
Experimental Software Engineering in Educational Context

Luís M. Alves
Escola de Tecnologia e Gestão

Instituto Politécnico de Bragança
Bragança, Portugal

lalves@ipb.pt

Ricardo J. Machado
Centro ALGORITMI
Universidade do Minho

Guimarães, Portugal
rmac@dsi.uminho.pt

Pedro Ribeiro
Centro ALGORITMI
Universidade do Minho

Guimarães, Portugal
pmgar@dsi.uminho.pt

Abstract — Empirical studies are important in software
engineering to evaluate new tools, techniques, methods and
technologies in a structured way before they are introduced in
the industrial (real) software process. Within this PhD thesis
we will develop a framework of a consistent process for
involving students as subjects of empirical studies of software
engineering. In concrete, our experiences with software
development teams composed of students will analyze how
RUP (Rational Unified Process) processes can be compliant
with the CMMI (Capability Maturity Model Integration),
namely in the context of MLs (maturity levels) 2 and 3.
Additionally, we will also analyze the influence of project
management tools to improve the process maturity of the
teams. Our final goal of carrying out empirical studies with
students is to understand its validity when compared with the
corresponding studies in real industrial settings.

Keywords: software engineering management, software
engineering process, software quality

I. INTRODUCTION
In the early nineties, Basili introduced, for the first time,

the concept of experience factory. As the author refers in [1]
the concept was introduced to "institutionalize the collective
learning of the organization that is at the root of continual
improvement and competitive advantage". Thus, the
experience factory provides an organizational schema for
collecting experiences on reuse of empirical results, for
analyzing them and generalizing the knowledge contained
[2]. This scheme was designed based on many years of the
Software Engineering Laboratory (SEL) work. Over several
years, this well-known laboratory has conducted several
studies and experiments for the purpose of understanding,
assessing, and improving software and software processes
within a production software development environment at
the National Aeronautics and Space Administration/Goddard
Space Flight Center (NASA/GSFC) [1].

With our approach we do not intend to create a new
software engineering laboratory. Instead, we intend to create
a space (virtual or physical) that allows us to conduct
empirical studies in the software engineering area by
involving students that are enrolled in our current software
engineering courses (both at undergraduate and postgraduate
university programmes).

Unlike other mature disciplines, the field of software
engineering continues to lack a research and development
infrastructure that supports systematic testing of novel
software engineering methodologies. Our intention is to
develop a new experience factory approach based on one

explicit educational environment. Initially, we will work just
with students as subjects of our first empirical studies. We
are fully aware that we will face some problems with the
validation of the results that we will be obtained in our
student-based experiments. It is impossible to be sure that
techniques evaluated under such circumstances will scale up
to industrial size systems or very novel software engineering
problems. Even though, Kitchenham says that "students are
the next generation of software professionals and, so, are
relatively close to the population of interest" [3]. In the
opposite, students in psychology studies are not
representatives of the human population as a whole [4].

In this paper, a description of the state-of-the-art related
with the subject of this research is presented in Section 2.
Section 3 describes in detail the research objectives and the
methodological approach. In Section 4, the past work and
preliminary results already done in the context of this
research are briefly described. Section 5 presents the future
work and expected results for the next 2 years of research.
Finally, in Section 6 some conclusions are presented

II. STATE-OF-THE-ART
The state-of-art of this work essentially relates to: ESE

(Empirical Software Engineering), SPI (Software Process
Improvement) and PM (Project Management). We will give
special emphasis to the ESE with students as subjects of
experiments.

A. Empirical Software Engineering
ESE is a sub-field of software engineering which aims at

applying empirical theories and methods for the measuring,
understanding, and improvement of the software
development process in real software companies [5]. This
definition extends the concept for ESE proposed by Basili,
when he said that "experimentation is performed in order to
help us better evaluate, predict, understand, control, and
improve the software development process and product" [6].
In the early nineties, the empirical methods applied in
software engineering were basically restricted to quantitative
studies (mostly controlled experiments). The concept of
experimental software engineering has moved to empirical
software engineering when a range of qualitative methods
have been introduced, from observational to ethnographical
studies. In a broad sense, an empirical investigation
(synonym of empirical study) is a process that aims to
discover something unknown or to validate hypotheses that
can be transformed in generally valid laws [2].

2012 Eighth International Conference on the Quality of Information and Communications Technology

978-0-7695-4777-0/12 $26.00 © 2012 IEEE

DOI 10.1109/QUATIC.2012.29

336

It is important to be able to evaluate new techniques and
methods in a structured way before they are introduced in the
software process [7]. Empirical methods have gained
increased attention in software engineering; there are
dedicated conferences such as the International Conference
on Evaluation and Assessment in Software (EASE), and
there are dedicated journals such as the International Journal
of Empirical Software Engineering.

Controlled experiments are the most commonly used
empirical methods in software engineering. Sjøberg et al.
define controlled experiment in software engineering as a
"randomized experiment or a quasi-experiment in which
individuals or teams (the experimental units) conduct one or
more software engineering tasks for the sake of comparing
different populations, processes, methods, techniques,
languages, or tools (the treatments)" [8]. Sjøberg et al.
analyzed in detail 103 scientific articles published in leading
software engineering journals and conferences in the decade
from 1993 to 2002 that reported controlled experiments in
which individuals or teams performed one or more software
engineering tasks.

Currently, some universities offer courses in the ESE
area, as in the cases of Norwegian University of Science and
Technology [5] and Lund University in Sweden. Both
institutions have worked with students as subjects of
experiments. These institutions run the experiences out of the
courses’ context, whereas in our approach the students
perform the experiments as part of their regular academic
courses. The Department of Computer Science of the
University of Helsinki created an experimental software
laboratory for basic and applied software development
research and education. The name of this laboratory is
Software Factory and they involve researchers, students, and
industry partners in their projects [9].

B. ESE using Students versus Profissionals
In this section, based on literature review we will

describe the strengths/weaknesses of using students versus
professionals in the empirical software engineering context.

In the survey conducted in [8], a total of 5,488 subjects
took part in the 113 experiments investigated, eighty-seven
percent were students and nine percent were professionals.
This survey demonstrates the importance of using students
in this context.

In many studies, students are used instead of
professional software developers, although the objective is
to draw conclusions valid for professional software
developers. The differences are only minor, and it is
concluded that software engineering students may be used
instead of professional software developers under certain
conditions. Höst et al. [10] argue that the main reason to use
students as subjects is often that they are available at
universities and they are willing to participate in studies as
part of courses they attend. In many cases, it is possible to
combine the learning objectives of the courses with the
research objectives of the studies. Tichy refer that software
students are much closer to the world of software
professionals than psychology students are to the general

population [11]. In particular, software graduate students are
so close to professional status that the differences are
marginal. Software graduate students are technically more
up to date than the "average" software developer who may
not even have a degree in computing. Software
professionals, on the other hand, may be better prepared in
the application domain and may have learnt to deal with
systems and organizations of larger scale than a student.

Sjøberg et al. [12] argue that the main reason of most
subjects in software engineering experiments are students is
that they are more accessible and easier to organize, and
hiring them is generally inexpensive. Consequently, it is
easier to run an experiment with students than with
professionals and the risks are low. Jaccheri [13] refers that
empirical studies are often carried out with students because
they are viewed as inexpensive subjects for pilot studies.
Svahnberg [14] refers that the students are readily available,
often willing to participate, and require no or little
compensation. The bad thing is that the variations among
studies conducted with professionals are higher than the
variations among students due to the more varied
educational backgrounds and working experiences in the
professionals [12].

Carver et al. [15] have developed a checklist that
provides guidance for researchers and educators when
planning and conducting studies in university courses. In
our PhD work, we want to specialize this framework to the
software engineering domain, when conducting experiences
related with software process improvement and project
management research questions.

C. Software Process Improvement
According to Humphrey [16], a software process is "the

sequence of steps required to develop or maintain software,
aiming at providing the technical and management
framework for applying methods, tools, and people to the
software task". Therefore, SPI aims at providing software
development companies with mechanisms for evaluating
their existing processes, identifying possibilities for
improving as well as implementing and evaluating the
impact of improvements [17].

SPI is an applied academic field, rooted in the software
engineering and information systems disciplines, which has
been studied for almost twenty years now. It deals primarily
with the professional management of software companies,
and the improvement of their practice, displaying a
managerial focus rather than dealing directly with the
techniques that are used to write software. Classical SPI
techniques relate to software processes, standardization,
software metrics, and process improvement. Many of the
major contributions to SPI are originated from the SEI
(Software Engineering Institute) at Carnegie Mellon
University [18] [36].

SPI is based on process assessment. Most process
improvement models and standards applied in SPI primarily
provide guidance for process assessment. When critical-
mission software is required to demonstrate (often by

337

obtaining certain type of certifications) their ability to
develop and sustain high maturity practices is mandatory.
There are currently some software process models available
for assessing and improving software development and its
related practices.

Empirical studies that we will perform during the PhD
work will concentrate primarily on the software development
process, from the perspective of process improvement. Thus,
we intend to implement experiments involving the suggested
practices in CMMI (Capability Maturity Model Integration)
[19] and RUP (Rational Unified Process) [20].

D. Project Management Approaches
One of the standard models most popular in PM area is

the PMBOK (Project Management Body of Knowledge)
[21]. Thus, in 1996, the first version of the body of
knowledge in PM was published by the Project Management
Institute [22]. According to the PMBOK, projects are
composed of processes. A process is “a set of interrelated
actions and activities performed to achieve a pre-specified
product, result or service. Each process is characterized by
its inputs, the tools and techniques that can be applied, and
the resulting outputs” [21].

Today, one can find several approaches that aim at
collecting PM data in a standardized data model which can
be used to implement PM tools and to exchange project data.
In order to perform PM activities, people use different
methodologies according to their needs and standards.
Instead of creating a project plan manually, companies use
PM tools that support most important PM processes [21]. For
instance, Microsoft Office Project is one of the most often
used PM tools in small teams [34]. Although it is not based
on an official standard, it can surely be considered as a de-
facto standard because of its market position. However, this
tool does not have an open structure since it uses a
proprietary data model, which is not defined by an
independent body.

PROMONT [35] is an ontology-based PM approach that
intends to summarize all major PM standards and tools in
one integrated reference model. It offers extending
definitions of PM issues aimed at supporting interoperability
of PM systems, processes and organizations. In particular,
PROMONT offers a formal approach to define relationships
and conditions between different terms that are used in PM.

III. RESEARCH OBJECTIVES AND
METHODOLOGICAL APPROACH

A. Research objectives
It is common knowledge that software projects have a

high rate of failure [23]. Although various strategies have
been tried (such as structured programming, rapid
prototyping, CASE tools and so forth), there is still no end to
the software crisis.

With the intensification, acceleration in the rate of
change, and expansion in the use of information
technologies, particular attention is being focused on the
opportunities and difficulties associated with sharing
knowledge and transferring "best practices" within and
across organizations [24]. A best practice is public

knowledge, a tactic or method that has been shown through
real-life implementation to be successful [25]. Models and
standards that provide guidance for process improvement
include a set of best practices for product and service
development and maintenance [19].

A typical problem with software engineering research is
that either it is difficult to find companies that provide
reasonable research possibilities or the research is made with
students in “artificial environments”. Our approach provides
a solution for this problem. In our approach we can do
research in a very similar authentic environment. The
participants in our experiments are students but the
environment is very business-like. Teams work constantly
together just like in a real work place. There is always a real
business demand behind the project, which makes the project
context valid for research. Researcher can observe team
members anytime and even participate in projects if it is
considered useful. Face to what we could allow in real
company, our approach has some advantages, namely:
• The ease of research to use their own means of
investigation and, at any time, the ease of the researcher to
ask participants to answer questionnaires (paper or web)
during the semester (within the classes or outside classes);
• All artifacts and documents (e.g. code, models and
reports) provided by the teams are available for research
purposes (we adopt direct analysis of artifacts to assess the
teams process and product maturity);
• Researcher can go to the laboratory and do direct
observation (teams have mandatory meetings in our
laboratories and are available to be observed when
interacting and working in their projects);
• Researcher can take part in the projects and interview
both team members and clients during and after the projects.

This PhD thesis will adopt four main objectives. The first
three correspond to specific software process research
questions that are perfectly pertinent to be addressed when
considering the configuration of process frameworks and PM
tools in small software development teams. The fourth
objective is related with the ESE perspective to assess
empirical results with students; which means that efforts
relative to this fourth objective must run in parallel with the
others. The efforts relative to the first three objectives may
not necessarily be run in a sequential order; we will adopt
spiral approach to deal with the complexity of managing the
complexity relative to all the existing interdependencies
between the variables under study in the first three
objectives:
• The first objective is to analyze the coverage of CMMI
practices that we can expect when adopting the RUP
reference model. To fulfill this objective, we need an
alignment between CMMI and RUP process frameworks, by
selecting the process areas, the specific goals and the specific
practices from CMMI and comparing them with the
coverage we can expect from the execution of the activities
and tasks established by RUP.
• The second objective is to evaluate how CMMI ML2 and
ML3 can be accomplished by particular configurations of
RUP for small software development teams. To fulfill this

338

objective, we need to address the specific configurations of
RUP and understand the implications in the alignment
established in the pursuing of the previous objective. The
outcome of these two first objectives may explain how to
adopt RUP as a process asset to promote CMMI
assessments, taking into account the specific characteristics
of the team’s organization (roles, tasks, activities).
• The third objective is to assess the impact of PM tools in
the performance of software development teams. With this
objective we intend to determine the relationship between the
maturity of the teams and the support they can get from PM
tools. The outcome of this third objective may explain what
kind of key success factors we should look for when
choosing one PM tool taking into account the process
framework (in our case, configurations of RUP for small
teams) and the maturity assessment reference model (in our
case, CMMI ML2 and ML3) we adopt to frame the software
development team.
• Finally, the last and most important objective is to
validate the research results to be produced by the previous
three objectives in an explicit educational context. The
external validity is a major concern in the ESE. The external
validity defines the conditions that limit the ability to
generalize the results of an experiment to industrial practice.
Problems can occur due to the population of participants not
be representative of the population under interest,
instrumentation is not suitable for industrial practice, and the
experiment can be run in a day or special time that will affect
the results. In our case, we will run three sets of experiences
with students, each one dedicated to one the objectives
previously referred. This fourth objective corresponds to an
umbrella research question that will enable the production of
some systematic insight of the advantages and drawbacks of
conducting empirical studies with software students.

B. Methodological approach
An experience should be treated as a process of

formulation or verification of a theory. In order that the
process provides valid results, it must be properly organized
and controlled, or, at least, monitored. In order to achieve
these goals several methods of organization of experiments
have been proposed. In order to compare the experimentation
methodologies we have to consider their different
characteristics, for example, the phases of process
experimentation, the way of the transformation of abstract
concepts of the domain to concrete metrics, the main purpose
of experimentation, tools, etc.

In the sub-field ESE, the most relevant research methods
are the controlled experiments, the surveys, and the case
studies. The selection of methods for a given research project
depends on many local contingencies, including available
resources, access to subjects, opportunity to control the
variables of interest, and, of course, the skills of the
researcher [26]. All the research methods have known flaws
and each can only provide limited, qualified evidence about
the phenomena being studied. However, each method is
flawed differently and viable research strategies use multiple
methods, chosen in such a way that the weaknesses of each

method are addressed by use of complementary methods
[27].

We will adopt surveys as one of the research methods
(specifically, questionnaires) since it is an assessment tool
that can be applied to a considerable number of students, it is
cost effective and non-invasive, provide quantitative data,
and allows the analysis of results with promptness. It has
been argued that the application of questionnaires consumes
less time, effort and financial resources than other methods
of data collection such as interviews and document reviews
[28]. However, at later stages of the research, we will make
some interviews with some students to get additional
information about the team’s organization (mainly related
with the instantiation of RUP configurations).

State-of-the-art will be performed as another research
approach at initial stages of the PhD work. This activity will
complement the brief state-of-the-art presented in this paper.
With the literature review, we intend to acquire knowledge
about the efforts made for similar problems. We intend to
review the following main areas of study:
• Experimental software engineering giving special
attention to studies conducted with students as subjects;
• Software process improvement approaches, in particular
CMMI and RUP configurations for small teams;
• Project management tools and their support to software
development activities.

The three sets of experiences with students will be run as
empirical software engineering studies, framed by all the
recommendations contained in the previously referred
literature. Simultaneously, with the validation of the research
results, we will start the development of a framework that
shows us a consistent process of using students as subjects of
empirical studies. The writing of the thesis will be done
along the realization of the work.

IV. PAST WORK AND PRELIMINARY RESULTS
This PhD work takes place within the Software

Engineering and Management Group (SEMAG) from the
ALGORITMI Research Centre at the University of Minho.
SEMAG research group is devoted to study the development
process of software-based information systems and related
methodologies, focusing on both the engineering and
management aspects.

At the undergraduate level (Bologna 1st cycle), the
teaching staff of the SEMAG is mainly enrolled in the
University of Minho DLic degree in Information Systems
and Technology (LTSI) by running, among others, the
Software Process and Methodologies (PMS) and
Development of Software Applications (DAI) courses. At
the postgraduate level (Bologna 2nd cycle), the teaching staff
of the SEMAG is enrolled both in the DEng degree in
Engineering and Management of Information Systems
(MEGSI) and in the MSc degree in Information Systems
(MSI) by running, among others, the Analysis and Design of
Information Systems (ACSI) and Project Management for
Information Systems (GPSI). The empirical studies planned
for this PhD work will use software engineering materials
and students from PMS, ACSI, DAI, and GPSI courses.

339

During the first academic semester, PMS students
(undergraduation) perform part of the RUP inception phase
relative to one real software application, resulting in a project
proposal to be addressed to one real client. They have three
moments of evaluation and their work focuses on business
modeling, requirement, and project management disciplines.
The existence of a real costumer permits the acquiring of all
the needed information to perform the project proposal.
Simultaneously, some ACSI students (postgraduation) get
involved with PMS students in order to collect information
about the produced business and requirements artifacts and
to perform CMMI assessments.

In the second academic semester, DAI students
(undergraduation) continue to serve the same client of the
first semester and perform the remainder of the RUP
inception phase and execute the elaboration, construction and
transition phases of RUP to deploy the software application
to the real client. Simultaneously, some GPSI students
(postgraduation) get involved with DAI students to collect
information about the produced software artifacts and the
adopted RUP configuration and to perform CMMI
assessments and to analyze the utilization of PM tools.

In our approach, we detain several mechanisms that bring
into the educational context some characteristics of a real
industrial project:
• We have a real client that interacts with the teams and
that opens for them the real organizational environment
where the software application will be explored;
• We adopt a real problem, with the complexity and the
imperfections of any real medium-size software project;
• The inter-relation between PMS and ACSI courses (by
means of the ACSI students that emulate external process
consultants) and between DAI and GPSI courses (by means
of the GPSI students that emulate senior project facilitators)
allow us to recreate a typical industrial environment where
we have outsourcing of consultants and several depths of
professional experiences in the teams;
• The teams compete with each other to sell their software
application to the client, which emulates reasonably well the
real software market.

The two sets of undergraduate and postgraduate courses
(PMS+ACSI and DAI+GPSI) allow us to perform empirical
studies of the controlled experiment type, where teams of
students (subjects) are the experimental units that lead
several software engineering tasks to assess different
software processes (RUP configurations) and PM tools
support.

In the academic year of 2010/2011, a controlled
experiment was performed to assess the reduced model of
RUP [29] [30]. It involved seven development software
teams. The teams had between 13 and 17 students (1 team
with 13, 3 teams with 14, 2 teams with 16 and 1 with 17).
Two teams (team 5 and team 7) were randomly chosen to not
adopting the RUP reduced model (we called these two teams
the "Control Teams"), while the other five teams followed
the guidelines established by the RUP reduced model,
executing the phases of inception, elaboration and
construction. The students elaborated the project proposals

during the first semester and developed the software
applications during the second semester.

The assessment of the RUP reduced model was
conducted by adopting the CMMI-DEV v1.2 ML 2 reference
model. With the exception of SAM (Supplier Agreement
Management), all the other process areas were assessed.
Figure 1 shows the percentage of accomplishment of all
specific practices from all process area analyzed for each
team. Although there is a significant difference between the
various teams, the obtained results show that when the teams
use the RUP reduced model they are able to accomplish
CMMI ML2 adequately [31].

Figure 1. : Coverage of CMMI ML2 Process Areas

In this first experiment, students were suggested to use
Microsoft Project Server 2010 to support their software
development activities. The configuration of this platform
was performed by two GPSI students. The configuration was
extremely difficult to perform. Teams had very little tool
support to perform PM tasks.

In the academic year of 2011/2012, a second controlled
experiment is being performed to assess the mapping
between specific practices of CMMI ML2 and ML3 process
areas and RUP artifacts, activities and tasks. In this second
experiment, students are using Clocking IT [32] and
Teamwork Project Manager [33] to support their software
development activities. ClockingIT is an open source
application hosted for tracking all tasks, issues, projects and
time spent, with a focus on software development and
handling large amounts of tasks. Teamwork Project Manager
is an online application that helps organize and take control
of our current projects, task lists, milestones, files,
notebooks, resources and time. We intent to assess the
influence of these tools in the team’s performance.
Meanwhile, we are gathering information to elaborate our
framework to support the adoption of student teams to
perform industry-valuable empirical software engineering
experiences.

V. FUTURE WORK AND EXPECTED RESULTS
For the next two academic years (2012/13 and

2013/2014), students will get a more stable PM tool support.
With the lessons learned from the two first experiments we
intend to refine our processes of experimentation and start to
explicitly address specific issues related with conceptual
elaboration of our framework. We will also compare the
CMMI maturity of teams that adopt the RUP reduced model

340

with those adopting agile methods. We will also assess
specific PM tools.

VI. CONCLUSIONS
Empirical studies in software engineering are important

to be conducted to evaluate new tools, techniques, methods
and technologies in a structured way before they are
introduced in a real software process. Taking into account
that: (1) software companies are not usually available to
conduct empirical studies; and (2) when, exceptionally, they
decide to do it, they keep the results for themselves;
empirical studies with students are an interesting alternative
to assess software processes and tools and share the results
with the academia and the industry.

The problem with this interesting alternative is that there
is a lack of scientific evidence that empirical studies with
students are valuable for software companies. In our PhD
work we intend to develop a framework that shows us a
consistent process of using students as subjects of empirical
studies. The framework will help to guide new empirical
studies in a way that software companies may get interested
in buying empirical studies to our laboratory. With this
research we hope to contribute to the body of knowledge of
ESE, SPI and PM and also to contribute to the increasing of
the competitiveness of software companies.

REFERENCES
[1] V. Basili, G. Caldiera, F. McGarry, R. Pajerski, G. Page, and S.
Waligora, The Software Engineering Laboratory-an Operational Software
Experience Factory, in ICSE 92, pp. 370-381, 1992.
[2] A.D. Lucia, F. Ferrucci, G. Tortora, and M. Tucci, Emerging Methods,
Technologies and Process Management in Software Engineering. John
Wiley & Sons, 2008.
[3] B.A. Kitchenham, S.L. Pfleeger, L. M. Pickard, P.W. Jones, D.C.
Hoaglin, K. El Emam, and J. Rosenberg, Preliminary Guidelines for
Empirical Research in Software Engineering, in TSE, vol. 28, no. 8, pp.
721-734, 2002.
[4] R. Rosenthal, Science and Ethics in Conducting, Analyzing, and
Reporting Psychological Research, in Psychological Sciense, vol. 5, no. 3,
pp. 127-134, 1994.
[5] L. Jaccheri and T. Osterlie, Can We Teach Empirical Software
Engineering?, in METRICS 2005.
[6] V. Basili, R.W. Selby, and D. H. Hutchens, Experimentation in
Software Engineering, in TSE, vol. 12, no. 7, pp. 733-743, 1986.
[7] M. Höst, Introducing Empirical Software Engineering Methods in
Education, in SEET 2002, pp. 170-179, 2002.
[8] D.I.K. Sjøberg, J.E. Hannay, O. Hansen, V.B. Kampenes, A.
Karahasanovic, N.K. Liborg, and A.C. Rekdal, A Survey of Controlled
Experiments in Software Engineering, in TSE, vol. 31, no. 9, pp. 733-753,
2005.
[9] University of Helsinki. (2012, 2012-5-10). Software Factory. Available:
http://www.softwarefactory.cc/
[10] M. Höst, B. Regnell, and C. Wohlin, Using Students as Subjects—A
Comparative Study of Students and Professionals in Lead-Time Impact
Assessment, in ESE, vol. 5, no. 3, pp. 201-214, 2000.
[11] W.F. Tichy, Hints for Reviewing Empirical Work in Software
Engineering, in ESE, vol. 5, no. 4, pp. 309-312, 2000.

[12] D.I.K. Sjøberg, B. Anda, E. Arisholm, T. Dyba, M. Jorgensen, A.
Karahasanovic, E. F. Koren, and M. Vokac, Conducting Realistic
Experiments in Software Engineering, in ISESE 2002.
[13] L. Jaccheri and S. Morasca, Involving Industry Professionals in
Empirical Studies with Students, in ICESE 2007, Germany, 2007.
[14] M. Svahnberg, A. Aurum, and C. Wohlin, Using Students as Subjects -
An Empirical Evaluation, in ESEM 2008.
[15] J.C. Carver, L. Jaccheri, S. Morasca, and F. Shull, A Checklist for
Integrating Student Empirical Studies with Research and Teaching Goals,
in ESE, vol. 15, no. 1, pp. 35-59, 2010.
[16] W. S. Humphrey, A Discipline for Software Engineering. Addison
Wesley, 1995.
[17] W.A. Florac, A.D. Carleton, and J.R. Barnard, Statistical Process
Control: Analyzing Space Shuttle Onboard Software Process, in IEEE
Software, vol. 17, no. 4, pp. 97-106, 2000.
[18] B. Hansen, J. Rose, and G. Tjørnehøj, Prescription, Description,
Reflection: The Shape of the Software Process Improvement Field, IJIM,
vol. 24, no. 6, pp. 457-472, 2004.
[19] SEI, "CMMI® for Development, Version 1.3, Software Engineering
Institute, CMU/SEI-2010-TR-033, 2010.
[20] P. Kruchten, The Rational Unified Process - An Introduction, 3rd
Edition. Addison-Wesley, 2003.
[21] PMI, A Guide to the Project Management Body of Knowledge, Fourth
Edition, Project Management Institute, 2008.
[22] PMI. Available: http://www.pmi.org
[23] The Standish Group. (2009). Chaos Report. Available:
http://www1.standishgroup.com/newsroom/chaos_2009.php
[24] W.J. Orlikowski, Knowing in Practice: Enacting a Collective
Capability in Distributed Organizing, Organization Sciense, vol. 13, no. 3,
249-273, 2002.
[25] R. G. Cooper, Winning at New Products: Accelerating the Process
from Idea to Launch, third edition, Addison-Wesley, 2001.
[26] S. Easterbrook, J. Singer, M.A. Storey, and D. Damian, Selecting
Empirical Methods for Software Engineering Research, in Guide to
Advanced Empirical Software Engineering, 1st Ed., pp. 285-311, 2008.
[27] J. W. Creswell, Research Design: Qualitative, Quantitative and Mixed
Methods Approaches, 3rd edition,Sage Publications Inc., 2009.
[28] I. Garcia, C. Pacheco, and P. Sumano, Use of Questionnaire-Based
Appraisal to Improve the Software Acquisition Process in Small and
Medium Enterprises, in SERMA, vol. 150, pp. 15-27, 2008.
[29] P. Borges, P. Monteiro, and R. J. Machado, Tailoring RUP to Small
Software Development Teams, in SEAA 2011, pp. 306-309, 2011.
[30] P. Borges, P. Monteiro, and R. J. Machado, Mapping RUP Roles to
Small Software Development Teams, in SWQD 2011, pp. 59-70, 2012.
[31] F. Mandjam, Avaliação do Impacto das Práticas do CMMI no
Desempenho de Equipas de Desenvolvimento de Software no Ensino, MSc
in Engineering and Mangement of Information Systems, Universidade do
Minho, Portugal, 2011.
[32] E. Simonsen and E. Simonsen. (2008, 2012-05-11). Clocking IT
TimeTracking 2.0. Available: http://www.clockingit.com/
[33] Teamwork Project Manager. (2012, 2012-05-11). Teamwork Project
Manager. Available: http://www.teamworkpm.net/
[34] Microsoft. (2012, 2012-05-10). Available:
http://office.microsoft.com/pt-pt/project-help/ CH010362755.aspx
[35] S. Abels, F. Ahlemann, A. Hahn, K. Hausmann, and J. Strickmann,
PROMONT - A project management ontology as a reference for virtual
project organizations, in LNCS, vol. 4277, pp. 813-823, 2006.
[36] M.C. Paulk, “A History of the Capability Maturity Model for
Software,” ASQ Software Quality Professional, vol. 12, no. 1, pp. 5-19,
2009.

341

