
More Optimism about Real-Time Distributed Commit Processing

Ramesh Gupta * Jayant Haritsa * Krithi Ramamritham t

Abstract

In [6], we proposed a new commit protocol, OPT, spe-
cially designed f o r use in distributedfirm-deadline real-time
database systems. OPT allows transactions to “optimisti-
cally” borrow uncommitted prepared data in a controlled
manner: This controlled borrowing reduces the data inac-
cessibility and the priority inversion that is inherent in real-
rime commit processing. Experimental evaluations showed
the new OPTprotocol to be highly successful, as compared
to the classical distributed commit protocols, in minimizing
the number of missed transaction deadlines.

In this paper; we extend and improve upon this prior
work in the following ways: First, we consider parallel
distributed transactions whereas the previous study was re-
stricted to sequential transactions. Second, we evaluate the
extent to which OPT’S real-time performance is adversely
affected by those cases where its optimism turns out to be
misplaced. This is achieved by comparing OPTS perfor-
mance with that of Shadow-OPT a protocol that augments
OPT with the “shadow transaction” approach of [3] and
ensures that the right decision about access to uncommitted
data is always eventually made. In all of our experiments,
which considered a wide range of workloads and system
configurations, the difference between OPT and Shadow-
OPT never exceeded ten percent. Moreover; the difference
was reduced to less than two percent when OPT was en-
hanced with a simple “healthy lenders” heuristic. Finally,
we compare the pevormance of OPT to that of an alter-
native priority inheritance-based approach to addressing
priority inversion during commit processing. Our results
show that the benefits that prioriv inheritance provides are
much smaller than those obtained with the OPT approach.

1. Introduction

Distributed database systems implement a transaction
commit protocol to ensure transaction atomicity. A variety

‘SERC, Indian Institute of Science, Bangalore 560012, India
t Dept. of Computer Science, Univ. OF Massachusetts, Amherst 01003,

USA

of protocols have been proposed in the literature including
the classical Two Phase Commit (2PC), its Presumed Abort
(PA) and Presumed Commit (PC) variations which have be-
come industry standards, and the non-blocking Three Phase
Commit (3PC). These protocols require exchange of multi-
ple messages, in multiple phases, between the participating
sites where the distributed transaction executed. In addi-
tion, several log records are generated, some of which have
to be “forced”, that is, flushed to disk immediately. Due
to these costs, commit processing can result in a signifi-
cant increase in transaction execution times [lo, 141. Con-
sequently, the choice of commit protocol is an especially
important design decision for distributed real-time database
systems (RTDBS).

In a recent paper [6], using a detailed simulation model
of a distributed RTDBS, we profiled the performance of the
above-mentioned commit protocols for real-time applica-
tions withfirm deadlines [7], wherein transactions that miss
their deadlines are considered to be worthless and are im-
mediately “killed”, that is, aborted and discarded from the
system without being executed to completion. We also de-
veloped and evaluated a new commit protocol called OPT
that incorporates modifications to the 2PC protocol. The
OPT protocol allows executing transactions to borrow data
held by transactions that are in the commit processing stage,
unlike the standard protocols which make this so-called
“prepared data” inaccessible. If the lender commits, the
borrowing is successful in that it provides a “head start”
to the borrower, whereas if the lender aborts, the borrower
also has to be aborted. The OPT protocol is based on the
“optimistic” premise that lender transactions will typically
commit, thereby helping the borrowers and improving over-
all performance. The ability to borrow helps to reduce the
blocking arising out of prepared data and also to reduce the
impact of the priority inversion to which the commit phase
in a distributed RTDBS is inherently susceptible [6]. OPT
also incorporates novel features such as “Active Abort” and
“Silent Kill” that are specifically designed to improve its
performance in a real-time environment. A special feature
of OPT is that it does not, unlike previous efforts in the
area [13, 151, require transaction atomicity requirements to
be weakened.

Our experimental results in [6] showed that, with respect

123
0-8186-8268-XJ97 $10.00 0 1997 IEEE

to the metric of the steady-state percentage of missed dead-
lines, OPT provided by far the best performance, primarily
due to its optimistic borrowing and active abort policies. In
fact, a non-blocking version of OPT proved to be superior to
the standard blocking protocols for most of the workloads
considered in our study. This is especially encouraging
given the high desirability of the nonblocking feature in a
real-time environment.

In this paper, we extend and improve upon this prior
research in the following ways:

First, only sequential distributed transactions were mod-
eled in our previous study. However, for real-time database
applications, given their time-critical nature, it may be more
common to have parallel distributed execution. Therefore,
we have conducted again all the experiments of the previous
study for parallel distributed transaction workloads and re-
port their results here. In the process our simulation model
has been made more realistic - it now includes separate log
and data disks, and the effects of having a buffer pool are
modeled.

Second, the OPT protocol is an “indiscriminate” (an op-
timist would call it “fully-optimistic”) lender in that data
is always lent whenever requested. Although our exper-
iments showed OPT to perform well under this premise,
it was not clear to what extent its real-time performance
was adversely affected by those cases where its optimism
turned out to be misplaced. We quantitatively evaluate the
“efficiency” of OPT here by comparing its performance to
that of Shadow-OPT, a protocol that combines OPT with
the “shadow transaction” approach suggested in [3] . As
explained later, if we ignore the overheads of the shadow
mechanism (which may be significant in practice), Shadow-
OPT represents the best on-line performance that could be
achieved using the optimistic approach.

Third, OPT does not take into account the possibility
that a commit-phase transaction that is close to its dead-
line may be killed due to deadline expiry before the commit
processing is over. Lendings by such transactions are obvi-
ously harmful to system performance and therefore should
be avoided. To address this issue, we have designed and
evaluated the Healthy-OPT protocol, which augments the
basic OPT protocol with a simple heuristic called “healthy
lenders” wherein a transaction is allowed to lend its data
only if its estimated ability to meet its deadline is greater
than a (system-specified) threshold value.

Finally, OPT addresses the priority inversion problem in
the commit phase by allowing high priority transactions to
access the uncommitted prepared data of low priority trans-
actions. A plausible alternative approach is the well-known
priority inheritance (PI) mechanism [1 I]. In this scheme,
a low priority transaction that blocks a high priority trans-
action inherits the priority of the high priority transaction.
The expectation is that the blocking time of the high priority

transaction will be reduced since the low priority transac-
tion will now execute faster and release its resources earlier.
We evaluate here the performance of a real-time commit
protocol based on the PI approach.

2. Distributed Commit Protocols

A common model of a distributed transaction is that there
is one process, called the master, which is executed at the
site where the transaction is submitted, and a set of other
processes, called cohorts, which execute on behalf of the
transaction at the various sites that are accessed by the trans-
action. Each cohort sends a WORKDONE message to the
master after it has completed its assigned work, and the
master initiates the commit protocol after it has received
this message from all its cohorts. A variety of transaction
commit protocols have been devised for this model, most of
which are based on the classical two phase commit (2PC)
protocol [4]. In this section, we briefly describe the 2PC
protocol and a few popular variations of this protocol -
complete descriptions are available in [9, 10, 121.

In the two phase commitprotocol, the master initiates the
first phase of the commit protocol by sending PREPARE
(to commit) messages in parallel to all the cohorts. Each
cohort that is ready to commit first force-writes a prepare
log record to its local stable storage and then sends a YES
vote to the master. At this stage, the cohort has entered
a prepared state wherein it cannot unilaterally commit or
abort the transaction but has to wait for the final decision
from the master. On the other hand, each cohort that de-
cides to abort force-writes an abor t log record and sends
a NO vote to the master. Since a NO vote acts like a veto,
the cohort is permitted to unilaterally abort the transaction
without waiting for the final decision from the master.

After the master receives the votes from all the cohorts,
it initiates the second phase of the protocol. If all the votes
are YES, i t moves to a committing state by force-writing a
commit log record and sending COMMIT messages to all
the cohorts. Each cohort after receiving a COMMIT mes-
sage moves to the committing state, force-writes a commit
log record, and sends an ACK message to the master.

If the master receives even one NO vote, it moves to
the aborting state by force-writing an abort log record
and sends ABORT messages to those cohorts that are in the
prepared state. These cohorts, after receiving the ABORT
message, move to the aborring state, force-write an abort
log record, and send an ACK message to the master.

Finally, the master, after receiving acknowledgments
from all the prepared cohorts, writes an end log record
and then “forgets” the transaction.

Two variants of the 2PC protocol called presumed abort
(PA) and presumed commit (PC) were presented in [9].

124

These protocols try to reduce the message and logging over-
heads by requiring all participating cohorts to follow certain
rules at failure recovery time. The protocols have been
implemented in a number of database products and PA is,
in fact, now part of the ISO-OSI and WOPEN distributed
transaction processing standards [101.

A fundamental problem with all of the above protocols is
that cohorts may become blocked waiting for a decision in
the event of a failure at the master site and remain blocked
until the failed site recovers [6]. To address the block-
ing problem, a three phase commit (3PC) protocol was
proposed in [12]. This protocol achieves a non-blocking
capability by inserting an extra phase, called the “precom-
mit phase”, in between the two phases of the 2PC protocol.
In the precommit phase, a preliminary decision is reached
regarding the fate of the transaction. The information made
available to the participating sites as a result of this prelimi-
nary decision allows a global decision to be made despite a
subsequent failure of the master site. Note, however, that the
price of gaining non-blocking functionality is an increase in
the communication overheads since there is an extra round
of message exchange between the master and the cohorts. In
addition, both the master and the cohorts have to force-write
additional log records in the precommit phase.

3. Real-Time Commit Processing

The commit protocols described above were designed
for conventional database systems and do not take trans-
action priorities into account. In a real-time environment,
this is clearly undesirable since it may result in priority in-
version [1 I], wherein high priority transactions are made
to wait by low priority transactions. Priority inversion is
usually prevented by resolving all conflicts in favor of trans-
actions with higher priority. Removing priority inversion in
the commit protocol, however, is not fully feasible. This is
because, once a cohort reaches the prepared state, i t has to
retain all its data locks until it receives the global decision
from the master - this retention is fundamentally neces-
sary to maintain atomicity. Therefore, if a high priority
transaction requests access to a data item that is locked by
a “prepared cohort” of lower priority, it is not possible to
forcibly obtain access by preempting the low priority cohort.
In this sense, the commit phase in a distributed RTDBS is
inherently susceptible to priority inversion. More impor-
tantly, the priority inversion interval is not bounded since
the time duration that a cohort is in the prepared state can
be arbitrarily long (for example, due to network delays).

It is important to note that the prepared data blocking
described above is orthogonal to the decision blocking (be-
cause of failures) that was discussed under 3PC. That is, in
all the commit protocols, including 3PC, transactions can

be affected by prepared data blocking. Moreover, such data
blocking occurs during normal processing whereas decision
blocking occurs only during failure situations.

3.1. The OPT Protocol

The OPT protocol [6] was designed to address the above-
mentioned issue of prepared data blocking. The main feature
of OPT (the complete description is available in [6]) is that
transactions requesting data items held by other transactions
in the prepared state are allowed to access this data. That
is, prepared cohorts lend uncommitted data to concurrently
executing transactions in the “optimistic” belief that this
data will eventually be committed.

The mechanics of the interactions between lenders and
borrowers are captured in the following two scenarios:

Lender Receives Decision First: Here, the lending cohort
receives its global decision before the borrowing cohort
has completed its execution. If the global decision is
to commit, the lending cohort completes its processing
in the normal fashion. On the other hand, if the global
decision is to abort, the lender is aborted in the normal
fashion. In addition, the borrower is also aborted since
it has utilized inconsistent data.

Borrower Completes Execution First: Here, the borrow-
ing cohort completes its execution and receives its
PREPARE message before the lendingcohort receives
its global decision. The borrower is then “put on the
shelf”, that is, it is made to wait and not allowed to en-
ter the prepared state (and hence, to send a YES vote).
The borrower waits until either the lender receives its
global decision or its own deadline expires, whichever
occurs earlier. In the former case, if the lender commits,
the borrower is “taken off the shelf” and allowed to re-
spond to its master’s messages, whereas if the lender
aborts, the borrower is also aborted immediately since
i t has read inconsistent data. In the latter case, the
borrower is killed in the normal manner.

OPT also features an optimization called “Active Abort”
to enhance its real-time performance which operates as fol-
lows: In the basic 2PC protocol, cohorts are passive in that
they inform the master of their status only upon explicit re-
quest by the master. However, in a real-time situation, it
may be better for an aborting cohort to immediately inform
the master so that the abort of the transaction at the sibling
sites can be done earlier. Therefore, cohorts in OPT inform
the master as soon as they decide to abort locally.

Finally, as explained in detail in [6], although OPT per-
mits use of uncommitted data, because only transactions in
the prepared state are allowed to lend, the borrowing does
not result in the well-known problem of cascading aborts [2].

125

3.2. Shadow-OPT

As mentioned in the Introduction, we wished to evaluate
the efficiency of OPT with respect to the extent to which
its real-time performance was adversely affected by those
cases where its optimism turned out to be misplaced. This
was achieved by comparing its performance with that of the
Shadow-OPT protocol, described below.

The Shadow-OPT protocol combines the OPT protocol
with the “shadow transaction” approach suggested in [3].
In this combined technique, a cohort forks off a replica of
the transaction, called a shadow, whenever it borrows a data
page. The original incarnation of the transaction continues
the execution while the shadow transaction is blocked at
the point of borrowing. If the lending transaction finally
commits, the (original) borrowing cohort continues its on-
going execution and the shadow is discarded. Otherwise, if
the lender aborts, the borrowing cohort is aborted and the
shadow, which was blocked so far, is activated. Thus the
work done by the borrowing transaction prior to its borrow-
ing is never wasted even if the wrong borrowing choice is
made. Therefore, if we ignore the overheads of the shadow
mechanism (which may be significant in practice), Shadow-
OPT represents the best on-line performance that could be
achieved using the optimistic approach. We model such a
zero-overhead Shadow-OPT protocol in our experiments.

For correctness, a shadow cohort can resume execution
only if the original cohort had not exchanged any message
with the master after the creation of the shadow. Otherwise,
there can be dependencies among the original cohort and
the master of which the shadow cohort is unaware of, and
these dependencies need to be handled before the shadow
cohort can resume the execution. In our experiments, such
dependencies can arise only if the original cohort has sent
the WORKDONE message to the master, in which case we
discard the shadow cohort.

In addition, for the sake of simplicity, we allow in our
experiments at most one shadow (for each cohort) to exist
at any given time. The first shadow is created at the time of
the first borrowing - creation of another shadow is allowed
only if the original cohort aborts and the shadow resumes
its execution replacing the original cohort.

3.3. Healthy-OPT

As mentioned in the Introduction, the OPT protocol does
not take into account the possibility that a transaction en-
tering its commit phase close to its deadline may be killed
due to deadline expiry before the commit processing is over.
Lendings by such transactions are obviously harmful to sys-
tem performance since they result in the aborts of all the
associated borrowers and therefore should be avoided. To
address this issue, we have designed the Healthy-OPT pro-
tocol, described below.

The Healthy-OPT protocol augments the basic OPT pro-
tocol with a simple heuristic called “healthy lenders” that
ensures only transactions whose deadlines are not very close
(i.e., healthy transactions) are allowed to lend their prepared
data. This is implemented in the following manner: A
health factor HT is associated with each transaction T and
a transaction is allowed to lend its data only if its health
factor is greater than a (system-specified) minimum value
M . The health factor is computed at the point of time when
the master is ready to send the PREPARE messages and is
defined to be the ratio TimeLeft /MinTime, where TimeLeft
is the time left until the transaction’s deadline, and MinTime
is the minimum time required for commit processing (a
minimum of two messages and one force-write need to be
processed before the master can take a decision).

The success of the above scheme is directly dependent on
the threshold health factor M - set too conservatively, it will
turn off the borrowing feature to a large extent, thus effec-
tively reducing Healthy-OPT to standard 2PC; on the other
hand, set too aggressively, it will fail to stop several lenders
that will eventually abort, effectively reducing Healthy-OPT
to basic OPT. In our experiments, we consider a range of
values for M to determine the best choices.

An important point to note here is that the health factor
is not used to decide the fate of the transaction but merely
to decide whether the transaction can lend its data. Thus,
erroneous estimates about the message processing times and
log force-write times only affect the extent to which the
optimistic feature of OPT is used, as explained above.

3.4. Shadow-OPT versus Healthy-OPT

At this point, i t may be asked as to why there is a need for
the Healthy-OPT protocol when Shadow-OPT with its guar-
antee of eventually making the right borrowing decision can
itself be implemented as discussed above. The point to note
here is that Shadow-OPT, in contrast to Healthy-OPT, re-
quires significant reworking of the transaction management
system to support the shadow concept. Further, its realiza-
tion may incur non-negligible overheads in a real system,
for example, for creating shadows and for managing updates
to buffers from the multiple versions of a transaction. This
may result in significant differences between its actual per-
formance and that seen in the artificial zero-overhead model
used in our experiments. In addition, Shadow-OPT has re-
strictions on its applicability (for example, the dependency
constraints discussed i n Section 3.2).

Keeping the above points in mind, Healthy-OPT pro-
vides. as will be quantitatively demonstrated in our experi-
ments, a simple and efficient alternative that performs almost
as well as Shadow-OPT and can at the same time be easily
integrated into current systems.

126

3.5. The PIC Protocol

As discussed above, OPT addresses the priority inver-
sion problem in the commit phase by allowing transactions
to access uncommitted prepared data. A plausible alterna-
tive approach is the well-known priority inheritance (PI)
mechanism [113. In this scheme, a low priority transaction
that blocks a high priority transaction inherits the priority
of the high priority transaction. The expectation is that the
blocking time of the high priority transaction will be re-
duced since the low priority transaction will now execute
faster and release its resources earlier.

A positive feature of the PI approach is that it does not
run the risk of transaction aborts, unlike the optimistic ap-
proach. Further, a study of PI in the context of (centralized)
transaction concurrency control was made in [S] and the
results suggest that priority inheritance is useful only if it
occurs towards the end of the low priority transaction’s life-
time. This seems to fit well with handling priority inversion
during commit processing since this stage occurs at the end
of transaction execution.

We evaluate in our experiments the performance of PIC,
a real-time commit protocol based on the PI approach. In the
PIC protocol, when a high priority transaction is blocked due
to the data locked by a low priority cohort in the prepared
state, the latter inherits the priority of the former to expedite
its commit processing. To propagate this inherited priority
to the master and the sibling cohorts, the inherited cohort
sends a PRIORITY-INHERIT message to the master. The
master, in turn, sends this message to all other cohorts. Af-
ter the master or a cohort receives a PRIORITY-INHERIT
message, all further processing related to the transaction at
that site (processing of the messages, writing log records,
etc.) is carried out at the inherited priority.’

4. Simulation Model

To evaluate the performance of the various commit pro-
tocols described in the previous sections, we used a detailed
simulator of a distributed RTDBS. The simulator imple-
ments a more realistic version of the model used in our
previous study [6]. Due to space limitations, we only high-
light the main features here - the complete details are in [5] .
A summary of the parameters used in the model are given
in Table 1.

The database is a collection of DBSize pages that are
uniformly distributed across all the NumSites sites. At
each site, transactions arrive in an independent Poisson
stream with rate ArrivalRate, and each transaction has an
associated firm deadline. The deadline is assigned using the
formula DT = AT + S F * RT, where DT, AT and RT are

‘For simplicity, the priority is not reverted to its old value if the high
priority waiter is restaned.

the deadline, arrival time and resource time, respectively, of
transaction T, while SF is a slack factor. The resource time
is the total service time at the resources that the transaction
requires for its execution.’ The SlackFador parameter is
a constant that provides control over the tightnedslackness
of transaction deadlines.

Each transaction in the workload has the “single master -
multiple cohort” structure described in Section 2. The num-
ber of sites at which each transaction executes is specified
by the DistDegree parameter. The master and one cohort
reside at the site where the transaction is submitted whereas
the remaining DistDegree - 1 cohorts are set up at sites
chosen at random from the remaining NumSites - 1 sites.
All these cohorts execute in parallel at their respective sites.
At each of the execution sites, the number of pages accessed
by the transaction’s cohort varies uniformly between 0.5 and
1.5 times CohortSize. These pages are chosen randomly
from among the database pages located at that site. A page
that is read is updated with probability UpdateProb. A
transaction that is restarted due to a data conflict makes the
same data accesses as its original incarnation.

A read access involves a concurrency control request to
obtain access permission, followed by a disk I/O to read the
page, followed by a period of CPU usage for processing the
page. Write requests are handled similarly except for their
disk I/O - the writing of the data pages takes place asyn-
chronously after the transaction has committed. We assume
sufficient buffer space to allow the retention of updates until
commit time.

The commit protocol is initiated when the transaction has
completed its data processing. If the transaction’s deadline
expires either before this point, or before the master has writ-
ten the global decision log record, the transaction is killed
(the precise semantics of firm deadlines in a distributed en-
vironment are defined in [5]) .

As mentioned earlier, transactions in an RTDBS are typ-
ically assigned priorities so as to minimize the number of
missed deadlines. In our model, all cohorts inherit their
parent transaction’s priority. Further, this priority, which is
assigned at arrival time, is maintained throughout the course
of the transaction’s existence in the system.

The physical resources at each site include NumCPUs
CPUs, NurnDataDisks data disks and NumLogDisks
log disks. There is a single common queue for the CPUs and
the service discipline is Pre-emptive Resume, with preemp-
tions being based on transaction priorities. Each of the disks
has its own queue and is scheduled according to a Head-Of-
Line (HOL) policy, with the request queue being ordered
by transaction priority. The PageCPU and PageDisk pa-

’ Since the resource time is a function of the number of mrssages and
the number of forced-writes, which differ from one commit protocol to
another, we compute the resource time assuming execution in a centrulized
system.

127

Table 1. Simulation Model Parameters

NumSitea
DBSize
Arrival Rate
SlackFactor
TranaType
DiatDegree
CohortSize

Number of sites in the database
Number of pages in the database
Transaction arrival rate / site
Slack Factor in Deadline formula
Trans. Type (Sequential or Parallel)
Degree of Distribution
Average cohort size (in pages)

Update Prob
NumCPUa
NumDataDiaka
NumLogDiaka
PageC PU
Page Disk
MagCPU
Bu f Hit

Page update probability
Number of processors per site
Number of data disks per site
Number of log disks per site
CPU page processing time
Disk page access time
Message send / receive time
Probabilitv of buffer hit

rameters capture the CPU and disk processing times per data
page, respectively. The BufHit parameter gives the proba-
bility of finding a page that is requested already resident in
the buffer pool.

The communication network is simply modeled as a
switch that routes messages since we assume a local area
network that has high bandwidth. However, the CPU over-
head of message transfer is taken into account at both the
sending and the receiving sites, and these overheads are
captured by the Msg C PU parameter.

With regard to logging costs, we explicitly model only
forced log writes since they are done synchronously and
suspend transaction operation until their completion.

5. Experiments and Results

Using the distributed firm-deadline RTDBS model de-
scribed in the previous section, we conducted an extensive
set of simulation experiments comparing the performance
of the various commit protocols presented earlier. Due to
space limitations, we discuss only a representative set of
results here - the complete details are available in [5] .

The performance metric in all of our experiments is
MissPercent, which is the percentage of input transac-
tions that the system is unable to complete before their
 deadline^.^ Misspercent values in the range of 0 to 20
percent are taken to represent system performance under
“normal” loads, while values beyond this represent “heavy”
load performance. The transaction priority assignment used
in all of the experiments described here is Earliest Deadline,

The Misspercent values shown here have relative half-widths about
the mean of less than 10% at the 90% confidence level - each experiment
was run until at least 20000 transactions were processed by the system.

Table 2. Baseline Parameter Settings

SlackFactor NumLoqDiaks

- L I _. .

t CohortSize I 6 t)a~es I MaaCPU 1 5 m s I , I ” I - I I UpdateProb I 1.0 I B u f H i t I 0.1 I

wherein transactions with earlier deadlines have higher pri-
ority than transactions with later deadlines. For concurrency
control, the 2PL High Priority scheme [I] is employed.

5.1. Comparative Protocols

To help isolate and understand the performance effects of
distribution and atomicity, we have also simulated, just as in
[6] , the performance behavior for two additional scenarios,
CENT and DPCC, described below:

In CENT (Centralized), a centralized database system
that is equivalent (in terms of database size and physical
resources) to the distributed database system is modeled.
Messages are obviously not required here and commit pro-
cessing only requires force-writing a single decision log
record. Modeling this scenario helps to isolate the overall
effect of distribution on Misspercent performance.

In DPCC (Distributed Processing, Centralized Commit),
data processing is executed in the normal distributed fashion,
that is, involving messages. The commit processing, how-
ever, is like that of a centralized system, requiring only the
force-writing of the decision log record at the master. While
this system is clearly artificial, modeling it helps to isolate
the effect of distributed commit processing on Misspercent
performance (as opposed to CENT which eliminates the
entire effect of distributed processing).

5.2. Expt. 1: Parallel (RC+DC)

In our first experiment, the performance of the various
commit protocols wals evaluated for a parallel transaction
workload. The settings of the workload and system param-
eters for this experiment are listed in Table 2. These values
were chosen to ensure significant levels of both resource
contention (RC) and data contention (DC) in the system,
thus helping to bring; out the performance differences be-
tween the protocols. With the given settings, each transac-
tion executes in a parallel fashion at three sites, accessing
and updating an average of six pages at each site.

For this experiment, Figures 1 a and 1 b show the MissPer-
cent behavior under normal load and heavy load conditions,
respectively. In these graphs, we first observe that there is a

128

x PA ct------f, OPT X- - - +CENT -ZPC X

+ DPCC X- - -X 3PC t - - + P C I +

v)

0
0
3

8 0.4.

cn 0.2

25

20

A
15

s
.= 10
2
to

5

-

Fig l a : Normal Load (Parallel)

0
0
3

0.2.

0
0 0.5 1 1.5 2

Arrival Rate/Site --->

Fig 1 b: Heavy Load (Parallel)

2 3 4 5 7.5 10
Arrival Rate/Site ---r

Fig Ic : Success Ratio (Parallel)

vO 2 4 6 a 10
Arrival Rate/Site -->

Figure 1 : Parallel Transactions (RC+DC)

35

30

25

I 20

15

10

A
I

s
2
.-

Fig 2a: Normal Load (Sequential)

0 5L 0 0.5 1 1.5 2
Arrival Rate/Site ---->

Fig 2b: Heavy Load (Sequential)

. ' /
/

v
2 3 4 5 7.5 10

Arrival Rate/Site -->

Fig 2c: Success Ratio (Sequential)

4 6 a 10
0 L
0 2

Arrival Rate/Site --->

Figure 2: Sequential Transactions (RCcDC)

129

noticeable difference between the performance of the base-
line systems (CENT and DPCC) and the performance of
the classical protocols (2PC, PA, PC, 3PC) throughout the
loading range. This demonstrates that distributed commit
processing can have considerably more effect (difference
between DPCC and 2PC) than distributed data processing
(difference between CENT and DPCC) on the MissPercent
performance. This highlights the need for designing high-
performance commit protocols.

Moving on to the relative performance of 2PC and 3PC,
we observe a noticeable difference which arises from the
additional message and logging overheads involved in 3PC.
The performance of PA and PC, however, is only marginally
different from that of 2PC.

Finally, OPT provides a performance that is significantly
better than that of 2PC under normal loads. In Figure Ic,
OPT’s “success ratio”, that is, the fraction of times that a
borrowing was successful, is shown. This statistic clearly
shows that under normal loads, optimism is the right choice
since the success ratio is almost one. Under heavy loads,
however, there is a decrease in the success ratio - the reason
for this is that transactions reach their commit phase only
close to their deadlines and in this situation, a lending trans-
action may often abort due to missing its deadline. That is,
many lenders turn out to be “not healthy” - we address this
issue in more detail in Experiment 3 (Section 5.4).

The observations made above were also seen, to a large
extent, for sequential transactions in our previous study - for
ease of comparison, Figures 2a through 2c present these cor-
responding results for the sequential transactions4 There
are a few changes, however, with respect to OPT’s perfor-
mance:

First, although OPT continues to perform the best under
normal loads, its effect on the Misspercent performance is
partially reduced as compared to that for sequential trans-
actions. This is because the Active Abort policy, which
had significant impact in the sequential environment, is less
useful in the parallel environment. The reason for its re-
duced utility is that due to cohorts executing in parallel,
there are much fewer chances of a cohort aborting after
sending the WORKDONE message, but before receiving
the PREPARE message, which is when the active abort
policy mostly comes into play for the parallel case.

Second, the performance of OPT under heavy loads is
marginally worse than that of 2PC, whereas in the sequen-
tial case OPT was always better or matched 2PC. This is
explained by comparing OPT’S success ratios in Figures l c
and 2c, which clearly indicate that the heavy-load degra-
dation in OPT’s success ratio is much more under parallel
workloads than under sequential workloads. The reason for

‘The sequential results shown here were obtained using the rejinedsys-
tem model described in Section 4 and are therefore quantitatively different
from those shown in [6] .

this is the following: The data contention level is smaller
with parallel execution than with sequential execution since
locks are held for shorter times on average. Therefore in gen-
eral, cohorts are able to obtain the necessary locks sooner
than in the sequential case and hence those that are aborted
due to deadline expiry tend to make further progress than
in the sequential case. This leads to a proportionally larger
group of cohorts finishing their work closer to the deadline
and hence becoming unhealthy lenders thereby resulting in
a worse success ratio.

The above experiment was repeated for a pure data con-
tention (pure DC) environment, wherein there is no queuing
for the physical resources, in order to isolate the influence
of data contention on the real-time performance. The per-
formance (not shown here but available in [5]) of OPT in
this experiment was, unlike the RC+DC environment, com-
parable to that for the corresponding sequential transaction
experiment. The reason for this is that in the pure DC sce-
nario the OPT approach, due to its increased concurrency,
reduces the data contention significantly. This results in a
high success ratio for OPT and consequently significantly
better performance than that of the standard commit proto-
cols.

5.3. Expt. 2: Efficiency of OPT

In our next experiment, we compared the performance of
OPT to that of the (zero-overhead) Shadow-OPT protocol
described in Section 3.2. The results of this experiment
are depicted in Figures 3 and 4 under RC+DC and pure
DC conditions, respectively. We see from these figures
that the performance of Shadow-OPT is better than that of
OPT only by a marginal amount under RC+DC and by a
modest amount in the pure DC environment. In fact, in all
our experiments, maximum improvement for Shadow-OPT
over OPT was never more than ten percent. Moreover, this
improvement was restricted to the heavily loaded region and
never occurred in the normal load region. The above results
indicate that OPT is highly successful in its utilizationof the
optimistic premise.

5.4. Expt. 3: Healthy Lenders

In our next experiment, we evaluated the performance of
the Healthy-OPT protocol. The results for this experiment
are shown in Figures 5a through 5c for the RC+DC scenario,
and in Figures 6a through 6c for the pure DC scenario. The
results for two different values (1.0 & 2.0) of the health
threshold M are shown in these figures (the Healthy-OPT
curves are very close to Shadow-OPT in Figures 5a and 6a
and may therefore be difficult to distinguish visually).

From the Misspercent graphs (Figures 5a and 6a), we
see that Healthy-OPT (for M = 1) is in general superior

130

- 2PC * - - *Shadow-OPT
OPT

Misspercen t
100-

80 -

A
60-

s

Arrival Rate /Si te --->

Figure 3: Shadow-OPT (RC+DC)

to OPT and especially so under heavy loads in the pure DC
environment. The reason for the improvement is evident in
Figures 5b and 6b where the success ratio of Healthy-OPT
(M = 1) is seen to be considerably higher than that of basic
OPT. In Experiment 1, we had observed that OPT’s heavy
load performance in the RC+DC environment was worse
than that of 2PC (see Figure la) - notice now that with the
Healthy Lenders optimization, OPT’s performance matches
that of 2PC in this region (Figure 5a).

Figures 5c and 6c present the “borrow ratio” (average
number of data items borrowed per transaction). It is clear
from these figures that Healthy-OPT (M = 1) is “efficient”
in that it restricts borrowing only in the heavy load region
but not in the normal load region where optimism is almost
always a good idea. That is, healthy lenders are very rarely
tagged as unhealthy.

The last observation deals with the “completeness” and
“precision” of borrowing, that is: (1) Do we always bor-
row when the borrowing is going to be successful, and (2) Is
what we borrow always going to be successful. OPT is com-
plete by design since it does not miss out on any successful
borrowing opportunities, but because it may also borrow
without success, it is not precise. The experimental results
for Healthy-OPT show that it is far more precise in compar-
ison but sacrifices very little completeness in achieving this
goal.

Turning our attention to Healthy-OPT (M = 2), we ob-
serve that the performance of Healthy-OPT for M = 1 and
for M = 2 are almost identical, indicating that a health

M i s s p e r c e n t

80

0 2 4 6 8 10
Arrival Rate /Si te --->

Figure 4: Shadow-OPT (pure DC)

threshold of unity is sufficient to filter out the transactions
vulnerable to deadline kill in the commit phase. The reason
for this is that, by virtue of the Earliest Deadline priority
policy used in our experiments, transactions that are close
to their deadlines have the highest priority at the physi-
cal resources, and therefore the minimum time required to
do the commit processing is actually sufficient for them to
complete this operation.

Finally, we observe that the performance improvement
of Healthy-OPT over basic OPT is very similar to that ob-
tained by Shadow-OPT. In fact, in all our experiments, the
performance difference between Shadow-OPT and Healthy-
OPT was never more than M O percent. This means that
Healthy-OPT can provide performance gains similar to
that of Shadow-OPT without attracting the implementation
problems and overheads associated with Shadow-OPT. We
have also found that a health threshold of M = 1 provides
good performance for a wide range of workloads and sys-
tem configurations, that is, this setting is robust. In short,
Healthy-OPT provides extremely efJicient use of the opti-
mistic premise in terms of both performance and simplicity.

5.5. Expt. 4: Priority Inheritance

In our final experiment, we evaluated the performance
of the PIC protocol described in Section 3.5, which incor-
porates the priority-inheritance approach to addressing the
problem of commit-phase priority inversion. The results
showed that the performance of PI is virtually identical to

13 1

x x Healthy-OPT (M = l) * - - -+ Shadow-OPT
t - - -+ Healthy-OPT (M=2) c+----a OPT

Fig 5a: Misspercent

A
I 60

cn 401 i . ? i

91"

0 2 4 6 8 10

100

80

I 60
s
.II! 40
5

20

0

A

cn

0 2 4 6 8 10
Arrival Rate/Site ---r

Fig 5b: Success Ratio
1

A 0.8
I
1
0
t;: 0.6 m
LT
cn
% 0.4
0
0
3

0.2

0
0 2 4 6 8 10

Arrival Rate/Site -->

Fig 5c: Borrow Ratio

. .x
0 2 4 6 8 10

Arrival Rate/Site -->

01

Fig 6a: Misspercent

80

0 2 4 6 8 10

1

A 0.8
I
I
0 .= 0.6 m
LT
wl
% 0.4
0
0
3

* 0.2

Arrival Rate/Site --->

Fig 6b: Success Ratio -* - - -k - - -*

0
0 2 4 6 8 10

Arrival Rate/Site --->

Fig 6c: Borrow Ratio

A
I

cn c m

I 1.5

5 1 0)

c .-
3
2
$ 0.5
m

/."

0
0 2 4 6 8 10

Arrival Rate/Site -->

Figure 5: Healthy-OPT (RC+DC) Figure 6: Healthy-OPT (pure DC)

132

that of 2PC. The reason for this is the following: PI comes
into play only when a high priority transaction is blocked by
a low priority prepared cohort, which means that this cohort
has already sent the YES vote to its master. Since it takes
two message delays for dissemination of the priority inher-
itance information to the sibling cohorts, PI expedites at
most the processing of only the decision message. Further,
even the minor advantage that may be obtained by PI is par-
tially offset by the extra overheads involved in processing
the priority inheritance information messages.

In summary, PI fails to provide any performance bene-
fits over 2PC due to a fundamental problem of distributed
processing - delay in the dissemination of information (in
this case, priority inheritance information) to remote sites
(in this case, the sibling cohorts).

6. Conclusions

In this paper, we have significantly extended and im-
proved on our earlier simulation-based study [6] of the
performance implications of supporting transaction atom-
icity in a distributed firm-deadline RTDBS environment.
These improvements included enhancements in the model,
the workloads, the protocols and the paradigms considered
for real-time commit processing. The main conclusions of
our current study are the following:

First, the results obtained for parallel distributed trans-
action workloads were generally similar to those observed
for the sequential-transaction environment in [6]. But, per-
formance improvement due to the basic OPT protocol was
not as high for two reasons: (1) Its Active Abort policy,
which contributed significantly to improved performance in
the sequential environment, has reduced effect in the paral-
lel domain. (2) Parallel execution, by virtue of reducing the
data contention, results in an increased number of unhealthy
lenders.

Second, the basic OPTprotocol was shown to make good
use of the optimistic premise - the difference between OPT
and Shadow-OPT, which represents the best on-line usage
of the optimistic approach, never exceeded ten percent and
occurred only under significantly overloaded conditions.

Third, the Healthy-OPT protocol, which augments basic
OPT with a simple “healthy lenders” heuristic was found to
provide performance very close to that of Shadow-OPT. It
is especially important to note that Healthy-OPT provides
this high level of performance without incurring the poten-
tially significant overheads associated with implementing
the Shadow mechanism in a real system.

Finally, we evaluated the priority inheritance approach to
addressing the priority inversion problem. Our experiments
showed that this approach provides virtually no performance
benefits, primarily due to the intrinsic delays involved in dis-
seminating information in a distributed system. It therefore

does not appear to be a viable alternative to OPT for en-
hancing distributed commit processing performance.

In summary, we suggest that designers of distributedreal-
time database systems may find the Healthy-OPT protocol to
be a good choice for achieving high-performance real-time
distributed commit processing.

Acknowledgments

This work was supported in part by research grants from the
Dept. of Science and Technology, Govt. of India, and from
the National Science Foundation of the United States under
grant IRI-9619588.

References

R. Abbott and H. Garcia-Molina, “Scheduling Real-Time Transac-
tions: A Performance Evaluation”,Proc. of 14th VLDB Con$, August
1988.

P. Bernstein, V. Hadzilacos and N. Goodman, Concurrency Control
and Recovery in Dutubase Systems, Addison-Wesley, 1987.

A. Bestavros and S. Braoudakis, “Timeliness via Speculation for
Real-time Databases”, Proc. of 15th Real-lime Systems Symp., De-
cember 1994.

J. Gray, “Notes on Database Operating Systems”, OperutingSystems:
An Advunced Course, Lecture Notes in Computer Science, 60, 1978.

R. Gupta, J . Haritsa and K. Ramamitham, “More Optimism about
Real-Time Distributed Commit Processing”, TR-97-04, DSUSERC,
Indian lnstitute of Science.

R. Gupta, J. Haritsa, K . Ramamitham and S. Seshadri, “Commit
Processing in Distributed Real-Time Database Systems”, Proc. of
17th Real-Time Systems Symp., December 1996.

J. Haritsa, M. Carey and M . Livny, “Data Access Scheduling in Firm
Real-Time Database Systems”, Real-Time Systems Journal, 4 (3).
1992.

J . Huang, J.A. Stankovic, K. Ramamritham, D. Towsley and B.
Purirnetla, “Priority Inheritance In Soft Real-Time Databases”, Real-
l ime Systems Journul, 4 (3), 1992.

C. Mohan, B. Lindsay and R. Obermarck, “Transaction Management
in the R” Distributed Database Management System”, ACM Trans.
on Dutubuse Systems, 11(4), 1986.

G. Samaras, K. Britton, A. Citron and C. Mohan, “Two-Phase Commit
Optimizations in a Commercial Distributed Environment”, Journal
of Distributed und Purullel Databases, 3(4), 1995 (also in Proc.
of 9th IEEE Inti. C(JI$ on Data Engineering, April 1993).

L. Sha, R. Rajkumarand J. Lehoczky, “Priority inheritanceprotocols:
an approach to real-time synchronization”, Tech. Report CMU-CS-
87-181, Carnegie Mellon University.

D. Skeen, “NonblockingCommit Protocols”, Proc. ofACM SIGMOD
Cot$, June 198 1.

N. Soparkar et al, “Adaptive Commitment for Real-Time Distributed
Transactions”, TR-92-15, CS, Univ. of Exus (Austin), 1992.

P. Spiro, A. Joshi and T. Rengarajan, “Designing an Optimized Trans-
action Commit Protocol”, Digitul Technicul Journul, 3(I) , 1991.

Y. Yoon, “Transaction Scheduling and Commit Processing for Real-
Time Distributed Database Systems”, Ph.D. Thesis, Korea Advanced
Institute of Science and Technology, May 1994.

133

