Physarum network.

(a) Initial state (b) Connected state (c) Optimized state

Fig. 2: Physarum network.

To explain this natural network creation and opti-
mization process, let us consider an initial physarum
body placed in the space with 2 food sources (Fig.
2a). It growths toward all foods, once found it exploits
them into nutrient which are conveyed through links.
This leads to the creation of a fully connected network
with lot of tube cross-connect points (pentagons in
Fig. 2b). Finally, when there is no food anymore, it is
able to optimize its body resources by deleting some
unnecessary links and cross-connect points (Fig. 2c).

We are interested in physarum resource optimization
mechanism, which we explain in the next subsection.

B. Physarum network optimization model

Mathematically, the network of tubes of the physarum
is described as a graph [9]. The vertices represent tubes
connexion points (food sources or simple joining
points) while edges represent the tubes themselves
which allow fluid propagation in the physarum body
[22]. The physarum algorithm described in this section
mimics the optimal resource exploitation part of the
physarum behavior. The goal of the algorithm is thus
to reproduce the capacity of physarum to prune edges
and vertices of the network in order to keep only the
most efficient (in terms of resources and resilience)
connexion graph between food sources. The initial
graph might thus contain many vertices which are not
food sources. The algorithm convergence properties are
investigated in [23]. It converges with an exponential
rate. Moreover, it perfoms an output graph computation
with a complexity in O(N3) [24], N being the size of
the input graph.

As shown in Fig. 1b, to each node is associated an
initial flow Ii and a pressure Pi (i = 1, 2, 3 in this
example). The initial flow is the amount of nutrient



obtained by food transformation. For food sources we
thus have Ii 6= 0 and for other connexion points Ii = 0.
In the algorithm, food sources are actually alternatively
considered as sources or sinks of a nutrient flow as
will be clarified further. The pressure Pi is a variable
for which we solve at each iteration of the algorithm.
An edge connecting node Ni to Nj has a distance Lij
and a width Dij which can change during the network
evolution process. Dij is initialized to D0. Finally, Qij
is the flow [9] traveling through the edge (i, j). It is
defined as:

Qij =
Dij

Lij
(Pi − Pj). (1)

The algorithm is iterative. At each iteration, two steps
are performed: (1) solving a set of equations for the
variables Pi, (2) update the edges parameters.

The first step consists of solving the following equa-
tions (equivalent to Kirchhoff’s circuit law):∑

i

Qij = 0 j 6= s, t∑
i

Qis + I0 = 0,
∑
i

Qit − I0 = 0, (2)

with j = s, t for source and sink nodes respectively,
and I0 the absolute value of the initial flow for source
and sink nodes. Equations (2) form a linear system
whose associated matrix is sparse. It can be solved
by Incomplete Cholesky Conjugate Gradient (standard
ICCG) method [25]. In the original algorithm [9], only
one sink and one source are considered. In subsequent
works [22], [10], more sources and sinks are considered
by sequentially selecting every possible pairs of nodes
with I0 6= 0. At each iteration a sink and a source
are chosen among the food sources. The sink is chosen
according to a uniform law. The source selection follows
a specific probability mass function defined as:

p(S = j) =
dγij∑
k 6=j d

γ
kj

, (3)

with dij the geographical distance between Ni the sink
and Nj , and γ a parameter. After the resolution of (2),
the Qij are recomputed with the obtained values of Pi
according to Equation (1).

The second step is to update the edges to adapt them
to the newly computed flow. Indeed, the link width
Dij changes over time according to a flow adaptation
function [26]. The algorithm uses a discretized flow
adaptation equation:

Dn+1
ij −Dn

ij

δt
= f(|Qnij |)−Dn+1

ij , (4)

where f is an increasing function with f(0) = 0, (Dij

tends to decline if there is no flow in the edge but is
augmented when the flow increases), n is the iteration

Names Definitions
i Node index
N Number of deployed Potential Nodes
Ns Source Node
Nt Sink Node
Pi Pressure in node i
Ii Initial flow in node i
Dij Width of link between node i and j
Qij Flow in link separating node i and j
Lij Distance of the link between node i and j
δt Time step size

TABLE I: Model parameters

index, and δt is the time step. In [27], the following
function f is proposed:

f(Q) =
a|Q|µ

1 + a|Q|µ
, (5)

with µ and a positive parameters [28]. The algorithm
stops when the difference Dn+1

ij − Dn
ij is less than

a predefined threshold. The output of the algorithm
consists in the Dij for each link. Then, to obtain the
optimized network, it suffice to remove all links with
Dij = 0 (or close to 0) and remove all the disconnected
nodes. Table I summarizes all the notations.

In the next subsection, we show how to adapt this al-
gorithm to solve the data collection network deployment
problem in wide white areas.

C. Deploying wireless networks using the physarum
algorithm

Previous works [22], [29], [26] have considered the
physarum algorithm to model transportation networks.
To the best of our knowledge this is the first work which
considers applying the physarum algorithm to wireless
network deployment.

We assume that the edges and vertices of the
physarum graph respectively model the wireless data
links and the network nodes. The input graph consists
in all the potential relay nodes, all the points of interest
and the data collection center. To build this graph, we
consider a map of the area with all the points of interest.
Then we add the potential relay nodes. This can be done
either deterministically using a grid pattern or randomly.
In this work, we chose to place potential relays randomly
(uniform distribution) as detailed in Section IV-A. The
next step is to add links to this initial graph. In order
to do that, we consider the radio range of the nodes.
We link every pair of nodes (relay or point of interest)
which are in communication range.

We then initialize the node and edge variables of the
algorithm. We consider that Dij is proportional to the
rate capacity of a link (as it is the case for the physarum
where the flow Qij is proportional to Dij). Dij is the
output of the algorithm. The initial value of Dij , D0 has
a very small impact on the output, actually, it is even
chosen randomly in [9]. Lij is the geographical distance



between the nodes Ni and Nj . In our case, each point of
interest i is modeled as a food source with Ii = I0, if it
is set as a source, or Ii = −I0, if it is set as a sink. The
impact of the value of I0 and µ (Equation (5)) on the
characteristics of the deployed network is investigated
in Section IV-C.

During step (1) of each iteration, we define the pmf
of the random variable S′ representing the sink to be
chosen:

p(S′ = k) =

{ 1
K+W if k is a point of interest,
W

K+W if k is a the destination,
(6)

with K the number of points of interest and W the
weight of the data center (destination). The source is
then chosen according to Equation (3). The algorithm
not only outputs the topology of the network to be
deployed, but also the Dij which gives an indication
on how to dimension each link.

In the next section, we evaluate the algorithm and we
show that it is able to compute efficient and fault-tolerant
data collection network deployments in wide white areas
with a huge number of potential relays.

IV. ALGORITHM EVALUATION

A. Considered scenarios

In this section, we define the scenarios we consider to
evaluate the network deployment physarum algorithm.

We use a 180x180 km2 zone where 16 points of
interest are placed arbitrarily (they are chosen randomly
and kept for all the experimentations). The data col-
lection center is positioned at the center of the area.
The potential nodes are placed randomly (uniformly).
We make their number N varying from 500 to 5000.
We consider a radio range Rc varying from 5 to 30
km. This corresponds to the realistic ranges of LPWAN
radios such as LoRa [30]. The larger the Rc is, the more
the initial graph is connected. Fig. 3a shows an example
of an initial graph with 1500 potential relay nodes and
their communication range Rc equals to 15 km.

Initial values of Dij are set to 1. We then make the
values of the physarum algorithm parameters vary in
order to tune them. We use the algorithm described in
Section III, parameters and their ranges are summarized
in Table II. The convergence criteria is set as the time
where Dij stops changing for all links: Dn+1

ij −Dn
ij =

0. D+
ij and D−ij are respectively present and previous

values of Dij and n the iteration index. The scenarios
are generated on Matlab 2016b.

B. Performance metrics

The performance metrics we analyze on the output
network deployment are the connectivity, the total length
of the links, the number of relays, and the fault tolerance.

The connectivity is a boolean variable C equals to 1 if
there exists at least one path between the data collection

(a) Example of input graph.

(b) Optimized physarum result on 3000 points

(c) Equivalent optimal tree with MST-CHINS.

(d) Resilient network with phasarum method

Fig. 3: Structure depending of the parameters.

center and all the points of interest, otherwise it equals
to 0. The network total length (TL) is measured in
kilometers. TL is the sum of all the links length in the
output network. The number of relay nodes (RN ) is
the number of nodes used in order to connect all the
points of interest to the data collection center. Finally,
the fault tolerance (FTn) of the network is defined as the
probability that the network remains connected even if
an accidental failure occurs at n random links (or node)
of the network. It is expressed as:

FTn =
ξ − ξ∗

ξ
, (7)

where ξ =
(|E|
n

)
is the total number of ways to choose



Parameter Value
Evaluation area 180x180 km2

N 500.i with i ∈ 1, .., 10
NInterest 16
Rc {5, 10, 15, 20, 25,30}
D0 1
δt {0.001,0.5}
I0 [1,7]
µ [1,9]
γ {1,3,5,20}

TABLE II: Evaluation parameters

n links among the |E| of the output network, and ξ∗ is
the number of configurations where we remove n links
and the network ends up disconnected.

C. Reference algorithm for comparison

As mentioned in Section I, our deployment problem
is very similar to a MST problem. MST is NP-hard, we
thus compare our heuristic to another heuristic of MST
called CHINS [8] for CHeapest INSertion. For compar-
ison aim, we define two cost functions as TL/TLMST

and RN/RNMST respectively for TL and RN cost
index, TLMST and RNMST are the obtained MST
total length and relay nodes respectively.

In the next subsection, we comment our results.

D. Results

In this section, we investigate the impact of the values
of the initial parameters on the results of the algorithm.
We especially focus on the trade-off between fault-
tolerance and deployment cost (total length and number
of nodes).

Fig. 3b depicts an example of an output for the input
graph of 3000 points. The following parameters I0 =
1, δt = 0.5, µ = 2 are used. The width of the edges
represents the final Dij . The output network has 62 relay
nodes (red points) and its total length is 611.26 km. It
is close to the optimal MST (Fig. 3c) which contains 60
relays. For this example, the algorithm converges in less
than 4 minutes on a modern computer (Intel i7 with 8G
of RAM).
I0 and µ have an important impact on the output

graph. Some values (I0, µ) = {(1.9, 0.7), (1.8, 0.6)}
can even produce disconnected output networks. In our
scenarios, we observe that for µ > 2 and I0 ≥ 1 the
algorithm always converges and the output is close to
a steiner tree. Therefore, if the goal is to dimension
a very optimized resource network such as in Fig. 3b,
I0 = 1 and µ = {2, 3, 4, 5} are appropriate values. I0
is the parameter that has the most impact on the fault-
tolerance of the network. For example, in Fig. 3d we
obtain a resilient network using the following parameters
I0 = 5, µ = 1.8. In the remainder of this section, we
investigate the trade off between cost and fault tolerance
for different values of I0 and µ.

(a) Relay nodes (RN) cost function

(b) Total length (TL) cost function

(c) FT1 for µ = 1.9

(d) FT1 for µ = 1.2

Fig. 4: Performances analysis.

We compare the cost of the physarum algorithm with
the CHINS-MST algorithm. As can be observed in Fig.
3c, the CHINS-MST does not provide the width of the
edges. We consider the cost functions (RN/RNMST )
and (TL/TLMST ). In Fig. 4a, the cost function is plot-
ted against I0 for µ = 1.2, 1.9. We observe that the cost
increases with I0. In fact, we observe in the obtained
graph (for instance Fig. 3d), that the physarum algorithm
creates more alternative routes when I0 increases.

In Figs. 4c and 4d, we observe the trade off between
cost and fault tolerance FT1 for different µ and I0
In these curves, each point of the plot represents the
mean of 100 executions of the algorithm for a given
value of I0 which is written as a label next to the



point. 16 points of interest and N = 3000 relays with
Rc = 15 km are considered (similar results are obtained
when N and Rc vary). Only connected (C = 1) output
graphs are kept. These graphs allow to tune µ and I0
in order to obtain a target trade off between cost and
fault tolerance. Networks with a higher fault tolerance
are more expensive to deploy. The network designer
can choose according to his budget and the reliability
requirements of the application.

V. CONCLUSION

In this work we consider the problem of data col-
lection network deployment in wide white areas. The
goal is to deploy a network linking sparse points of
interest which minimizes the amount of resources while
providing a level of fault tolerance. The problem of
resource minimization corresponds to the MST problem
which is NP-hard. We propose to use a heuristic inspired
from the behavior of the physarum mold. We present
the model and detail how it can be applied to network
deployment in wide white areas. We then study the
performance of the algorithm on different scenarios in
order to tune its parameters. Finally, we compare the
performance of the physarum algorithm with an heuristic
solving MST. We find that the physarum algorithm is
able to find trade offs between cost and fault tolerance
on very large considered areas while converging within
minutes on a recent computer. Moreover, the physarum
algorithms gives an indication on the capacity that
should be allocated to each link by providing the width
of the selected edges. In the future, we plan to use this
indication in order to route the data flows in the network.
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