N

N

Distributed Semi-Markov Processes in Stochastic
T-Timed Petri Nets
Stefan Haar

» To cite this version:

Stefan Haar. Distributed Semi-Markov Processes in Stochastic T-Timed Petri Nets. [Research Report]
RR-4754, INRIA. 2003. inria-00071832

HAL 1d: inria-00071832
https://inria.hal.science/inria-00071832v1
Submitted on 23 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://inria.hal.science/inria-00071832v1
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--4754--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Distributed Semi-Markov Processesin
Stochastic T-Timed Petri Nets

Stefan Haar

N°4754
March 2003

THEME 4

apport
derecherche







% I N RIA

RENNES

Distributed Semi-Markov Processes in
Stochastic T-Timed Petri Nets

Stefan Haar*

Théme 4 — Simulation et optimisation
de systémes complexes
Projets SIGMA2

Rapport de recherche n° 4754 — March 2003 — 16 pages

Abstract: The heaps of pieces modelling approach (see Gaubert/Mairesse, PNPM’99) admits a
(max,+)-linear model for the time consumption, under earliest firing and a given trace, of safe T-timed
nets. The present paper shows that this type of model can be extended, using an appropriate partial
order semantics under cluster view, to include stochastic choice and timing; we give the algorithmic
construction of that semantics and obtain a semi-Markov property in multi-dimensional real time.

Key-words: stochastic T-timed nets, conflict clusters, partial order semantics, max-plus-algebra, semi-
Markov processes

(Résumé : tsup)

* Supported by the MAGDA2 project, RNRT; see the sites http://wuw.telecom.gouv.fr/rnrt/index_net.htm and
http://wuw.magda.elibel.tm.fr for more information.

T A T e T Y T T T .



Dépliages probabilistes & Clusters des Réseaux de Pétri

Résumé : L’approche de modélisations par tas de piéces, voir Gaubert/Mairesse, PNPM’99, admet
un modéle (max,+)-lineaire pour la consommation de temps, sous la politique du tir au plus tot et trace
d’événement donnée, pour les réseaux T-temporisés saufs. Le présent article montre que ce type de modéle
peut étre étendu, en utilisant une sémantique d’ordre partiel adaptée qui prend une perspective de clusters,
pour inclure un choix et une temporisation stochastiques. Nous donnons la construction algorithmique
de cette sémantique, et obtenons une proprieté sémi-Markovienne en temps réel multidimensionel.

Mots-clé : Réseaux de Petri T-temporisés, clusters, sémantique d’ordre partiel, algébre max-plus,
processus sémi-Markoviens
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1 Introduction

In T-timed nets, transitions consume time when firing; the corresponding tokens are consumed at the
beginning of the event. This contrasts with the race policy in Stochastic Petri Nets (SPN) where the
transitions fire after a delay which is exponentially distributed (in Generalized SPN or GSPN [1, 2, 19|,
some transitions may be exempted from that rule). The conflict between several transitions competing
for the same token starts when the enabling tokens arrive and is decided at the moment when the
first competitor reaches the end of its random delay; only at that point is the token consumed. With
probability one, no two delays end at the same moment, so the conflict is resolved indeed by this policy in
a purely exponential setting; for generalizations, in which some transitions are untimed and may enter in
a conflict not decidable by the race policy, routing or weight-defined decision probability measures have
been proposed (see, e.g., [1, 2]). The behaviour of SPNs is described by a continuous time Markov chain
(CTMC); the memoryless property of the exponential law is crucial for this. In more general settings,
where firing times may have memory, one will typically not find CTMC’s. Rather, one tries to establish
a regenerative, renewal, or Semi-Markov property; it states, informally, the chain of markings is certain to
reach, in finite time, a fixed marking state, at which point in time the process probabilistically restarts.
As a future application (not carried out here), one can then use arguments from renewal theory to obtain
existence of, e.g., asymptotic throughputs.

In [14], this was studied for life and bounded Free-Choice Petri nets (L.b. FCN) with probabilistic
routing and arbitrary firing time distributions. Routing means that tokens produced on some place p are
assigned, with associated probabilities, to one of the post-transitions ¢ € p® (no routing is done when
|p*| = 1); the free choice property then ensures that ¢ will be enabled by that token (since ¢ depends on
no other place). It was shows that 1.b. FCN have the following property: Suppose one transition b is
chosen arbitrarily, but such that b is not in structural conflict with any other transition (i.e. the places
in *b have b as only outgoing transition). When b is blocked , that is, prevented from firing, then net will
almost surely enter (possibly after firing many other transitions) a marking M, in which no transition is
enabled but b, and halt; and there is only one M, with this property, i.e. the blocked marking is unique
given b. Now, if the firing time distributions have “heavy enough tails”, i.e. are such that with positive
probability, b takes so much firing time that all other enabled transitions have finished their firings before
b is done, the net is necessarily in the marking M, obtained from M, by subtracting the tokens being
consumed by b. Then, at the moment b finishes its firing, the process restarts probabilistically from the
new marking and all clocks at 0.

The present work aims at extending the regeneration property to general Petri net topologies. Note
first of all that no direct extension of the approach in [14] is possible, since the key results fail to hold
outside the class of FCN (or rather a certain proper superset of FCN, containing those nets that “behave
like FCN”; see the discussion in [14]). In fact, the approach we propose here combines partial order
semantics, generally used to handle concurrency in untimed nets, with physical time. In fact, we will
treat physical time not as a scalar, but multi-dimensional object, reflecting the distributed and local
rather than global nature of PN evolution. We there extend the heap model approach of Gaubert and
Mairesse [12, 13]; see also [23]. There, partial orders and physical time are brought together successfully,
using the analogy observed by Viennot [24] of heap monoids with trace monoids. Pieces (rectangular
solid blocks, or finite unions of such) are stacked in the order of occurrence and mutual dependencies of
transitions in some concurrent execution, given by a trace. The height of the stack obtained gives the
total makespan under earliest execution. For a number of applications, in particular jobshops, results on
asymptotic properties are given in [12, 13]; the probabilistic model for selecting the traces is, however,
not Markovian.

Finding adequate probability measures for partially ordered, parallel executions of untimed PNs in
logical time is the subject of [5, 18, 25]. In [5, 25], routing probabilities are used together with the branching
process semantics from [22, 10], to obtain measures on progressing parallel executions (configurations),
filtered by the family of branching prefixes which serve as “temporal” parameters. Limitations of this
approach - in both of its variants - did not allow to randomize coherently arbitrary net topologies; the
indirect dependencies via conflicts and progress of time created situations where renormalization failed.
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4 Stefan Haar

In [18], we took a conflict cluster-centered approach that lifted these restrictions; important aspects will
be discussed below, as the approach here runs on a cluster view as well. We obtained a strong Markov
property in logical time in [18] (an analogous property is shown in [5]), with respect to stopping times
that are particular prefixes of the process net structure; the result suggest that, once physical time is
introduced, a regenerative Markov process can be obtained. This is addressed in the present article; it
introduces a new, non-branching process semantics that works under the same cluster view as [18], but
is adapted to the timed framework.

Note that physical time is continuous here, yet it is not 1-dimensional. Keep track of clock states in
different parts of the system, height matrix is associated with each logical state (representing a reach-
able marking of the net); concatenation of processes then translates into (max, +)-multiplication of the
associated matrices, as in Winkowski [27, 28, 29].

The paper is organized as follows. Section 2 reviews Petri nets and their dynamics; Section 3 introduces
a new process semantics for T-Timed nets that constitutes our first contribution. In Section 4, we exhibit
a distributed semi-Markov property satisfied by the STPNs processes introduced here; Section 5 concludes
with some final remarks.

2 Definitions

Ny denotes the set of non-negative integers, and IN that of the positive integers; Ris the set of real numbers.
The (maz, +)-semiring R4, is the set R U {—oo} equipped with the operations max, written @, and
the usual sum “+”, written ®. Denote @ 2 —co and 1 £ 0; then for all ¢ € Rypoe, a @0 =00 a=a
and a® 1 = 1 ® a = a (see [3, 15] for reference on (max, +)-algebra). Note that R4, is idempotent,

: — : nxm mxk
i.e. a®a = a. For matrices A € R}}X™ and B € R]' X" and scalar a,

(A®B)y; £ Ay ®Bj
(4B)i; £ (A® B)y; = @ Air, ® By
s

(aA)ij é ((l ® A)” é a® A”

We denote the vector of dimension n = |X|, for some finite set X', with all entries equal to 1 (all entries
equal to Q) as 1, (O,).

Petri Nets. A tuple of sets N = (P, T, F) is called a net if PNT =0, and F C[(P x T)U (T x P)].
Graphically, F' will be indicated by “—” in the figures; we shall also write z — y in the text, if (z,y) € F'.
The elements of P will be called places, those of T transitions; as usual, we show places as circles and
transitions as rectangles. N’ = (P',T',F') is a subnet of N iff (i) P’ C P, (ii) 7' C T, and (iii)
F=Fn[P xT)U(T"xP"]; for AC (BUE), the subnet of N spanned by A is denoted N[A]. A
marking of N is a multi-set M : P — INg of places; if M (p) = k, we say there are k tokens on place p;
tokens are shown as black dots in the figures. A Petri net is a tuple (N, W, My), where N = (P, T, F) is
a finite net, W : F — IN is the arc weight function, and My : P — Ny is the initial marking. For a node
z € (PUT),set *z = F~l[z], 2* £ Flz], and *z* £ *zU{z} Uz*. These notations carry over to sets of
nodes: if ¥ C PUT, then *X £ Usex *z, &° = Uzex z®, and *X*° LexYUXUX®. If Ws only values
are 0 and 1, the Petri net is called ordinary.

Dynamics. Transitions may fire one by one, or in multi-sets; however, we will assume without loss of
generality that the auto-concurrency degree is 1, that is, no transition may be in the process of firing
more than once at any given time. In fact, any bounded net can be modified in such a way that this
condition is fulfilled: let N be k-bounded, and there exists a reachable state of NV in which transition ¢
is firing m < k times. Then replace ¢ by m copies of itself, with identical pre-and postset, and the same
name label ¢; to each copy t;, add a place p; such that My(p;) = 1 and *p; = p; = t;. Then each ¢
has auto-concurrency degree 1, and the modified net A/' has the same behaviour as N’ if we count only
the number of #;-labeled transitions firing at any time, and do not distinguish their identities. Hence,
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for bounded nets it means no loss of generality when we consider only transition sets ¢ C T as enabled,
possible steps; this will be the case throughout the paper. Denote as € the empty step, i.e. e = (. A step
o C T is enabled in a marking M, denoted M —Z, iff M has enough tokens on all p € P to satisfy the
sum of demands from ¢ concerning p:

VpeP: M(p) > Y, Wnt). (1)

teonp®

Denote the set of steps enabled in a marking M as Enab(M) £ {o | M -%}. Of course, ¢ € Enab(M)

for any marking M. Step o transforms marking M into marking M’ , denoted M - M', iff (i) M %5,
and (i) for all p € P:

M(p) = |M@p) - >, Wkt + >, Wht). (2)

teoNp® teon®p

Again, we trivially have M — M for any marking M. A marking M is reachable from M, denoted
My = M, iff: (i) M = My, or (ii) there exists a firing sequence My AN AL M, =M.

Stochastic 7-timed Petri net (STPNs). Following the terminology of David and Alla [§8], an
STPN is a tuple of the form N = (P, T, W, My, d), where (P, T, W, M) is a Petri net, and § = (§;)c1 a
vector of Ry - valued random variables. A realization of §; gives the duration of a firing instance of ¢; we
assume that the different realizations of §; are i.i.d., almost surely finite, and that durations of different
transitions are independent. We require, in T-timed nets, the earliest firing rule: that is, a transition ¢
that becomes enabled either (i) fires immediately itself, or (%) looses concession (immediately) by the
firing of a competitor that consumes a token required by . In no case may ¢ idle in the enabled state for
any non-zero amount of time. Then, the firing of a transition ¢ consists of three phases:

1. Removal of “old” tokens from the input places;

2. Firing, which may take time, and during which neither the old nor the new tokens are available;
and

3. production of “new” tokens on the output places of ¢.

Note that the timing from § acts only in Phase 2, thus influences 3, but cannot resolve conflicts at
starting time: contrary to the race policy, the transition timing does not select the transitions to be fired.
A probabilistic choice will therefore be assumed for Phase 1, that is, the step to be fired will be chosen in
an i.i.d. way (in a sense that will be made precise below). The duration of Phase 2 will obey some law £
that is typically continuous; however, we will not require any particular form of its distribution. It will
be necessary to represent the current logical state of an (S)TPN not by its marking alone, but rather a
pair

S = (M,0),

where © C 7T is the set of transitions currently firing; recall that we assume auto-concurrency degree 1.
Note that S does not indicate the time that a given transition has already been firing.

Causal Nets. The semantics domain here has been in use for a long time in the context of untimed
nets, see [6]; our extension to T-timed nets follows similar lines as those of [12, 13] and [27, 28, 29]. The
structure representing a net’s behaviour has itself the form of a net, from the restricted class of causal
nets:

Let N = (B,&,F) a net (not necessarily finite), where we will call the elements of B the conditions
and those of £ the events of N.

Definition 1. A net N = (B,&, F) is called a causal net iff it satisfies:

RR n " 4754
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. no branching conditions: [*b| < 1 and |b*| < 1 for all b € B;

. Acyclicity: With “<” obtained from F as above, =(x < z) for all x € (BUE);

1

2

8. N is condition-initialized, i.e. ¢y £ ming(BUE) C B;

4. well-foundedness: no infinitely <-decreasing sequence exists; and
5

. condition-bordered: max<(BUE) C B.

The condition-bordered requirement is non-standard but means no loss of generality; any net meet-
ing all other requirements can be extended into a condition-bordered one, without changing its other
properties. From acyclicity, it follows that < is a partial order; the concurrency relation co is given by

zeoy <= zFZyANzLy NyLzx.

Cuts. A co—clique X C B of conditions is called a co-set. The maximal cliques of co (w.r.t. set
inclusion) are called cuts; denote the set of cuts as Cuts(N). The cuts consisting only of conditions,
i.e. maximal co-sets, will be called condition-cuts; the set of condition-cuts is denoted Cutsg(N). In
particular, ¢ = ming (€ U B) = ming (B) is a condition-cut. Cuts will represent global states of the net.

Configurations and Runs. For any set X' of nodes of N, call hull(X) £ X U *(X N &)° the condition-
bordered or open hull of X. For a node z,let s ! £ {y | y < 2} U co be the past of 2, and

[z] 2 hull(z))

the condition-bordered local configuration of x. In general, a configuration of N is any node set k C (BUE)
that contains ¢g and such that 2 € k implies [z] C k. By abuse of terminology, the subnet N[x] will also
be called a configuration. Denote the set of N’s configurations as Conf (N). If k, &’ € Conf(N) such that
k C k' when regarded as sets, we say that & is a prefiz of k', written k C «’; it is known that (Conf,C)
is a complete lattice. For all finite configurations k, let ¢(k) be the bounding cut of k, i.e. the set of
<-maximal conditions of k.

Height operators. Let A: BUE — [0, 00) be any mapping. We will use A to represent firing durations
of transitions, see below. For z € BU &, the A-height h(b) = hy(b) of z is given recursively by:

h(z) £ Mz)® D h(y) = Az) +max{h(y) |y € *z},

YyeE T

with the convention max(f)) £ 1 = 0. Let &, be finite configurations « C &', and write ¢ £ c¢(k) and
¢’ 2 ¢c(x'); let n 2 |c| and n' £ |c/|. The height matriz H(c,c') = H(k, ') € RPX? is given by

Hppr = d(b, 1) 3)
for b € c and b’ € ¢/, where the pseudo-metric d is defined recursively by
O D xcCoy
d(.T,:lj) é @ze'y d(l‘,Z) : z < y (4)
d(y,z) oy <z

In particular, write H, for H(co,c) and H, for H(co, k). We note that, if { is given, h is easily obtained
using (3).

Note that the value ;s indicates the length, under A, of the longest path leading from b to b' in
configuration &’. H, as above can also be seen as a (max, +)-linear operator:

h'i : R:Lr?am - R:Lnam (5)
g B Tg 4 h,.; ® xo, (6)

In our setting, zo 1.

INRIA
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Figure 1: Process semantics under the individual token view. Below the Petri net whose maximal
concurrent processes are shown above.

Concatenation.

Definition 2. Let N = (B,E,F) be a finite causal net with final cut ¢, and let N' = (B',E', F') be
a causal net such that there is a bijection ¢ between the initial cut ¢ of N' and c. The causal net
NoN'=(B",E" F) with

g &2 gueg,
B" 2 (B\c)uB,
F" £ FUF U{(e,p(b))| (e,b) € F},

is called the concatenation of N’ and c.
The property most relevant here is the following:

Lemma 1. In the situation of Def. 2, with N’ finite and ¢’ its final cut, we have:
Hnont = Hy QHn. (7)
Seen as a relation of operators following (5), (1) becomes
TNoN' = HNon' ®zo=Hn ®zny =Hn @ HN ® . (8)

The proof is straightforward from the definitions.

RR n " 4754



8 Stefan Haar

3 Processes

Process semantics for Petri nets associate, to a given N, causal nets with mappings that reflect the arc
structure and the flow of tokens. In contrast to other occurrence net semantics, the one we will introduce
below will contain conditions that represent the duration of a firing of some transition ¢, and are therefore
not mapped to any place of N.

Both Gaubert/Mairesse [12, 13] and Winkowski [27, 28, 29] used matrix representation of Petri net
processes to obtain a (max, +)-representation of timed behavior. The main difference is that Winkowski
does not require 1-boundedness; still, the semantics in his approach is the standard non-sequential process
semantics under the individual token view, of which a comprehensive treatment can be found in [6].
Figure 1 shows a small Petri net with its two maximal “token view” processes. Each token presence in
a place gives rise to a condition in the causal nets above; thus, since place p receives two tokens during
the execution, it is represented twice. The two processes shown are non-isomorphic, yet their physical
difference lies only in the history of tokens, i.e. which transition produced the token on p consumed
by A. However, this distinction of token individualities is not natural, but rather a particularity of the
semantics used to observe it; to free the computations of the resulting combinatorial burden, Winkowski
[27, 28, 29] performs an additional step to abstract away from the permutations of tokens in a place.

b C

(i\..
=

B C D

QG

\Y W

Figure 2: Conflicts in clusters

Here, we will treat places as variables, and the number of tokens currently present on place p as the
current value of variable p; transitions act on these variables, adding or subtracting from their values.
This collective token view abstracts consistently from token individuality; it is at the heart of execution
semantics, see [26, 11, 16]. However, that semantics has two drawbacks:

1. it allows for no parallel firing of different transitions sharing a common place, even if the marking
provides enough tokens for simultaneous firings; and

2. the indirect dependency of transitions engaged in different conflicts are not expressible: in Figure
2, transitions A and C are not in conflict; yet the probability of A firing is changed by information
about C. If C fires, A is without competition, and under the earliest firing rule, its firing is assured.

For those reasons, we used a modified view in [17] and [18]:

1. Conflicts are resolved not by a single transition or place, but jointly by the entire conflict cluster
(called in-cluster here, see below).

2. Consequently, events do not represent single firings of transitions in general, but rather occurrences
of steps.

INRIA
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Clusters. A is naturally partitioned into node sets that are minimally closed under conflicts. Note that
“conflict” can be taken in the forward or backward sense, since places may be forward and/or backward
branching; hence we distinguish to types of clusters:

Definition 3. The (in-)cluster inc = inc(z) of x € (PUT) is the smallest set containing x that satisfies:
VteT: t€inc=>*tCinc and VpeP: pecinc= p* Cinc.

By extension, call cluster any set inc C (P UT) for which there exists a node x such that inc = inc(z);
denote the set of clusters of N' as InC(N). Dually, the out-cluster of node x is the smallest set outc C
(PUT) containing x that satisfies:

VteT: t€outc=t* Coutc and Vp€P: p€outc= *p C outc,
and OutC = OutC(N') denotes the set of out-clusters of N'. For inc € InC and outc € OutC, abbreviate
Pinc 2 P Ninc, Poute £ P Noutc and Tine = T Ninc, Toue = T N outc.

See Figure 3 for an illustration.

Figure 3: A net decomposed into its clusters (left) and out-clusters (right)

Remark 1. In-Clusters are standard in the literature, mostly under the name of conflict clusters, see
[9]. The stochastic processes in logical distributed time studied in [18] are based on local choices (for
transition firings to be initiated) of clusters, scheduled by a distributed control mechanism; out-clusters
were not needed. Here, we need to consider out-clusters to observe the order in which different transitions,
upon completion of their firing, put on the same receiving place; the duality of in- and out-clusters reflects
that of beginning and end of a timed transition firing. The algorithm below will reflect that distribution
of roles: in-clusters select the transitions to be started, out-clusters coordinate the endings of firings.

Figure 4 shows two clusters (plus their output places), with the first stage of the process construction:
both select some firable step (not all combinations are shown), create the corresponding events, change
the value of input places, and append the duration conditions (shaded in grey) for the transitions in the
selection. The end-events, marking the end of a firing instance that produces tokens, are not produced in
this stage; that phase is driven by the out-clusters, as shown in Figure 5 and explained in the following
algorithm.

The choice of a step in a cluster can be done according to any measure concentrating its mass on
mazimal steps (w.r.t. step inclusion); all other firings either violate the earliest firing rule, or increase the

RR n " 4754
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| startfAX}) | [ start{B.Y})

T o

|start({W}) | [ satqzy

Figure 4: Process semantics under the cluster view.

bX bA pB pY

number of nodes in the configuration without necessity. such probability measures may be constructed,
as in [18], using a Gibbs potential approach that maximizes conditional independences between transitions
of the same cluster; however, this is not essential here. More importantly, we assume that all choices are
made in an independent way, see below.

The principles of the process semantics. Compared to the well-known semantics discussed above,
some modifications are necessary to incorporate timing. The fact that transition ¢ is firing, will be
reflected by a dedicated condition b¢. Condition b¢ will connect the events marking the beginning and
end of the firing, respectively. Contrary to other conditions, ¢ does not correspond to any place of the
net; the vale A\(b?) is to be interpreted as the duration of the firing instance e of t. All other conditions
correspond to logical states only, and will not be assigned a duration, i.e. A takes value 0 for those
conditions. Also, ) is set to 0 for all events: in the semantics we exhibit here, events represent beginnings
or endings of firings, and therefore serve merely to separate time intervals; they have no duration of their
own.

Algorithmic construction of processes. The main ingredients will be a family of causal nets, and
a family of mappings of three different types:

1. associating conditions to places; these mappings will be denoted ;

2. associating events to steps, i.e. sets of transitions , and denoted p;

3. and finally, mappings denoted p and giving token loads to conditions.

In the figures, we include the value of p in the labels on conditions, e.g. “al” for a condition that is
mapped to place a by w, with one token on a: p(al) = 1. Further, we assume knowledge of duration

INRIA
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d, given under the form of a mapping A that maps to 0 unless its argument is a duration condition; the

durations

will impact also the shape of the process nets.

Algorithm PROC

o Initialize kg 2 cg, let 7y 2 Tro : Co — P a bijection, and pyg = e : €0 — INg such that
po(b) = My(mo(b)) for all b € cg, and Moy = M,, = Q.

e Let a configuration k, together with ¢ = c(k), M(k), s, h),, and p,. be given.

1.

For every cluster inc, make a choice of a M(k)-enabled step o of inc-transitions, and append
a new event start(o) to k such that

'start(a) = {b € Cg | ﬂ-n(b) € Pinc}-
For oll p € w(*start(0)), create a post-condition b, of start(c); set
7rn+1(bp) £ p

pn(B) = YT W)+ Y W(t,p),

te*pnNo tep®*No

pn+1(bp)

where b;;” is the unique pre-condition of e, such that m,(by) 2 p.

For each t € o, let bt be a new post-condition of start(c). Let A\(bt) € [0,00) be the duration
of the firing event of t in o.

o Set X £ OutC, and repeat until X = :

1.

RR n " 4754

Take outc € X; for every t € o0 N Tourc, add an event end(t). Set

=
—~
(8]
~—
(1>
=
—~
=
~—
&
>~
—~
=
o~
~—

and let

end(t) < end(t') iff [h(end(t)) <h(end(t)) A t*N(¥)* #0]

end(t) ~ end(t') iff [h(end(t)) =h(end(t)) A t* N ()" #0].
Let m be a ~-class of end(e)-events; contract all events in m into a single event end(m)
(compare Figure 5).

Let End(o) = {endy,... ,end.} be the set of end(e)-events, after reduction, for o, and assume
endy < ... =< end,. For all places p € Poyuic, add new conditions by, ..., bs such that

(a) bo — endy, where by is the unique p-labeled condition in start(c)®, and

(b) end; = by > endi+1 for1 <i<s—1.

o
J

Split each of these conditions b; in its into two conditions b; and b;, such that
end; — b; — start(o’) = b; — end;yq,

where o' is a step of b;’s own in-cluster inc(b;) that became enabled by the new tokens created
by the completion of some t’s firing. Each condition b; in the above can undergo several such
subdivisions, since the in-cluster inc(mw(b;)) receives tokens from several transitions, and may
thus have new enabled steps. Since w(b;) belongs to only one cluster, only a finite number of
splittings can occur because of the earliest firing rule.
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Denote the new configuration thus obtained as k', set \(z) 2 0 for all new nodes EXCEPT the duration
conditions b, , and repeat, with k replaced by ' and X = X\{outc}, until X = ().

Denote as k1 the configuration obtained after termination of this algorithm. Note that different (out-
)clusters act on disjoint sets of places. Therefore, kt is well-defined up to isomorphism, i.e. does not
depend on the order in which the outc € OutC are considered by the algorithm.

The tuple IT = (k, 7, p, 1, H) thus obtained is called a process of N'. It is a random element, determined
jointly by (%) the choice of enabled steps in a marking reached, and (7)) the random firing duration of
transitions, sampled from §. Note that these components can not be separated in general, since the
choices available along a process will be influenced also by the timed behavior.

[start{A X})]| [ start({B,Y})|

Figure 5: Temporal Orderings and associated process structures.

Regular configurations. Considering the configurations that are contained as prefixes in a process
generated by PROC, one observes that some of those configurations contain duration conditions b¢ in
their final cut, while others do not. For k of the latter type, we have that

c(k) is in bijection with P via 7. 9)

Call all configurations of IT such that (9) holds, and their final cuts, regular. One notices that regular
configurations lead, in general, to transient states (more precisely, because of the earliest firing rule, a
regular cut corresponds to a non-transient state only if it is dead; in that case, the configuration has no
continuation). Observable states correspond, generally, to non-regular cuts, which contain some duration
conditions that indicate a firing in process. Despite this fact, the configurations and cuts of the first type,

INRIA
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which we will call regular, correspond to the regeneration states, and form the Markov chain inscribed in
the Semi-Markov Process we will exhibit below.

It is important to note that the configuration x4+ obtained from x by Algorithm PROC is again
regular. Since the initial configuration consisting only of ¢q is regular, we may assume that PROC is
applied only to regular configurations.

Concatenation and suffixes. Let II = (k, 7, p, , Hx) be a finite process of N' = (P, T, W, 6, F, M),
let My the marking reached after II, i.e. the marking corresponding to ¢ £ ¢(k), and

Ok) £ {teT|bec}

the set of transitions currently firing at the end of x. Then S(IT) £ (M (x), ©(k)) is the state of N after
IT. We first note that H(k, ') is a square matrix for all regular configurations &’ such that « C «'; this is
not true for general configurations, of course. Let TI' = (k’, 7', p', i/, H,) be another process of N. We
say that IT is a prefiz of II', written II C II', iff k C &/, and «, p, u are restrictions of 7/, p’, p’ to k. If
I1 C IT'let & be the suffix of &’ obtained after cutting &’ at ¢, and k” = &’ Uc. Then " is concatenable
with k in the sense of Definition 2, using as ¢ the matching of conditions corresponding to the same place
in P, and duration conditions corresponding to the same transition. From Lemma 1, we know that

Hiowr = Hie ® Hprs (10)

hence, we call II' the concatenation IL o IT" of II with I £ (", ", p", p"", H ), where 7", p", i’ are the

restrictions of ', p’, i’ to k’. II” thus obtained is a process suffiz of .

In Figure 5, all heights are given by § since we start in cg. The figure continues Figure 4, restricting
attention to outc(w); not all input conditions of start({A, X}) and start({B,Y}) are represented, b¥
and bX are dropped, etc. Figure 5 shows that differences in the duration of transition firings can change
the structure of the configuration. It is thus not possible to first generate the causal net, and then
add durations: the timing influences the simultaneous availability or non-availability of tokens, and the
earliest firing rule forbids waiting for a missing token to arrive.

In the example of Figure 5 (forgetting the nodes present in Figure 4 but omitted in Figure 5), let &
the maximal configuration in any of the three cases shown, ¢g be ¢g = {ul,vl, w0}, and ¢; = c(k) =
{u0,v0,w2}. With this ordering, we obtain the height matrix

1 0O Ab%) e A®B)
H, = 0 1 A eAb®) |, (11)
O 0 1
or, with p £ A(b%) @ A(bP),
1 O p
O 0 p

Note that the ®-operation allows to have a unified form of H, for all three cases exhibited in Figure 5.

4 Distributed Semi-Markov processes

Now, let §(t, k) be a family of firing times, with ¢ ranging over 7 and k over IN, such that
(D1) (t,k) # (', k') implies that 6(t, k) and §(¢', k') are independent, and

(D2) for fixed transition ¢, (0(%,k)), oy is ii.d.

Similarly, let o(inc, Mi,,n) be a family of random variables with inc varying over InC, M over the multi-
sets over Pi,c, and n over IN, such that:

RR n " 4754
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(C1) For all clusters inc and markings Mi,. on the places of inc, and all n € IN, o(inc, Minc,n) is almost
surely a maximal step enabled in M;,;

(C2) for all clusters inc and markings M, on the places of inc, the sequence (o (inc, Minc, n))neN is i.i.d,
and

(C3) for any two distinct clusters inc and inc’ with local markings M;,. and M., and any n,n’ € IN,
o(inc, Mine,n) and o(inc’, My, n') are independent.

Under these hypotheses, it is not hard to see that STPN A with the earliest firing rule generates “a sort
of” heterogeneous Semi-Markov process; however, to state this properly, we have to leave the standard
time model with scalar time parameter. In fact, our time parameter here is matrix-valued in T £ Rx7,
where n is the number n £ |P| of places in . Let us first note that T with the natural ordering <,

MM iff (1<ij<n= M <M,,),
is a conditionally complete lattice. For M; < M3, denote as
Mi,Ms] 2 {M|M; < M 5 My}

the closed interval bounded by M; and M.

Shifting the standard definitions, from the setting with time set R and some discrete state space, to
our framework with the lattices T and Conf(N'), we obtain that the process generated by N via PROC
satisfies the following, semi-Markovian property:

Theorem 1. Let N be an STPN, and assume (D1-2) and (C1-8). Let I1y,... ,II,, I and II' such that
II, C...C I, = II C II' be processes of N, with II' the random element whose conditional law is
wanted. Further, fix some markings M, M;, transition sets ©,0; C T; set S = (M, 0) and S; 2 (M;,0;),
and let M, M; for 1 <i < n be fized matrices of appropriate dimensions, such that the products in (13)
are defined. Then:

P () it w o g [V (M) = (5100
- [p( ‘jﬁ’j)ez[fdemM] ‘(S(lﬂ?n),Mn") = (Sn,/\/ln)>. (13)

Proof: By inspection of Algorithm PROC above. O

5 Final Remarks

We have introduced a process semantics for T-timed Petri nets under the cluster view. Under i.i.d.
assumptions on choice and duration distributions, an analogue (13) of the semi-Markov property was
seen to hold. In (13), the usual linear time parameter is replaced by matrix-valued multi-dimensional
time, taking the form of (max, +) operators; this is precisely why conditional independence from the past
holds, even for duration distributions with memory. The operator lattice T, from which the consumption
of physical time can be read, reflects the lattice Conf of configurations describing the possible evolutions
in logical time.

The above approach extends the representational results of Gaubert and Mairesse [12, 13] and Winkows-
ki [27, 28, 29]. It will allow to carry out, in a first step, asymptotic analysis using non-expansive operator
theory; bringing this to work is the subject of work in progress.
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