
HAL Id: hal-00994152
https://paris1.hal.science/hal-00994152v1

Submitted on 21 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FASMM: Fast and Accessible Software Migration
Method

Louis Forite, Charlotte Hug

To cite this version:
Louis Forite, Charlotte Hug. FASMM: Fast and Accessible Software Migration Method. Eighth
IEEE International Conference on Research Challenges in Information Science, May 2014, Marrakech,
Morocco. pp.1-12, �10.1109/RCIS.2014.6861070�. �hal-00994152�

https://paris1.hal.science/hal-00994152v1
https://hal.archives-ouvertes.fr

FASMM: Fast and Accessible Software Migration

Method

Louis Forite, Charlotte Hug

Centre de Recherche en Informatique

Université Paris 1 Panthéon-Sorbonne

Paris, France

louis.forite@gmail.com, Charlotte.Hug@univ-paris1.fr

Abstract—With the fast changes of development technologies,

organizations often need to migrate their software from a source

to a target technology that could comprise a shift in

programming paradigm. This operation is not easy and requires

precision and structuring. However, in small companies, due to

lack of resources (workforce, time, budget…) the migration

phase is frequently quickly done and not necessarily in an

optimized way: functionalities are not implemented properly, the

new architecture is loose and knowledge gained during the

migration is not capitalized. This paper presents a method to

guide developers in the migration of software functionalities

based on model driven engineering techniques and allows

capitalizing knowledge as transformation rules, to enable their

reuse in future migration projects. This method was built from a

case study in a French company that produces software training
and support for critical applications.

Keywords—migration method, intentional process model, model

driven engineering, knowledge management

I. INTRODUCTION

With the fast changes of development technologies,
organizations often need to migrate their software products
from a source to a target technology that could comprise a shift
in programming paradigm. In this paper, we studied the case of
a French SME that produces training and support software
products for critical applications. The company was founded
13 years ago and has already trained more than 400,000 users
for major worldwide accounts through its software products. It
employs 30 engineers that work on the same site. The
development team implements agile best practices as pair
programming and daily stand-up. In 2013, the company had to
migrate one its flagship software product, an Electronic
Performance Support System (EPSS), where the data
management was developed in Java/J2EE and the users’
interaction part for the website was developed in HTML,
JavaScript and Ajax. The server is then developed in Java and
the communication with the client is done in Ajax. The final
objective of this migration was to ensure the full compatibility
of the EPSS with the Oracle E-Business Suite ERP by
developing a full Java version of the system.

Several issues can be raised during a migration project and
in the case of this French company in particular. We describe
them hereafter:

No proper method of migration is defined or followed. To
migrate the software product, no method is recommended. The

development team defines the structure and border of the
functionalities to migrate by consensus. Functionalities
evaluated as essential are migrated first (rewriting the code
«from scratch» in the targeted technology). There is a poor
visibility on the goals and expectations regarding the business:
the scope of the functional coverage of the software to migrate
is not clearly defined. Nothing guarantees the quality and
consistency of the new developments. Rewriting the code
“from scratch” is a risky and lax technique considering the fact
that there is a programming paradigm shift between the source
and the targeted technology which creates additional
difficulties.

The software does not have source analysis models,
visibility and understanding of the current software is therefore
complex and limited. Indeed, in SME, modelling does not seem
to be a priority. Little time is spent on models management and
methodology. These methods are often time-consuming, or
require too specific knowledge. Thus, software models are
often set aside in favor of actual developments. The models are
nonexistent or not kept up to date. This has a double impact on
future developments: the developers have poor visibility of the
overall software architecture and developments are less
rationalized.

The paradigm shift in programming between the source
software and the target software is a difficulty. Each
programming paradigm provides a different view of the
software and offers different options to implement the product
to the developers for a given problem. Software products are
coded very differently according to their programming
language. There is a real complexity to migrate software
products from one programming paradigm to another as it
requires to abstract the first to rethink the other. Some
mechanisms in a given paradigm can hardly be feasible while
in another they can naturally be implemented.

Developers accumulate technical knowledge during the
migration project that will eventually get lost. During the
software migration, developers involved gain experience in
migrating software products from one technology to another;
from JavaScript to Java in this case study. This knowledge,
although essential during migration, is not capitalized, but only
shared, orally or by memos, between developers participating
in the project. It could be interesting to capitalize this
knowledge to reuse it and share it in future migration projects
to earn resources and time.

Several methods have been proposed to migrate software
products or legacy systems [23], [24], [25]. However,
according to our knowledge, those methods do not take into
account:

 The technical difficulty introduced by a shift of
programming paradigm between the source and target
technology,

 The difficulty of their implementation in SME because
of their complexity [24], and time and budget
consuming constraints.

 The loss of technical knowledge acquired during the
migration as it is not capitalized.

The goal of this paper is to propose a method that allows to
simply perform software migrations while capitalizing the
accumulated knowledge. The method supports a shift in
programming paradigm thanks to model driven engineering
concepts. It is aimed at small development teams in SME with
standard knowledge in modeling. The proposed approach is
called “Fast and Accessible Software Migration Method”
(FASMM). We designed it to be easy to learn and to use for
any software developers in time and resources constraining
context.

We describe FASMM in section 2. Section 3 presents a first
evaluation of the method. Section 4 presents the related work
and section 5 concludes this paper.

II. FASMM

The purpose of this method is to provide a framework for
the functionalities ‘migration of a software product while the
source and targeted technologies are based on different
programming paradigms. This approach has multiple
objectives as to:

 Automate certain phases of the migration,

 Ensure that the migrated functionalities fulfill their
technical and functional objectives,

 Formalize and capitalize the technical knowledge
gained during the project,

 Be simple enough that it can be applied by developers
who do not have very advanced knowledge in modeling
and metamodeling.

This method is primarily intended for small development
teams. However, it requires the involvement of some functional
actors for the definition of user goals as it is necessary to
ensure that the project will cover the business requirements.
Functional actors as business analysts or users are then needed
to ensure the success of the migration project. We built
FASMM from the experience of a project migration in a
French SME.

This section will first present an overview of FASMM, we
then describe the artifacts and the process in detail.

A. Overview of the method

The method answers to both problems of migration and
knowledge capitalization. The method guides the developers in
modeling the functionality to migrate. A system functionality is
the ability to perform a set of tasks to achieve a specific goal.
The developers can then carry out the migration it-self by
applying transformation rules to the existing code and the
models. They finally have to validate the migrated
functionality. While working on the migration, developers
discover transformation rules and add them to the dictionary
for knowledge capitalization. The inputs of the method are the
application to migrate and the existing related technical (class
and state transition diagrams) and functional documents
(textual use case, class diagrams). The dictionary of
transformation rules is also an input (see section II B.2). The
output of the method is the migrated and validated
functionality and the updated dictionary of transformation
rules. Section II.Q presents a global view of all the inputs and
outputs of the method.

Fig. 1 presents the method as a map process model,
instance of the Map process metamodel [1]. A map focuses on
the different strategies to achieve intentions in a flexible way as
each intention is reached independently and when it is achieved
with satisfaction, the actor may continue the enactment of the
process and achieve new intentions. The nodes represent the
intentions and the edges, the strategies to follow to achieve an
intention target, from an intention source. A section of a map is
a triplet composed of a source intention, a target intention and
the corresponding strategy to achieve it. In Fig. 1, the sections
in bold are refined as map process models. The method is then
presented at different levels of abstraction to ease its
understanding and to refine the complex parts of the process to
facilitate its use and properly guide developers during the
enactment.

We defined five intentions: “get model”, “migrate
functionality”, “validate”, “discover transformation rule” and
“enrich dictionary”. By providing the method as a map,
developers will be able to work on the different phases of the
migration and at the same time enrich the dictionary by
transformation rules: Map allows enacting different paths at the
same time according to the reasoning of the developers. The
FASMM enactment is then flexible as the developers will be
able to follow different strategies to achieve their intentions.
For example, to get the models of the functionality to migrate,
a developer can enact several times the strategies by reverse
engineering and by reviewing existing code as long as the
models are not validated (the intention is not achieved). The
whole model should be enacted as many times as there are
functionalities to migrate.

In the “branch” covering the migration (lower part of Fig.
1), we identified five strategies to get a model. By reverse
engineering of the existing code, by reviewing existing code
and by reviewing existing models are complementary as there is
often a gap between the models and the code. Therefore, it is
necessary to complete the existing models before applying
transformation rules. It is possible to get models by identifying
reusable part of codes and by identifying unsatisfying parts of
code.

Fig. 1. FASMM presented as a map.

Finally, developers have to validate the technical and
functional models by consensus. We identified two strategies
to achieve the intention “migrate functionality”: manual and
semi-automatic, which are complementary. The manual
strategy consists in applying transformation rules from the
dictionary (pattern recognition…). The semi-automatic strategy
allows generating code from the obtained models. Model
Driven Engineering techniques can also be considered to
transform models into refined models by using Model to Model
transformations. The migrated functionality has to be validated
by functional tests, i.e. to verify its consistency with the
models, and by technical tests to ensure the durability of the
solution and its reliability.

The second branch of the method is about knowledge
capitalization (upper part of Fig. 1). We identified the
intentions “discover transformation rule” and “enrich
dictionary”. Rules can be discovered by experience, by model
analysis, by problem identification during the migration of the
functionality or by reviewing the code. Developers can enrich
the dictionary by creating new rule, by invalidating or
correcting existing rules or by structuring the dictionary it-self.

The method produces three artifacts: the dictionary that
contains the knowledge on migration formalized as
transformation rules and the migrated functionality with the
associated models. The added value of this method is the
knowledge capitalized in the dictionary to be reuse and enrich
projects after projects.

We first describe the artifacts produced during the
enactment of the method. We then present the sections of the
method. Some of them (in bold in Fig. 1, are refined as maps).

B. The artifacts

1) Transformation rules

“A transformation is the automatic generation of a target
model from a source model, according to a transformation
definition” and it “is a description of how one or more
constructs in the source language can be transformed into one
or more constructs in the target language.” [2]

We need to specify a transformation rule to identify a
specific situation and to propose a solution, for example how to
migrate a GUI from Java to JavaScript. To specify a
transformation rule, we propose the following template: title of
the rule, the source and the target technology, its categories, the
application case, its description, its status and the author of the
rule.

TABLE I. EXAMPLE OF A TRANSFORMATION RULE

Title Emulation of an interface in JavaScript

Source Technology Java

Target technology JavaScript

Categories Interface

Application case An interface can be seen as an abstract class

with all its methods as abstracts. As the main

purpose of an interface is to force the

implementation of the methods it defines, we

can simulate an interface by implementing a

class with all its methods throwing exceptions.

Thus, classes that implement the interface

without defining the methods thereof hinder an

error.

Description Java Interface → JavaScript Class

(Method → Method throwing exception)*
Status Active

Author L.F.

TABLE I. presents an example of a transformation rule to
emulate Interfaces in JavaScript from Java.

The proposed template is minimalist; it only comprises six
sections to reduce the writing effort of the developers. The
experience shows that if the contribution is perceived as a
burden, people won’t do it [3]. It is then essential to ease the
work of the developers. Two sections will then really need an
effort: the description and the application case. The description
will comprise the transformation itself, described as an
algorithm or in a transformation language as ATL [4] or QVT
[5].

2) Dictionary
The dictionary is a coherent set of transformation rules on

different technologies for the migration. It is organized in
categories as HMI, algorithm… The available operations on
the dictionary are described in the next sections. The dictionary
can be implemented as a Wiki to be easily accessible. The
dictionary, once defined, can be reused and enriched in other
migration projects (it is then an input of the new migration
projects).

3) Migrated functionality and models
The migrated functionality comprises the code and the

associated models. At the end of the enactment of the method,
the functionality will be technically and functionally tested. It
will match the business requirements and technical constraints
of upgradability, modularity, maintenance, with a minimal
effort of recoding. The migrated functionality will be
associated with its updated models. The models are all
instances of the UML metamodel [2]: use case diagram for the
functional part and class and state-transition diagrams for the
technical part of the functionality to migrate. We chose to use
those models because they are easy to understand by
developers who would not necessarily have strong experience
in modelling. The recommended UML models are those which
are the most commonly used in companies [28]. Fig. 2 presents
a simple technical model defined as a class diagram
representing an interface “Payable” and two implemented
classes “Invoice” and “Employee” (inspired from [6]). Fig. 3
presents the JavaScript code to represent the technical model
using the transformation rule defined in TABLE I.

Fig. 2. Simple technical model defined as a class diagram.

To ease the modelling and the transformations, we strongly
recommend the use of Integrated Development Environment as
EMF [7] for example.

Fig. 3. Code in JavaScript after applying the transformation rule “Emulation

of an interface in JavaScript”.

C. <Start, Get model, By reverse engineering>

The section <Start, Get model, By reverse engineering> in
Fig. 1 is refined in the map presented below (Fig. 4).

Fig. 4. Refined map of the section <Start, Get model, By reverse

engineering>.

There are two different paths in this map: the functional
modelling and the technical modelling of the functionality to
migrate. The main objective is to understand and define the
borders of the functionality to migrate.

1) Functional modelling
Developers have to define a functional scope to better focus

on the development of the user goals, using two strategies:

 To interview the people concerned by the functionality
to migrate to understand their needs. They can be users
or business practitioners. Users are the people who use
the system in their daily work. Business practitioners
hold the knowledge of the domain of the system, know
the related business practices but do not necessarily use
the system itself.

 To directly use the functionality in the software to
understand its purpose.

These strategies are complementary. Thus, if one of the two
strategies is not sufficient to discover the functional scope of
the functionality to migrate, the developers may use the other
to collect the maximum amount of information.

Once the information gathering is done and satisfying, we
recommend the creation of two documents to formalize the
functional scope of the functionality to migrate: the textual use
case and the use case diagram. The use case diagram should be
easily understood, it is in fact a powerful communication
notation. In general, the models are an abstraction of reality.
They offer a better overview than text documents, but they
have the disadvantage of sometimes being less precise. UML
[2] is recommended for defining the use case diagrams in
FASMM.

On the other hand, the textual use cases allow to describe
more precisely a business process as they detail the different
steps of a use case. To write a textual use case, the structure
defined by Alistair Cockburn, “Casual use case” is
recommended [9]. It has the advantage of being concise;
however its quality greatly varies according to the author. A
textual use case always follows the same template: title,
primary actor, scope, level, and story.

Once these two documents are completed, the functional
scope is defined. If developers know in advance what the
migrated functionality should do, it will be easier to define
what part of the code has to be migrated.

2) Technical modelling
Technical models are class diagrams and state-transition

diagrams. State transition diagrams can be easily understood by
functional actors as it permits to correlate the object of the
system and the corresponding business object. We did not
preconize the use of sequence diagram that can be hard to
define and to understand without good modelling knowledge.
To determine the technical models, we identified two
strategies:

 Review existing models and divide them to determine
the borders of the migration. This strategy is strongly
recommended when the models match the current
architecture of the software as they offer a better
comprehension of the system. The developers will then
be able to measure the impact of the migration and
could tell which class will be useful or not to the
migration. However, when models are not up to date,
we recommend to base the discovery of the technical
scope from the models obtained through code
introspection.

 Review the code by introspection to understand which
part has to be migrated or not when models are not
available at all. Although it is tedious and less precise to
determine which part of the code to migrate or not, yet,
it allows to prepare the developers to the next steps of
migration as he/she will need to inspect the code of the
functionality.

These strategies can be combined as reviewing the code can
help checking the obtained models.

Once the technical scope is defined, the developers can
obtain the technical models either by automatically reverse
engineering the models from the defined source code (by
automatic strategy), either by manually designing the models
from the reviewed code (by manual strategy). Lots of tools

exist to reverse -engineer the code as ObjectAid [10], Papyrus
[11], eUML2 [12], MaintainJ [13], JS/UML2 [14]… However
some technologies are not supported by reverse engineering as
JavaScript that is prototyped (dynamic structure during
execution). Only libraries written in such languages can be
reverse engineered (JQuery [15], script.aculo.us [16]), if the
code is written from scratch, it will be impossible to use such
tools. The manual strategy is then the only option, although
laborious.

D. <Get model, Get model, By identifying reusable part>

The map in Fig. 5 refines the section <Get model, Get
model, By identifying reusable part> of Fig. 1.

Fig. 5. Refined map of the section <Get model, Get model, By identifying

reusable part>.

Before migrating the functionality, we recommend to
define what can be reused from the existing code and what
should first be transformed. A reusable part is code that is
directly exploitable (which can be directly transcribed into the
target technology), e.g. a class, a mechanism, a function... This
phase is very technical and is addressed to the developers; a lot
of time can be spared if this step is done correctly.

To define reusable parts of the software, we defined three
strategies:

 By documented research,

 By code introspection when developers know that the
target technology will support this technology or
concept (in terms of architecture, design pattern,
interface mechanism…).

 By model reviewing when the target technology will
support the same architecture as the source.

Many commodities [17], [27] exist to make technologies
communicate as native API that prevent the developers to
recode some functionalities. It is then recommended to do a
research to check the possibilities of bridge between source and
target technologies and to use them. This will accelerate the
development and prevent pitfalls.

For example, in our case study, there is an API provided by
Oracle [17] authorizing the invocation of JavaScript code from
the applet, and vice versa. This avoids redeveloping
functionalities that could cause annoying technical issues such
as security problems. In the case of web services, it is easy to
reuse WS from a technology to another. It is therefore not
necessary to redevelop these services, which will save time and
effort.

Many functionalities can actually be reused from the source
to the target technologies. This is not the case for all
functionalities; typically Graphic User Interfaces are rarely
reusable from one technology to another. They must then be
redeveloped according to the possibilities of the target
technology. Generally, there are similarities between the
different technologies for HMI, as listeners or event handlers
mechanisms.

With the strategy of code introspection, the developer is
asked to dive into the heart of the functionality to migrate to
arbitrarily judge what could be subject to direct or indirect
reuse.

Finally, reviewing the functional and technical models can
also be useful to define what is reusable. Developers will be
able to tell whether such architecture is reproducible in the
targeted technology given the programming paradigm shift.
They should then look specifically into the code if the
reusability can be effective.

E. <Get model, Validate, by functional tests>

The validation of the functional modeling is dual: there is
firstly a semantic validation that checks the compliance of the
use case diagrams [18] [19], and secondly a functional
validation to check the clarity of the use cases. A clear use case
must be intelligible and understandable by everyone and must
fit into the functional scope previously discovered. This
validation will be carried out with the technical team (the
developers) and the functional team (business analysts)
previously involved: are the models relevant enough? Do they
precisely reflect what is required in the software in terms of
business and user requirements?

F. <Get model, Validate, by technical tests>

The validation of the technical models (class and state-
transition diagrams) of the functionality to migrate focuses on
the scope of the previously obtained models. These models are
the basis of the functionality migration. This validation is
therefore done by consensus of the technical team by agreeing
on the technical modeling before moving to the migration
itself: is the new architecture coherent? Is it scalable, modular
and maintainable?

G. <Get model, Get model, by identifying unsatisfying part>

The map in Fig. 6 refines the section <Get model, Get
model, by identifying unsatisfying part> of Fig. 1.

Fig. 6. Refined map of the section <Get model, Get model, by identifying

unsatisfying part>.

When developers work with legacy code, technical or
architectural choices are questionable. They must then identify
which part must be kept or not for the migration and what
should be improved. The way to identify non-reusable code
must be done within the team by consensus. Non-reusable code
does not follow good practices, is unreadable and unintelligible
at first glance, contains misnamed classes...Tools allow
measuring the quality of code and therefore improve it, as
Checkstyle [20] for Java.

The way to identify non-reusable code must be done within
the team by consensus.

Once the unsatisfying code is identified, the functionality
must be designed in a smarter way. Developers technically
model this part of the functionality and integrate it into the
global model of the functionality.

H. <Get model, Migrate functionality, by semi-automatic

strategy>

The map in Fig. 7 refines the section <Get model, Migrate
functionality, by semi-automatic strategy> defined in Fig. 1.

Fig. 7. Refined map of the section <Get model, Migrate functionality, by

semi-automatic strategy>.

The semi-automatic strategy is divided into two separate
paths. The developers can simply execute Model to Text
(M2T) transformations or create complex automated
transformations as Model to Model (M2M) and M2T.

M2T transformations allow to automatically generate code
from models (By M2T transformations). In FASMM,
developers generate the skeleton of the future functionality
taking as a basis the models obtained by the reverse
engineering strategy and complete it with manual
transformations rules from the dictionary.

Developers can also go through a more complex model-
driven engineering process by defining a metamodel that
represents the domain associated to the functionality (By
metamodeling). Developers must then apply Model to Model
(M2M) transformations to refine the models in conformance
with the metamodel. This process is very complex to
implement and requires advanced knowledge in modeling and
metamodeling. We do not recommend this strategy, as most
developers lack skills and time to enact it correctly.

However, as previously said, the models obtained by
reverse engineering will be partially usable. Some parts of the
models will be directly usable (by automatically generating

code) while others will require more subtle and non-
automatable transformations.

It is highly recommended to use a maximum of best
programming practices to get the best quality code as possible,
by writing unit tests for example.

I. <Get model, Migrate functionality, by manual strategy>

The strategy of manual processing is complementary to the
strategy of semi-automatic transformation. It consists in
applying transformation rules on models or source code. Fig. 8
shows the refinement of the section <Get model, Migrate
functionality, by manual strategy> of the method presented in
Fig. 1.

Fig. 8. Refined map of the section <Get model, Migrate functionality, by

manual strategy>.

Developers are required to recode manually the
functionality. It is initially advised to generate the source code
skeleton using a M2T transformation and to manually fill the
classes by model conformance. Developers have to code what
cannot be directly transformed (HMI, architecture
incompatibilities, differences between programming
paradigms...) by legacy code inspiration.

Applying a transformation rule consists first in identifying a
particular scenario (in the code, architecture, mechanisms) in
which it is necessary to make changes to make it compatible
with the target technology. These transformation rules are
retrieved from the dictionary that developers complete during
the migration. A transformation rule can also be applied by
heuristic when a developer knows the rule is adapted to the
situation.

We also advise to implement a maximum of best
programming practices to get a code as good as possible. By
writing unit tests for example (if the technology permits it), a
smooth development is ensured.

J. Discover transformation rule

We identified four independent strategies to achieve the
intention “Discover a transformation rule” (see Fig. 1). The
transformation rules will be defined according to the template
presented in section II.B.1)

1) By Experience
The strategy of discovery of new transformation rules based

on experience enables developers to directly enrich the
dictionary when the project starts. Developers accumulated
tacit knowledge during previous projects; they can therefore

make it explicit by writing transformation rules in the
dictionary.

2) By code review / heuristic
During the migration of the software, developers are

encouraged to review the code to determine whether some part
of the code is reusable. If part of the code is not directly
reusable it will require a transformation that will result in a new
rule.

The majority of the rules are discovered by code review.
Most of the time, these are technical rules to bridge the gap
between two programming paradigms.

3) By problem identification
During migration, many technical problems arise: technical

incompatibilities, security problems while using API... The
identification and resolution of these problems lead to
transformation rules as long as the case is identifiable.

4) By model analysis
By analyzing models, it is possible to know which part of

the functionality will be reusable or not, the model analysis is
then a good way to discover new rules.

K. Enrich dictionary

To achieve the intention “Enrich dictionary”, we identified
four strategies (see Fig. 1):

 Create a new transformation rule, and add it to the
dictionary,

 Disable an existing transformation rule,

 Fix an existing transformation rule by detecting an
error, inaccuracy, inconsistency,

 Improve the structure of the dictionary by adding
categories (to better find and organize the capitalized
knowledge).

In the short term, this dictionary may seem useless because
when a developer finds a transformation rule (consciously or
unconsciously), he applies it directly. With the dictionary, the
developer has to formalize this rule and systematically think
about the impact of its results. In addition, the developer is
required to write his understanding of the technology. This
dictionary can be reused in the following migration projects to
earn time while searching for and applying transformations.
The dictionary allows to capitalize knowledge in a formalized
way.

L. <Discover transformation rule, Enrich dictionary, by
creation>

Fig. 9 presents the refinement of the section <Discover
transformation rule, Enrich dictionary, by creation> described
in Fig. 1.

The creation of a new rule requires its prior discovery and
the verification of the existing rules to avoid doubloons. It is
then essential for developers to properly identify the rule first
by specifying the situation when it applies, its name, its
categories, (architecture, algorithm, performance...).

Fig. 9. Refined map of the section <Discover transformation rule, Enrich

dictionary, by creation>.

The formalization of a rule by review can be done by other
developers to ensure the rule is understandable by everyone.

When several developers reviewed the rule and approved
its formalization, the status of the rule can be set to active to be
visible by the other team members.

M. <Discover transformation rule, Enrich dictionary, by

correction>

The map in Fig. 10 presents the refinement of the section
<Discover transformation rule, Enrich dictionary, by
correction> specified in Fig. 1.

To achieve the intention “Enrich the dictionary”,
developers can use the correction strategy. They must first
identify the rule; to do so, there are three strategies: the
developer can look for a rule by its name, by its category, or by
keywords.

Then the developers identify the correction to be made: by
adding new content to the rule (when developers discover that
the rule can be applied in other cases), by generalizing the case
of application of the transformation rule, or by correcting a rule
which was initially wrong (if poorly initially specified, if it
became obsolete in terms of technology or practice…).

Fig. 10. Refined map of the section <Discover transformation rule, Enrich

dictionary, by correction>.

N. <Discover transformation rule, Enrich dictionary, by

invalidation>

The map in Fig. 11 presents the refinement of the section
<Discover transformation rule, Enrich dictionary, by
invalidation> defined in Fig. 1.

The invalidation rule strategy may seem paradoxical to
reach the “Enrich dictionary” intention. At first glance, the
invalidation is perceived as a loss but removing a false or
outdated rule participates indeed in the consolidation of the

knowledge of developers. To be useful, the dictionary must
contain reliable transformation rules.

It is also possible to archive the rules. This action allows to
keep track of their history. This is necessary to understand the
existing rules and the process that led to them.

Fig. 11. Refined map of the section <Discover transformation rule, Enrich

dictionary, by invalidation>.

O. Validate the migrated functionality

This section is described in Fig. 1. We identified two
strategies to validate the migrated functionality. The
functionality has to be functionally and technically validated.

1) By functional tests
The functional validation strategy of the migrated

functionality consists in checking the conformity of the
functionality or part of it to the use cases obtained in the
reverse engineering phase. There will be as many tests as use
cases.

To validate the migrated functionality it is possible to run
end-user tests. If the functionality fulfills its role, it is then
validated. Test scenarios can be implemented to ensure the
uniformity of functional tests. In addition, questionnaires can
be written to enable the collection of users’ opinion.

2) By technical tests
The validation by technical tests strategy aims to ensure the

technical sustainability of the new architecture and the new
code. Developers can verify the implementation of best
practices (exception mechanism, use of design patterns, generic
code, functionalities developed as components etc.). If there is
no legacy code in the new developed functionality, it is then
much easier to implement best practices as legacy code often
obligates to badly code to keep the system working. It is also
possible to test the code by creating unit tests; if they fail the
migrated functionality is not validated.

P. <Enrich dictionary, Enrich dictionary, by structuration>

To structure the dictionary, developers can follow three
different strategies:

 Create a new category that will better classify the
different transformation rules. For example, the HMI
elements are not reusable from one technology to
another. A developer could create technologic HMI
categories that would contain all the knowledge related
to specific HMI transformation rules. Another category

could be dedicated to the programming paradigm shift
and its implications on the code and how to program
from one paradigm to another.

 Modify an existing category to make it more specific or
generic depending on the need. For example, the HMI
category may be specified into HMI: the forms.

 Classify the rules in different categories to move rules
from one category to another.

Fig. 12 shows the refinement of the section <Enrich
dictionary, Enrich dictionary, by structuration>.

Fig. 12. Refined map of the section <Enrich dictionary, Enrich dictionary, by

structuration>.

Q. Description of the inputs and outputs of the method

In this section, we focus on the different inputs and outputs
of the method. The method is presented as a map; each
intention corresponds to the creation or modification of a set of
artifacts. We described them in section II.B, however we still
need to specify when they are produced and used in the
method. TABLE II. presents for each couple of source and
target intentions the related inputs and outputs. We do not
represent the strategies related to the target intentions as the
sections can be enacted as many times as possible until the
target intention is achieved. Moreover, different strategies
related to the same couple of source and target intentions will
be enacted several times to achieve the intention. For instance,
from the start intention to the “Get model” intention, the inputs
are the existing code, the existing models (functional and
technical), and the knowledge hold by the user and the business
practitioners on the functionality to migrate. The expected
outputs, when the “Get model” intention is achieved, are: the
technical models, the textual use cases and the use case
diagrams of the functionality to migrate, whatever the applied
strategies. We did not detail the inputs and outputs of the
refined maps, as it would complicate the understanding of the
table.

The final products are presented in the two last rows of the
table in bold: the upgraded version of the software or
application (each migrated functionality corresponds to an
upgrade), and the completed dictionary with the transformation
rules discovered during the migration of the functionality.

III. A FIRST VALIDATION

We set up a protocol to evaluate qualitatively the
experience of the developers using FASMM, based on
exercises and questionnaires. We carried out the evaluation in
the French company, with members of the EPSS migration
project.

TABLE II. INPUTS AND OUTPUTS OF THE METHOD

Source

Intention

Target intention Inputs Outputs

Start Get model Existing code,

existing models,

users and business

practitionners

knowledge

Technical

models, textual

use case and use

case diagram of

the functionality

to migrate

Get model Get model Technical models,

textual use case and

use case diagram of

the functionality to

migrate

Refined and

validated models

of the

functionality to

migrate

Get model Migrate

functionality

Refined and

validated models of

the functionality to

migrate

Migrated

functionality

Dictionary of

transformation rules

Migrate

functionality

Validate Migrated

functionality

Validated

functionality

Start Discover

transformation

rule

Developers

experience in source

and target technology

Transformation

rule

Get model Discover

transformation

rule

Tehnical models Transformation

rule

Discover

transformation

rule

Enrich dictionary Transformation rule Enriched

dictionary of

tranformation

rules

Dictionary of

tranformation rules

Enrich

dictionary

Enrich dictionary Dictionary of

tranformation rules

Structured

dictionary

Validate Stop Validated

functionality
Upgraded

version of the

application

Enrich

dictionary

Stop Structured dictionary Completed

dictionary

A. The protocol

We conducted the evaluation as semi-structured interviews.
First, we gave an overview of FASMM to the subjects,
presented its challenges, the whole process as a map, the
definition of key concepts as reverse engineering, textual use
case, etc... The questionnaire was then distributed with the
wording of the exercise to complete. The exercise consisted in
following FASMM to migrate a functionality of calculus for an
educative software product from HTML5/JavaScript to Java.
The code of the functionality in JavaScript and an incomplete
class diagram were provided to the subjects. The purpose of the
semi-structured interview was to put the subjects in the context
of a migration so they could apply different strategies to
achieve the intentions following the method. We wanted to
evaluate:

 The clarity of the method (its objectives and
challenges),

 The ease of use of the method,

 The interest of the developers for the method.

The subjects had to produce different artifacts during the
evaluation:

 The artifacts of the method: the models, the migrated
functionality, the discovered and formalized
transformation rules,

 The products of the evaluation: their comments and
remarks.

The actual result and the expected results were compared.
We measured the delta between them to evaluate the technical
efficiency of the method.

B. The evaluation and results

We chose three members of the migration project of the
French company as subjects. The evaluation lasted two hours
but all the sections of the method were not enacted because of
lack of time.

1) Profile of the subjects
The three subjects had technical profiles. They all had a

good experience in software development (five years
minimum), and participated to software migration projects
from Java 1.4 to Java 1.5 and Web to Java, without using any
predefined method. They then had a good experience in
software migration.

2) Clarity and ease use of the method
All the subjects agreed the method was understandable with

explanations and guidance. Globally, they understood the
method and raised an important point: the modelling is
important in the migration process.

However, some sections of the method have not been
clearly understood as <Get model, Get model, By identifying
reusable part> because the “reusable part” concept was
misleading: “Is it the code or the architecture?” (S2). Some
subjects did not assimilate the concept of transformation rule:
“What should be the level of granularity of a rule?” (S1),
“When should a rule be used?” (S3).

The subjects felt the method was difficult to use as it was
perceived little iterative and directive. The lack of iteration in
the method is probably due to the fact the subjects did not
understand the principle of Map which allows enacting a
section as long as the intention is not achieved. Paradoxically,
they did not consider the steps of the method and their
implementation too abstract.

3) Interest for the method
The subjects manifested a great interest for the method.

They were unanimous to say it allowed them to achieve the
objective to migrate the functionality proposed in the exercise.
They agreed FASMM could be used in an organization
according to the context (available time to assimilate the
method, specific migration projects).

The subjects regretted the fact of not having enough time to
implement some parts of the method, including the functional
validation. They were therefore unable to assess this part of the
method.

C. Conclusion

The subjects all agreed that the exercise was interesting.
They underlined that the case presented in the exercise was

relevant and that the functionality migration described was
justified. The time allotted for the evaluation was too short,
however, in two hours, the subjects succeeded in migrating the
functionality from JavaScript to Java (without the functional
validation).

The results of this evaluation are positive. The method
achieved its goal: it guided the subjects through the
functionality migration. S1 emphasizes that the migrated
functionality was more complete and easier in terms of
maintainability, more viable in terms of reusability and
genericity than the original functionality. The method helped
S2 to overcome the programming paradigm shift thanks to the
modelling. S3 described the method as easily affordable.

IV. RELATED WORKS

Performing a software migration consists in transforming
an existing system into a new one in a new environment,
without redeveloping everything from scratch, to meet the
requirements that the old system can no longer ensure [22].
These requirements may be of different nature: new business
requirements, performance, maintainability, safety...

The challenges of a migration are multiple. Paradoxically,
few software migration methods have been proposed:

 The “Big Bang” or “cold-turkey” method is not actually
a method and it is risked. The code is redeveloped from
scratch using recent technologies. It is hard to redevelop
a software product without reproducing errors present in
the legacy code. The knowledge about the software
product influences the recoding. There is a high risk of
failure [23].

 The “Forward migration” method [23] focuses on the
data. Incrementally, developers first migrate the data,
then the software product, and the HMIs. Gateways are
developed to link the old software product to the data in
the new environment. However, gateways can be
difficult to handle and make the migration more
complex as the number of gateways increases.

 “Reverse migration” method [23] focuses on the
software product. The migration is done gradually while
data stays in the previous environment. Data migration
is the last step of the method. Gateways (reversed) are
also implemented between the new and the old
environment.

 The “Chicken Little Methodology” [23] is incremental
and iterative, the software products evolve
continuously. Three types of software products are
distinguished: those with a decomposable structure
where the interface, the application and the data are
independent components. The semi-decomposable
structure comprises application and data that are not
independent, and then more difficult to migrate. Finally,
non-decomposable structures do not provide any
independent components. Many gateways are defined
between the old and new environments which make the
method complex and hard to enact technically.

 The “Butterfly” method [24] was proposed to avoid the
gateways problem in a six steps method: prepare
migration, understand legacy code, prepare data
migration, incrementally migrate the components,
incrementally migrate data and finalize new system.
Each phase is independent and decomposed in subtasks.

 The SOMA (Service-Oriented Modeling and
Architecture) method [25] allows migrating legacy
systems to a SOA environment. SOA architecture is
made for large systems, the SOMA method is then quite
heavy to implement for SME.

These methods are very specific and difficult to implement
in SME as they require budget and the participation of business
experts as technical experts. Some of them are complex to
handle and require specific knowledge that most developers do
not hold. Moreover, once the migration is completed, part the
knowledge disappears as it is not capitalized during the
migration project itself: none of the method is concerned with
knowledge capitalization. Finally, the paradigm shift issue is
often left aside [26] although it is a complex problem.

The proposed approach in this paper allows precisely to
capture and organize this knowledge through a dictionary as
transformation rules. Thus, a company with a certain
technology and wishing to migrate its software products to a
new technology will gain efficiency on each new migration.
Finally, FASMM aims to be accessible to any team of
developers with basic knowledge in the field of modeling.

V. CONCLUSION AND PERSPECTIVES

Actual migration methods are not adapted to SME because
they lack resources to learn and apply the existing software
migration methods properly. FASMM was developed in the
framework of a migration project in a French company to guide
developers during a software product migration, based on the
concepts of Model Driven Engineering and knowledge
capitalization: models are defined and transformed to get the
migrated functionality, using transformation rules stored in a
dictionary that can be reused and enriched projects after
projects. The method was evaluated with a couple of subjects
and results are promising.

Processes in FASMM are specified as a map [1] which
allows flexibility in its enactment, as the developers can carry
out functionality migration and knowledge capitalization at the
same time. Some sections are refined as maps themselves;
developers can then follow the process according to their
knowledge, ways of working or needs. Being based on Model
Driven Engineering techniques, FASMM allows developers to
represent the functionalities to migrate as functional and
technical models. This facilitates their understanding of the
functionality and therefore eases the migration itself.
Developers validate the migrated functionality and the
produced models represent the code in an efficient and
complete way.

There are still many challenges to tackle to complete the
proposed method for software migration. First, FASMM
should consider the migration of the data which is a problem of
software migration. Functionalities are migrated one by one but

the method has to propose how to deal with the data between
the source and the target software product: is the data migrated
first? Does the structure of the data also changes? So does the
database technology?

FASMM should be improved to properly take into account
the paradigm shift. There are migrations within the same
programming paradigm, Java to JavaScript in the Object
Oriented paradigm for example. Other paradigms as
imperative, functional or logical programming should be
supported by the method. As FASMM is based on Object
Oriented modelling, we then raise the following question: what
would be the best fitted metamodels to support the modelling
of the functionalities and their transformations? New types of
artifacts have to be introduced to accurately support the
migration.

We have to test and validate the method in other software
migration projects. It is necessary to evaluate the understanding
of the method, its ease of use, and then, to enhance it according
to the obtained feed-back.

Rules that can be applied automatically have to be
systematically described in a transformation language (ATL
[4], QVT [5] or another, according to the knowledge of the
developer) to accelerate the migration of the functionalities and
to ensure the quality of the migrated functionality.

Finally, we could also represent FASSM as method
components to describe precisely the process of each section of
the map and the corresponding products to ease the guidance of
developers –as one of the answers to the evaluation. Adopting
a Situational Method Engineering approach, we could build a
component base to store FASMM components, to improve the
knowledge on migration methods by adding new components
that could be alternative or complementary to FASMM.

REFERENCES

[1] C. Rolland, N. Prakash, and A. Benjamen, “A Multi-Model View of

Process Modelling,” Requirements Engineering, Vol.4, N. 4, Springer-
Verlag London Ltd, 1999, pp. 169-187.

[2] W.J. Kleppe, and W. Bast., MDA Explained, The Model-Driven

Architecture: Practice and Promise. Addison Wesley, 2003.

[3] I. Rus, and M. Lindvall, “Guest Editors' Introduction: Knowledge
Management in Software Engineering,” Vol. 19, N. 3, IEEE Software,

2002, pp. 26-38.

[4] Atlas Transformation Language, https://www.eclipse.org/atl/, consulted
in February 2014.

[5] OMG, Meta Object Facility (MOF) 2.0 Query/View/Transformation

Specification, Version 1.1, 2011.

[6] Paul J. Deitel, and H. M. Deitel, Java for Programmers. Deitel
Developer Series, Prentice Hall Professional, 2009.

[7] Eclipse Modeling Framework, https://www.eclipse.org/modeling/emf/,
consulted in February 2014.

[8] OMG, Unified Modeling Language, Superstructure, Version 2.4.1, 2011.

[9] A. Cockburn; Writing Effective Use Cases, 2000, Addison Wesley.

[10] Object Aid, http://www.objectaid.com/, consulted in February 2014

[11] Papyrus, http://www.eclipse.org/papyrus/, consulted in February 2014

[12] Soyatec, http://www.soyatec.com/euml2/, consulted in February 2014

[13] MaintainJ, http://maintainj.com/, consulted in February 2014

[14] JsUML, http://jsuml.gaertner-network.de/, consulted in February 2014

[15] jQuery, http://jquery.com/, consulted in February 2014

[16] ScriptAculous, http://script.aculo.us/, consulted in February 2014

[17] Oracle, Invoking JavaScript from applet,

http://docs.oracle.com/javase/tutorial/deployment/applet/invokingJavaSc
riptFromApplet.html

[18] B. Charroux, and A. Osmani, UML 2 3rd edition, 2010, Pearson.

[19] E. Gottesdiener, Use Cases: Best Practices, 2003, IBM.

[20] Checkstyle 5.7, http://checkstyle.sourceforge.net/, consulted in February
2014

[21] M.-M. Saarelainen, J. J. Ahonen, H. Lintinen, J. Koskinen, I.

Kankaanpää, H. Sivula, P. Juutilainen, and T. Tilus, “Software
modernization and replacement decision making in industry: a

qualitative study,” Proceedings of the 10th international conference on
Evaluation and Assessment in Software Engineering, B. Kitchenham, P.

Brereton, M. Turner, S. Charters (Eds.). British Computer Society,
Swinton, UK, 12-21, 2006.

[22] J. Koskinen, H. Lintinen, H. Sivula, and T. Tilus, “Evaluation of

Software Modernization Estimation Methods Using NIMSAD Meta
Framework,” Information Technology Research Institute, 2004.

[23] M. L. Brodie, and S. A. Stonebraker, DARWIN: On the Incremental

Migration of Legacy Information Systems, 1993.

[24] W. Bing, D Lawless, J. Bisbal, R. Richardson, J. Grimson, V. Wade, and

D. O'Sullivan, “The Butterfly Methodology: a gateway-free approach for
migrating legacy information systems,” Proceedings of the 3rd IEEE

International Conference on Engineering of Complex Computer
Systems, pp. 200-205, 1997.

[25] A. Arsanjani, S. Ghosh, A. Allam, T. Abdollah, S. Gariapathy, and K.

Holley, “SOMA: a method for developing service-oriented solutions,”
IBM Systems Journal, vol. 47 (3), pp. 377-396, July 2008.

[26] O. Pastor, and J.C. Molina, Model-Driven Architecture in Practice: A

Software Production Environment Based on Conceptual Modeling.
Springer-Verlag, New York, Secaucus, NJ, USA, 2007.

[27] Oracle, Invoking Applet Methods From JavaScript Code ,

http://docs.oracle.com/javase/tutorial/deployment/applet/invokingApplet
MethodsFromJavaScript.html

[28] B. Dobing and J. Parsons. “How UML is used,” Commun. ACM, vol. 49

(5), pp. 109-113, May 2006.

