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Abstract—We describe a new paradigm for articulating need-
to-protect and need-to-share policies that shows promise for
enabling automated derivation of the downgrading rulesets
needed to comply with these policies in systems that share
data. This new paradigm is based on fine-grained semantic
policy specifications in terms of context, content, Purpose, and
Anti-purpose that are expressed in a machine-understandable
language. Our approach is based on an existing reasoning ca-
pability that can handle simple downgrading cases. Extensions
to handle more complex cases are discussed. Although not
yet a complete, turnkey solution to the overall data sharing
and privacy problem, we posit that our approach provides an
auspicious research vector for future work towards achieving
that goal.
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I. INTRODUCTION

Ubiquitous and distributed computing applications must
share data to deliver the quality of services they are designed
to achieve — but whenever data is shared, privacy risks are
taken. Take, for example, the U.S. Department of Homeland
Security: To effectively protect the public from terrorism,
agencies must collaborate; but for the most part, these agen-
cies do not have joint formal privacy agreements. Whether in
social networking, health care, or other applications, every
American citizen wants to trust that data pertaining to him
will be available to those who have a legitimate need, and
that this data will not be misused. Downgrading is the
process of transforming data so that information is protected
according to privacy policies, but still contains the informa-
tion needed to perform computations or provide required
levels of service. Today’s computing and communication
systems employ tailor-made downgrading solutions that are
not reusable, and the expert knowledge that went into the
design and implementation of these downgraders is lost in
the details of hardware configurations or software code.
There is a need for well-founded models and analysis tools
to formulate and enforce both privacy (i.e., need-to-protect)
policies and need-to-share policies.

We propose a formal, semantic framework for modeling
and analyzing need-to-protect and need-to-share policies, to

enable articulating and reasoning about these often contra-
dictory policies. The proposed solution relates data to the
activities it enables, and identifies these activities as either
harmful (i.e., corresponding to need-to-protect policies) or
beneficial (i.e., corresponding to need-to-share policies).
This fits the diverse needs of the wide range of privacy
stakeholders. We term this new approach Policy-Based Data
Downgrading (PBD), where policy refers not only to need-
to-share and need-to-protect policies, but also to various
other context and data content-specific information. Expert
knowledge of the rationale for downgrading data in certain
circumstances is captured in models; and thus is reusable in
contexts characterized by similar data or policies.

Usability of the PBD is increased through automated tools
that balance need-to-share and need-to-protect policies and
provide downgrading solutions by selecting and combining
downgrader operations. Appropriate downgrading is accom-
plished by determining a set of arithmetic or logical opera-
tions to be performed on the data, altering it in such a way
that the data simultaneously enables the beneficial activities
and precludes the harmful activities. Based on an existing
Analyzer that determines system interoperability using se-
mantic markup, we will develop a novel PBD Analyzer that
uses constraint-solving mechanisms to determine the right
combination of downgrading operations. Future plans also
include development of a novel Downgrader Specification
Generator (DSG) for cases in which downgrading operations
are missing. Together, the PBD Analyzer and DSG constitute
an important step toward a full circle of automated tools
for data downgrading. The tools will take the burden off
users and make automated enforcement of privacy policies in
systems feasible. The proposed solution is comprehensive: it
will work with static and streaming data, and with changing
downgrading needs.

II. RELATED WORK AND WHAT IS STILL MISSING

The PBD paradigm assumes a producer transmitting data
to a downgrader that sanitizes the data before forwarding
it to the data consumer. This is similar to the Privacy-
Preserving Data Publishing (PPP) framework, wherein data
originates from an individual record owner and is collected



by a publisher that releases a compendium to the public
or specific recipients [1]. Mechanisms to downgrade infor-
mation have been under development for several decades.
Adams [2] described three classes for PPP: (1) restricting
the number of queries that can be made, (2) perturbing the
data before executing the query; or (3) running the query
on unmodified data, but then perturbing the output. In the
PBD, the recipient does not make an explicit query, so
the first category is not relevant. However, techniques that
operate on the data can be useful for PBD. These techniques
include generalization, which coarsens, abstracts, or collects
multiple data into equivalence classes; suppression, which
removes records from the sanitized output; swapping, which
interchanges attributes from different records; randomiza-
tion, which adds random noise to perturb the data; and
multi-views, which apply different variants of the previous
techniques to provide diverse sanitizations [3]. While gen-
eralization, suppression, and randomization can be directly
applied in the PBD setting swapping may not be, since it
would require buffering in the downgrader and may cause
unintended semantic changes as the data is streamed to a
recipient, and multi-views is superseded by the PBD’s more
flexible mechanism for customizing the output.

The PBD data consumer and PPP recipient are the only
adversaries assumed. In particular, the PBD downgrader
and PPP publisher are trusted to operate correctly. We
do not consider the untrusted case where the sanitization
is effected with a cryptographic protocol [4]. There are,
however, numerous other differences between the PBD and
PPP settings, as described below.

PPP schemes are designed with the assumption that all
the data has been collected by the publisher and, thus,
sanitization can operate in an offline mode, preprocessing
all the data prior to answering any queries. PBD schemes
may be used in settings where the data is being streamed
through the downgrader, necessitating algorithms that adapt
online. In particular, since individual data records may need
to be downgraded en route to a specific recipient, removal
of identifiers is not generally feasible. This precludes guar-
antees such as differential privacy [5] in the PBD setting.
In addition to the fact that the data set is encountered
online in PBD, the relevant data set may be in flux. In
contrast, in PPP schemes data sets are static, allowing the
publisher to compute statistical characteristics and make
sanitization choices ensuring that particular properties hold
in the absence of external auxiliary information.

PPP frameworks are inherently centralized as they assume
that the downgrader has access to the entire database. In
contrast, PBD schemes are decentralized, operating on data
as it flows through information channels in a system.

In addition, PPP sanitization procedures have a fixed Anti-
purpose (i.e. need-to-protect policy), which is to prevent re-
identification, although the specific quasi-identifier attributes
being protected and the notion of identification may dif-

fer. Similarly, if the inability to distinguish a record from
k − 1 others is deemed to prevent re-identification, then k-
anonymity [6] suffices; whereas if the statistical similarity of
sensitive attributes is a concern, then other assurances like l-
diversity [7] would be needed. In the case of PBD, the Anti-
purpose could be more complex [8], such as predicating the
inferences the recipient will be able to draw on knowledge
of the data content and the context in which the data is being
used.

PBD, like PPP, does not aim to provide perfect sanitization
(i.e., the prevention of an attacker from learning any more
information than would have been possible without access
to the protected collection of data). In contrast to PPP
where the partition of sensitive and non-sensitive attributes
is static [1], PBD constraints define whether a particular
attribute is sensitive as a function of the context, content,
purpose, and policy restrictions. Thus, another difference in
the frameworks is that PBD can flexibly target goals for
specific pieces of data, while PPP schemes make statistical
guarantees about collections of published data.

There exists some work on semantic models for policy-
driven information exchange. The KAoS policy language is
used to formalize privacy and information sharing policies
[9]. However, while this approach uses a similar modeling
framework as that envisioned for the PBD, the KAoS
solution is not as general as our approach, and considers only
very simple downgrading operations that do not require the
sophisticated constraint reasoning to determine an appropri-
ate combination of downgrading operations and parameters
needed to address a broad range of privacy and data sharing
policies.

Our PBD is also similar to Risk-Adaptable Access Control
(RAdAC) [10] in its goal to tradeoff need-to-share policies
with the risk of releasing information. RAdAC approaches
do not apply downgrading; they weigh risk with need-
to-share and decide whether or not to release data in its
original form. Our work could complement this approach in
providing the means to automatically balance between these
policies.

To summarize, despite signs of progress toward a down-
grading solution, two central issues remain: (1) Need-to-
share policies are typically defined in vague terms, if at all.
This makes it difficult to correctly implement the policies,
especially since there is a companion need-to-protect imper-
ative. (2) No general technical solutions exist to automate
the derivation of downgrading rules from privacy policies.
Without an automated derivation, the concept of forming ad
hoc, agile data-sharing systems-of-systems becomes hope-
less.

We believe that these issues have a common thread that
can be resolved only by obtaining precise answers to two
Why questions: (1) Why do I need to share? and (2) Why
do I need to protect? Although one approach has been to
label data with security classifications such as Top Secret or



Secret, the problem with this approach is that the rationale
for assigning a particular security label to a category of data
is not captured. By rationale, we mean the precise details
about the harmful activities that a potential adversary could
perform, if given access to the data. We offer the conjecture
that without a precise understanding of the details of that
rationale, it is impossible to assess whether a “sanitized”
version of the information would preclude those specific
harmful activities. We also make the observation that the
security labels are noun-like entities, whereas the harmful
actions that constitute the rationale must be expressed using
verbs (the grammatical construct that denotes activity).

III. LIMITATIONS OF THE PROPOSED APPROACH

The scope of the overall data privacy and sharing problem
space is somewhat staggering in its breadth, so we restrict
our approach to a subset of the overall problem space. The
following limitations apply to our approach:

1) The most significant limitation of our approach is
that it deals only with fixed-format, structured-data
messages or files. Our ontological modeling relies on
this assumption.

2) The terms High Side and Low Side are customarily
used to denote the two domains between which a
data-sharing solution is intended to adjudicate data
flow. While the usual connotation is that the Low
Side is a proper subset of the High Side, we will
use this terminology without implying such restricted
interpretation. Each side may hold information that it
is not allowed to share with the other. However, our
approach deals with data flow from High-to-Low.

3) We assume that low side recipients are specifically
identified (including a special label for public access).

4) We consider the following factors in determining
downgrading: content of current information instance
only [memoryless decision], current instance plus
some previous instances [n-state memory decision],
memoryless or n-state memory decisions plus static
or dynamic preconditions [i.e., state information that
remains constant or may change during a specific time
period].

5) We assume that it is not necessary to conceal the fact
that downgrading has been applied.

6) We consider both cases where the data being down-
graded is a singleton or an instance of a sequence of
related information objects.

IV. HISTORIC DOWNGRADING EXAMPLE SCENARIO:
GPS SELECTIVE AVAILABILITY

The Global Positioning System (GPS) was conceived in
1973 by the U.S. Department of Defense to provide navi-
gation and location information to both military personnel
and civilian users. The initial deployment in 1978 consisted
of four satellites that were visible in a limited region

(four being the minimum number needed for a receiver
to calculate its position in 3-D space). By 1995, twenty-
four satellites were in orbit, providing complete worldwide
geographic coverage.

Concern that an enemy might use the GPS information
for a harmful purpose was addressed by designing the
system to provide two levels of service, one with high
accuracy for the military and another with lower accuracy
for civilian use [11]. The dual service was constructed
by structuring the GPS transmission as two signals, L1
and L2, transmitted at 1575.42 MHz and 1227.6 MHz,
respectively. A deliberate downgrading is performed on
L1 to degrade the quality of the information provided on
that signal. This downgrading process, Selective Availability
(SA), was implemented by adding a pseudorandom error
to the L1 signal’s time component, thus perturbing the
quality of the position, velocity, and time information that
could be derived from the signal. The information derived
from L1 is the Standard Positioning Service (SPS), and
allows the horizontal surface position (corresponding to x, y
coordinates in a local tangent plane) to be calculated within
a 100 meter accuracy, the local vertical position (altitude z
coordinate) to be calculated within a 156 meter accuracy,
and the time to be calculated within 340 nanoseconds of the
reference atomic clock. This uncertainty in the location and
time values was deemed sufficient to prevent the GPS data
from being used for adversarial purposes, such as precision
targeting and guidance of weapons.

In contrast, the L2 signal is not perturbed, but is encrypted
to prevent unauthorized persons from utilizing it. The ab-
sence of SA on L2 data and the fact that L2 is transmitted on
a different frequency than L1, allows a comparison between
the L1 and L2 data to be used to factor out errors resulting
from signal traversal through the atmosphere. The resulting
Precise Positioning Service (PPS) service has lower levels of
uncertainty than the SPS: 22 meters for horizontal position,
28 meters for local vertical/altitude, and 200 nanoseconds
for time.

Although the U.S. Government discontinued the appli-
cation of SA to the L1 signal in 2000 (by setting the
magnitude of the added noise bias to zero), we argue that
the original scheme represents a data-sharing example where
downgrading rules were derived from the need-to-protect
and the need-to-share policies:

• Need-to-protect policy: Precise targeting and guidance
for a long-range weapon must be denied to an adver-
sary.

• Need-so-share policy: Support for long-range area
navigation must be possible using a degraded-accuracy
version of the GPS information.

In this GPS example, the underlying functions to be
performed for privacy policy and sharing policy are fun-
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Figure 1. GPS downgrading example: Downgrading within the marked
region enables Purpose while preventing Anti-purpose.

damentally the same1 — it is only the accuracy of the
information required that changes. Figure 1 illustrates the
region of x, y coordinates of GPS where downgrading sat-
isfies the goals of Purpose (enabling appropriate levels of
GPS information) and the Anti-purpose (precluding access
to precise GPS information by unauthorized users). The
z coordinate represents a navigation quality metric. The
Purpose requires any value above the lower boundary, which
effectively specifies the minimum accuracy needed. The
Anti-purpose rules out providing any value that is too
accurate (i.e., a value that falls above the upper boundary).
The region between the boundaries contains values of x
and y that are valid candidate values for a downgrader to
produce that will permit the Purpose to be achieved while
also denying the harmful activities described by the Anti-
purpose.

V. A NEW PARADIGM FOR NEED-TO-PROTECT
AND NEED-TO-SHARE POLICIES

We propose a new paradigm for articulating need-to-
protect and need-to-share policies, wherein data is (1) related
to activities, and (2) these activities are identified as either
harmful or beneficial. By doing so, we make the rationale for
the assigned security classification explicit. This paradigm
provides a framework for expressing the answers to the Why
questions mentioned earlier:

Q: Why do I need to protect this information?
A: Because, if released, this information could enable
the recipient to perform <detailed, formal description
of harmful activity>.
Q: Why do I need to share (a downgraded version of)
this information?
A: Because I need to enable the receiver to perform
<detailed, formal description of beneficial activity>.

Reduced to its simplest form, the problem of determining
an appropriate downgrading ruleset becomes one of finding

1This is not a necessary condition for our need-to-protect/need-to-share
concept, but it makes the essence of the concept easier to visualize.

a set of arithmetic/logical operations to be performed on the
data, altering the data in such a way that it simultaneously:

• Enables the beneficial activity — we call this the
Purpose

• Precludes the possibility of the harmful activity — we
call this the Anti-purpose

Of course, it must be recognized that, for any given
instance, there may exist no such simultaneous solution.

We believe these notions of Purpose/Anti-purpose are
profound and have actually been underlying most previous
cross-domain ruleset implementations — but usually without
recognition and without being captured or expressed in a
formal representation.

VI. TECHNICAL APPROACH: MODELING AND ANALYSIS
FRAMEWORK FOR DOWNGRADERS

The Purpose/Anti-purpose construct is one semantic
model that contained in the first component of our frame-
work. Other semantic models pertain to the content and
context of the data, resources that provide or receive data,
and formal downgrading specifications (see Figure 2). The
second main component of the envisioned framework com-
prises the Analyzer and Downgrader Specification Generator
tools. The Analyzer uses semantic models stored in various
knowledge bases (KBs) to assess whether and how down-
grading can be achieved for a given Purpose/Anti-purpose
goal, and applies KB facts to determine the appropriateness
of existing downgrader specifications to achieve this goal.
The Analyzer will return with one of four possible answers:

1) Yes: No downgrading is necessary because the selected
resources can already perform the Purpose activities,
and the Anti-purpose activities are not possible.

2) Yes + Downgrader Specification: Downgrading is
necessary and the Analyzer selected the appropriate
formal downgrader specifications from the KB after
successfully validating that after downgrading the Pur-
pose activities are still possible and the Anti-purpose
activities cannot be performed.

3) No + Downgrader Specification Constraints: Down-
grading is necessary, but none of the existing down-
grader specifications in the KB satisfy the Purpose and
Anti-purpose constraints. However, the Analyzer can
return constraints resulting from the reasoning process
and use them as input for a downgrader specification
generation phase.

4) No: There are two cases to distinguish: (a) either Pur-
pose and Anti-purpose are inconsistent, which means
that there is no solution; or (b) the selected resources
do not have the capabilities to perform the Purpose
activities (e.g., satellites do not generate accurate
enough GPS data to be used for navigation). In the
latter case, the Analyzer can inform the user about
the missing capabilities of the selected resources. The
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Figure 2. Overview of semantic models and downgrading tools.

Analyzer can also be run again with partial or no
resource assignments and will iterate through all the
resources to see whether any exist that can satisfy the
Purpose/Anti-purpose constraints.

Our PBD approach is based on the ontological framework
developed under a U.S. Department of Defense sponsored
project called the Open Net-centric Interoperability Stan-
dards for Training and Testing (ONISTT) [12], [13], [14]
which provides a semantically rich means of describing
machine-to-machine interactions in terms of a hierarchical
construct known as the Task. The Tasks (referred to as
activities in this paper) are described in terms of the ca-
pabilities needed to perform that activity (i.e., the data types
with their qualitative or quantitative characteristics needed
to perform that activity). While the ONISTT framework
does not target privacy applications, many of the concepts
developed there can be reused as a basis for a modeling
and analysis framework for downgraders. The ontological
models of ONISTT contain more than 60 ontologies, and
more than 75% of those ontologies are general-purpose
models that are independent of the training and testing
domain for which they were developed.

In the ONISTT project, we have been very successful in
using OWL [15] and SWRL [16] to model the task ontology
as well as domain-specific knowledge such as location data.
These approaches will suffice for much of our PBD research,
and where they do not, we will use mathematical logic
notations to yield the required expressiveness2.

2Machine-readable syntax to exchange policies is not our foremost
matter. Rather, we want to focus on providing the Analyzer capabilities
needed to solve the downgrading problems automatically.

The ONISTT task ontology provides a good starting point
for a generic activity ontology. ONISTT’s resource ontology
can be reused in the privacy context for entities that generate,
send, or receive data. For example, in the GPS use case,
satellites producing GPS data are resources, and so are the
military personnel and general public users who consume
GPS data to perform navigation or targeting activities.

New models must also be developed. In particular, formal
specifications of downgraders are a core ingredient of our
semantic framework. Downgrader specifications are different
from informal downgrading rulesets that commonly result
from BOGSATs (a Bunch Of Guys Sitting Around a Table).
Downgrader specifications also different from downgrader
appliances and their technical specifications. Rather, down-
grader specifications are formally specified rulesets that
define the data types on which the rules can be applied
and that unambiguously specify the effect of applying these
rulesets to the data. They can be used as a basis on which
we design and implement downgrader appliances, and to
certify them against these specifications (though this is not
within the scope of this project). Downgrading specifica-
tions formally capture the essence of informal downgrading
rulesets while abstracting from implementation details of
downgrader appliances. Downgrading specifications are used
by the Analyzer to determine whether any specifications
exist that can be used to achieve Purpose and prevent Anti-
purpose.

VII. TOWARD A SOLUTION FOR AUTOMATED,
MODEL-BASED DOWNGRADING

We will briefly illustrate our approach with the help of
the GPS SA example. For clarity, we will use abbreviated
versions of the full semantic models described elsewhere



[8]. GPS data is semantically modeled by a concept Geo-
centricPosition for which properties x, y, and z are length
measurements that have two properties defined: measurand
and uncertainty. For our example, the uncertainty is of
interest, and it is defined as a tuple containing a mag-
nitude value and a unit. Thus, a GPS element that indi-
cates 20 meters uncertainty for position x can be noted as
x.uncertainty.magnitude = 20 and x.uncertainty.unit = meter.
In the following formulas, we assume all units to be meters
and do not further mention them.

For the GPS SA example we define two activities:

Navigate(?GPSProvider,?GPSConsumer) and
Target(?GPSProvider,?GPSConsumer).

The terms ?GPSProvider and ?GPSConsumer are role pa-
rameters for the activities that can be assigned to resources.
To navigate, the ?GPSProvider must provide GPS data with
accuracy of at least 100 meters; and to target, GPS data
must be accurate to at least 20 meters. These constraints are
formally modeled in our framework as

NavigateConstraint:=
x.uncertainty.magnitude ≤ 100 ∧ y.uncertainty.magnitude

≤ 100 ∧ z.uncertainty.magnitude ≤ 100

TargetConstraint: =
x.uncertainty.magnitude ≤ 20 ∧ y.uncertainty.magnitude ≤

20 ∧ z.uncertainty.magnitude ≤ 20.

What constitutes Purpose or Anti-purpose depends on the
specific situation. Thus, a human chooses some activities
to be Purpose while other activities are chosen to be Anti-
purpose. In our framework, special predicates Purpose,
Antipurpose, and Goal are defined as Goal ⇔ Purpose ∧
¬ Antipurpose. The specifics of these predicates are defined
for each example.

For our example, using the individuals GeneralPublic
and MilitaryPersonnel for the ?GPSConsumer role of the
navigation and targeting activities, and leaving the role
parameter ?GPSProvider unassigned, we define two goals:

Goal1 ⇔
(Purpose ⇐ Navigate(?GPSProvider,GeneralPublic)) ∧
¬(Antipurpose ⇐ Target(?GPSProvider,GeneralPublic))

Goal2 ⇔
Purpose ⇐ (Target(?GPSProvider,MilitaryPersonnel) ∧

Navigate(?GPSProvider,MilitaryPersonnel)) ∧ ¬
(Antipurpose ⇔ false)

For the case that GPS data is sent to the general public, we
want to enable navigation with it, but prevent it from being
used for targeting. For the case that the receiver of the data is
military personnel, we want to be able to do both, navigation
and targeting. The question is Which resources provide GPS
data with the appropriate accuracies for Goal1 and Goal2?.
We assume two satellite resources Sat1 and Sat2, both with

the capability to provide GPS: the former with uncertainty
of at most 10 meters and the latter with uncertainty of at
most 30 meters. Our Analyzer can validate that satellite
Sat1 satisfies Goal2 and that the GPS data provided by Sat2
satisfy Goal1. If none of the resources were assigned, our
Analyzer could determine resource assignments that satisfy
the goal.

In the case that downgrading is necessary (e.g., downgrade
GPS provided by Sat1 to satisfy Goal1) the Analyzer
can use existing downgrading specifications. We assume
that downgrader specifications contain at least the follow-
ing information. Downgrader(?in type, ?in unc, ?param,
?out type, ?out unc) where Downgrader is the name of the
downgrader specification. ?in type is the input data type for
this downgrader specification, which usually refers to one
of the standard data types (e.g., GPS or integer). ?in unc
defines the uncertainty of the input data type. (This includes
the error distribution and the support of the distribution.
The support of the distribution is the smallest interval or
set whose complement has probability zero. It may be
understood as the points or elements that are actual members
of the distribution. Thus ?in unc is usually defined as a
tuple (support, distribution). Examples of error distribution
are standard normal (i.e., Gaussian) distribution or uniform
distribution. The term ([120,130],uniform) is an example of
a (support,distribution) tuple where the uniformly distributed
values range from 120 to 130.)

Returning to the downgrader specification above, ?param
describes parameters of the downgrader specification (for
example, a bit-dropping downgrading specification has ?bits
parameter to determine the number of bits that it drops).
?out type is the specification of the data type that will be
returned by the downgrader specification. ?out unc is the
error distribution and its support for the resulting data type
after downgrading.

These formal downgrader specifications make up the
Downgrader KB (see Figure 2). The Analyzer iterates
through the specifications to find ones that will ensure that
goals are satisfied. Thus, the Analyzer tries to prove that the
goal still holds after one substitutes the original input data
type/distribution with the data type/distribution produced
after applying the downgrader operations, as below:
Downgrader(?in type,?in unc,?param,?out type,?out unc)
⇒ Goal[?in type,?in unc ← ?out type,?out unc].

For this example, let us assume the x coordinate of
the reported GPS data from Sat1 to be 125 with support
[120,130] and uniform distribution. This corresponds to at
most 10 meter inaccuracy, which is the same as that defined
for Sat1. We aim to downgrade this data to have at least
20 meter inaccuracy. To ensure that we have the same
characteristics for the data before and after downgrading, we
need to maintain the original mean. Thus, after downgrading,
the mean should still be 125, but with support [115,135]
and uniform distribution. How does the Analyzer come to



the same conclusion after a formal reasoning argument?
While we intuitively argued what should be the output after
downgrading on a specific GPS value, our approach to auto-
mated downgrading is more general. The base for providing
such automated tools are detailed semantic specifications
of downgraders and their effect on data types. Thus, in
our example, we know that the data type we are trying to
downgrade is integer and we know that its distribution is
uniform. As such, the Analyzer attempts to find a solution
for DG(integer, [Li, Ri], uniform, ?param, integer, [Lo, Ro],
uniform) ⇒ Goal1. We start by determining values for the
output support interval [Lo, Ro]. Since we know the input
support interval [Li, Ri], we can compute the output support
interval, by substituting pairs of input-output variables into
the following linear equation:

y = f(x) = a ∗ x + b (1)

where constants a and b would be uniquely determined
through substitution of two different values. While a linear
function is sufficient to solve the mapping from [Li, Ri] to
[Lo, Ro], when Li and Ri are known, it is also a simple
representation. In particular, if it is known that a linear
equation was used for solving the downgrading challenge,
an attacker could invert the downgrading and compute the
original support interval. In our framework we will study
downgrading operations of various complexity and relate
them to privacy requirements. We note that in some cases
there is a temporal aspect to how rigorous the downgrading
operation must be in order to withstand attacks (e.g., in our
GPS scenario, detailed location data might not be sensitive
after several minutes or hours).

Substitution of Li and Lo first and then Ri and Ro leads
to the following:

Lo = a ∗ Li + b and Ro = a ∗Ri + b (2)

Subtracting the two equations from each other leads to (Lo−
Ro) = (Li − Ri) ∗ a, and substituting a with (Lo−Ro)

(Li−Ri)
in

equation (2) results in Lo = (Lo−Ro)
(Li−Ri)

∗ Li + b. Therefore,
the equation y = a ∗ x + b can be solved as

y = f(x) =
(Lo −Ro)
(Li −Ri)

∗ x + Lo −
(Lo −Ro)
(Li −Ri)

∗ Li. (3)

Thus, to realize the necessary downgrading operation, a
parameterized multiplication operation and shift operation
is required. For multiplication, it takes x as its input and
(Lo−Ro)
(Li−Ri)

as a parameter for a in (1) to generate a ∗x value.
Subsequently, the shift operation takes the a ∗ x value as its
input and Lo − (Lo−Ro)

(Li−Ri)
∗ Li as a parameter for b in (1) to

generate the final result y = f(x). Substituting [120,130] in
(3) for [Li, Ri] yields y = 2 ∗x− 125, which will transpose
[120,130] to [115,135] as informally argued earlier.

If the Downgrader KB contains specifications for
Mult(?param) and Shift(?param) downgrading operations,

the Analyzer can find these specifications and determine that
they are appropriate in this case. If no such downgrader spec-
ifications are available, the Analyzer can use the result of the
reasoning (3) to generate such downgrader specifications.

Note that in the case where the input value is exact (i.e.,
the support of the input values is [Li, Li]) we use the fol-
lowing alternative to get an input support interval with two
different boundaries: First we drop the least significant bits
using a BitDrop operator to yield the intermediate support
[L′

i, R′
i] where L′

i < R′
i and (R′

i − L′
i) is smaller than

(Ro − Lo). BitDrop(?bits) is a parameterized downgrading
operator that drops ?bits least significant bits from the input.
In the case described, the Analyzer would determine ?bits
to be the bit that is less than the most significant digit of
(Ro − Lo).

While the illustrated example posed only a simple down-
grading challenge, in the general case the Analyzer would
have to perform more complex reasoning about downgrader
specifications and their combinations.

Other Examples: MTTC and TCAS
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Figure 3. Sample downgrades: 1. Pertubation, 2. Aggregation, 3. Deletion.

To illustrate the applicability of our approach, we present
two more examples. First, consider communication of GPS
data from a control station to private vehicles in an urban
freeway setting. The Purpose is to assist the driver in route
planning and navigation of her vehicle considering current
traffic situations, while the Anti-purpose is the capability to
track individual vehicles. Figure 3 shows the time elapsed
on the x-axis and one dimension of the location on the
y-axis. Each symbol (circle, triangle, rectangle) represents
different individuals. The most intuitive way of downgrading
is perturbing the values of either the location coordinates
(e.g., x1± 1 km) or timestamp (e.g., t1± 1 min) by in-
troducing numeric errors α and β as illustrated in Figure
3. However, perturbation without careful consideration of
privacy guarantees may not support our goal (e.g., perturbing



sufficiently many bits to avoid revealing critical information
may also preclude the Purpose). Thus, a more structured
way of downgrading is achieved by specifying an anonymity
parameter k which is the minimum size of the set of
indistinguishable objects. The k-anonymity policy decreases
the accuracy of the GPS data by choosing a sufficiently large
area (spatial cloaking) or time interval (temporal cloaking)
so that enough other objects exist within the area or time
interval to satisfy the anonymity constraint. In Figure 3, the
GPS data has 3-anonymity in the temporal domain (i.e.,
ktime = 3 at t2) and 2-anonymity in the spatial domain
(i.e., kspace = 2 at x2) without downgrading. Assume
the policy requires 4-anonymity. At time t2, our Analyzer
determines that 4-anonymity cannot be achieved without
downgrading, and therefore performs temporal or spatial
cloaking. The cloaking is illustrated as an expansion of the
region (in dashed boxes) up to the point where at least 4
distinguishable GPS data reside within the region. As a result
of downgrading, the x-coordinates [x2, x3] with time interval
[t2, t4] or x-coordinates [x2, x4] with time interval [t2, t3]
satisfy the 4-anonymity constraints.

However, in the face of a more capable attacker, other
downgrading solutions must be applied. For example, there
is a privacy risk present with an adversary that follows a
specific object because consecutive GPS samples contain
temporal and spatial correlation. Thus, paths of individual
vehicles can be reconstructed by an attacker capable of using
target tracking algorithms. Therefore, for the same Anti-
Purpose (i.e., the capability to track individual vehicles), but
in the context of more capable adversaries, other downgrad-
ing solutions must be applied by the Analyzer. One such
solution is known as Maximum Time To Confusion (MTTC)
[17]. MTTC is the maximum time for which an attacker is
allowed to track an individual vehicle with a given tracking
uncertainty. Tracking uncertainty measures how unlikely it is
that a set of samples is associated with a particular vehicle.
Under these circumstances, our downgrader needs to process
a stream of GPS samples to maintain the tracking time
bounds with a given allowable maximum time to confusion
(MTTC) and an associated uncertainty threshold. Assume
MTTC is set to (t5 − t1) time units and that at time t1 a
potential attacker was sufficiently confused, i.e., for a given
uncertainty threshold Thuncertainty , an attacker could not
determine the next location of the vehicle with tracking
uncertainty lower than Thuncertainty . The downgrading
mechanisms must only reveal GPS samples when (i) the
time since the last point of confusion (i.e., t1) is less than
MTTC or (ii) the current tracking uncertainty is above
Thuncertainty .

The Traffic Alert and Collision Avoidance System
(TCAS) is a family of airborne devices that function in-
dependently of the ground-based air traffic control (ATC)
to reduce the risk of midair collisions between aircraft.
While it has proven its value as an augmentation of ground-

based ATC over the past 20+ years, it has long been
recognized that a more robust capability than TCAS can
provide is needed to support the Free Flight concept that is
envisioned for future airspace management. The limitations
of TCAS result from the paucity of information that can be
exchanged between aircraft over the limited communication
bandwidth available, requiring it to try to extrapolate a 4D
trajectory prediction using a zeroth-order dead reckoning
(DR) algorithm. The quality of the trajectory projection
could be significantly improved by also exchanging time-
stamped motion state vector measurements (i.e., GPS data
with velocity and acceleration vectors along with the aircraft
attitude [roll, pitch, and yaw] and attitude rates-of-change)
between aircraft, allowing use of a second-order DR algo-
rithm. Such information (collectively referred to as “TSPI”
— for Time-Space-Position Information) is available from
the Inertial Navigation System (INS) that is an integral part
of every commercial aircraft flying today. However, some
military aircraft have a security concern about sharing that
information with the general public. That concern is related
to the potential for such information to be used (along with
the measured strength of a radar “ping”) to calculate an entry
in the Radar Cross Section (RCS) database for that aircraft
— i.e., a measure of how detectable that aircraft is. For
many military aircraft, the values in the RCS database are
classified information.

In this example, the challenge is to determine if there
is a way to downgrade the TSPI from the INS so that the
actual data transmitted will still allow the Purpose (trajectory
prediction sufficiently accurate to avoid mid-air collisions
between aircraft engaging in Free Flight), but will not enable
its Anti-purpose (used to determine RCS values). We can
formulate these Purpose and Anti-purpose in our framework
using TSPI parameters like timestamp, position, velocity,
acceleration, attitude and attitude rates, all concepts speci-
fied accordingly in KB models. The specific requirements
on TSPI parameters differ for Purpose and Anti-purpose
(e.g., Purpose can be achieved, albeit suboptimally, with
attitude and attitude rate parameters redacted from the TSPI
message, though they are needed for the Anti-purpose).
This difference can be used to define possible downgrading
solutions.

In summary, it is not our goal to introduce new down-
grading mechanisms or algorithms. The goal of our work
is to provide a framework in which existing downgrading
solutions can be formalized and made amenable to a formal
analysis process to determine whether, for a given problem
with defined Purpose and Anti-purpose, existing downgrad-
ing algorithms can be used (possibly together) to achieve
the goals.

VIII. CONCLUSION

A policy-based approach to enforcing privacy policies
while enabling desired activities has the advantage of being



agile and flexible. Policies are described at a high level of
abstraction in terms of enabled and forbidden activities, and
the proposed Analyzer uses reasoning techniques to ensure
the right balance between privacy and data sharing. A well-
founded, automated solution to PBD is relevant to a wide
range of applications that currently either lack a principled
approach to privacy, or if privacy is addressed at all, typically
provide only very specific solutions that cannot be reused.

The existing ONISTT Analyzer, on which our approach
is based, is general enough to handle simple versions of
the downgrading problem. We are currently extending our
semantic models to include various downgrading operations
and we are improving our Analyzer algorithms to handle
the more complex constraint solving encountered in many
downgrading scenarios. The technical challenges that we
must address in the future to achieve a general downgrading
tool are described below.

Downgrading solutions will often involve compositions of
downgrader operations. Thus, we must develop an algebra
for downgrading operations that the Analyzer can use to
compose new downgraders as the need arises. The reasoning
techniques needed to solve downgrading problems will also
include a range of mathematical constructs, from simple
matching to more complex constraint solving. Another com-
plication stems from the fact that we do not limit our
approach to static data sets, but intend to provide down-
grading solutions for streaming data and for situations where
downgrading needs to change dynamically, as receivers, data
or policy change, or new insights into background knowl-
edge requires more stringent downgrading. Data and error
distribution management poses another technical challenge.
We aim to provide a formal basis to capture different error
distributions and reason about compositions of distributions.
Finally, the task of automated generation of downgrader
specifications is new, and possible in our framework due to
its rich semantic models. The Analyzer and the Downgrader
Specification Generator together provide a full circle set of
tools to solve practical downgrading problems.
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