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Abstract 

In [6],  we proposed a new commit protocol, OPT, spe- 
cially designed f o r  use in distributedfirm-deadline real-time 
database systems. OPT allows transactions to “optimisti- 
cally” borrow uncommitted prepared data in a controlled 
manner: This controlled borrowing reduces the data inac- 
cessibility and the priority inversion that is inherent in real- 
rime commit processing. Experimental evaluations showed 
the new OPTprotocol to be highly successful, as compared 
to the classical distributed commit protocols, in minimizing 
the number of missed transaction deadlines. 

In this paper; we extend and improve upon this prior 
work in the following ways: First, we consider parallel 
distributed transactions whereas the previous study was re- 
stricted to sequential transactions. Second, we evaluate the 
extent to which OPT’S real-time performance is adversely 
affected by those cases where its optimism turns out to be 
misplaced. This is achieved by comparing OPTS perfor- 
mance with that of Shadow-OPT a protocol that augments 
OPT with the “shadow transaction” approach of [3] and 
ensures that the right decision about access to uncommitted 
data is always eventually made. In all of our experiments, 
which considered a wide range of workloads and system 
configurations, the difference between OPT and Shadow- 
OPT never exceeded ten percent. Moreover; the difference 
was reduced to less than two percent when OPT was en- 
hanced with a simple “healthy lenders” heuristic. Finally, 
we compare the pevormance of OPT to that of an alter- 
native priority inheritance-based approach to addressing 
priority inversion during commit processing. Our results 
show that the benefits that prioriv inheritance provides are 
much smaller than those obtained with the OPT approach. 

1. Introduction 

Distributed database systems implement a transaction 
commit protocol to ensure transaction atomicity. A variety 
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of protocols have been proposed in the literature including 
the classical Two Phase Commit (2PC), its Presumed Abort 
(PA) and Presumed Commit (PC) variations which have be- 
come industry standards, and the non-blocking Three Phase 
Commit (3PC). These protocols require exchange of multi- 
ple messages, in multiple phases, between the participating 
sites where the distributed transaction executed. In addi- 
tion, several log records are generated, some of which have 
to be “forced”, that is, flushed to disk immediately. Due 
to these costs, commit processing can result in a signifi- 
cant increase in transaction execution times [lo, 141. Con- 
sequently, the choice of commit protocol is an especially 
important design decision for distributed real-time database 
systems (RTDBS). 

In a recent paper [6], using a detailed simulation model 
of a distributed RTDBS, we profiled the performance of the 
above-mentioned commit protocols for real-time applica- 
tions withfirm deadlines [7], wherein transactions that miss 
their deadlines are considered to be worthless and are im- 
mediately “killed”, that is, aborted and discarded from the 
system without being executed to completion. We also de- 
veloped and evaluated a new commit protocol called OPT 
that incorporates modifications to the 2PC protocol. The 
OPT protocol allows executing transactions to borrow data 
held by transactions that are in the commit processing stage, 
unlike the standard protocols which make this so-called 
“prepared data” inaccessible. If the lender commits, the 
borrowing is successful in that it provides a “head start” 
to the borrower, whereas if the lender aborts, the borrower 
also has to be aborted. The OPT protocol is based on the 
“optimistic” premise that lender transactions will typically 
commit, thereby helping the borrowers and improving over- 
all performance. The ability to borrow helps to reduce the 
blocking arising out of prepared data and also to reduce the 
impact of the priority inversion to which the commit phase 
in a distributed RTDBS is inherently susceptible [6]. OPT 
also incorporates novel features such as “Active Abort” and 
“Silent Kill” that are specifically designed to improve its 
performance in a real-time environment. A special feature 
of OPT is that it does not, unlike previous efforts in the 
area [ 13, 151, require transaction atomicity requirements to 
be weakened. 

Our experimental results in [6] showed that, with respect 
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to the metric of the steady-state percentage of missed dead- 
lines, OPT provided by far the best performance, primarily 
due to its optimistic borrowing and active abort policies. In 
fact, a non-blocking version of OPT proved to be superior to 
the standard blocking protocols for most of the workloads 
considered in our study. This is especially encouraging 
given the high desirability of the nonblocking feature in a 
real-time environment. 

In this paper, we extend and improve upon this prior 
research in the following ways: 

First, only sequential distributed transactions were mod- 
eled in our previous study. However, for real-time database 
applications, given their time-critical nature, it may be more 
common to have parallel distributed execution. Therefore, 
we have conducted again all the experiments of the previous 
study for parallel distributed transaction workloads and re- 
port their results here. In the process our simulation model 
has been made more realistic - it now includes separate log 
and data disks, and the effects of having a buffer pool are 
modeled. 

Second, the OPT protocol is an “indiscriminate” (an op- 
timist would call it “fully-optimistic”) lender in that data 
is always lent whenever requested. Although our exper- 
iments showed OPT to perform well under this premise, 
it was not clear to what extent its real-time performance 
was adversely affected by those cases where its optimism 
turned out to be misplaced. We quantitatively evaluate the 
“efficiency” of OPT here by comparing its performance to 
that of Shadow-OPT, a protocol that combines OPT with 
the “shadow transaction” approach suggested in [ 3 ] .  As 
explained later, if we ignore the overheads of the shadow 
mechanism (which may be significant in practice), Shadow- 
OPT represents the best on-line performance that could be 
achieved using the optimistic approach. 

Third, OPT does not take into account the possibility 
that a commit-phase transaction that is close to its dead- 
line may be killed due to deadline expiry before the commit 
processing is over. Lendings by such transactions are obvi- 
ously harmful to system performance and therefore should 
be avoided. To address this issue, we have designed and 
evaluated the Healthy-OPT protocol, which augments the 
basic OPT protocol with a simple heuristic called “healthy 
lenders” wherein a transaction is allowed to lend its data 
only if its estimated ability to meet its deadline is greater 
than a (system-specified) threshold value. 

Finally, OPT addresses the priority inversion problem in 
the commit phase by allowing high priority transactions to 
access the uncommitted prepared data of low priority trans- 
actions. A plausible alternative approach is the well-known 
priority inheritance (PI) mechanism [ 1 I]. In this scheme, 
a low priority transaction that blocks a high priority trans- 
action inherits the priority of the high priority transaction. 
The expectation is that the blocking time of the high priority 

transaction will be reduced since the low priority transac- 
tion will now execute faster and release its resources earlier. 
We evaluate here the performance of a real-time commit 
protocol based on the PI approach. 

2. Distributed Commit Protocols 

A common model of a distributed transaction is that there 
is one process, called the master, which is executed at the 
site where the transaction is submitted, and a set of other 
processes, called cohorts, which execute on behalf of the 
transaction at the various sites that are accessed by the trans- 
action. Each cohort sends a WORKDONE message to the 
master after it has completed its assigned work, and the 
master initiates the commit protocol after it has received 
this message from all its cohorts. A variety of transaction 
commit protocols have been devised for this model, most of 
which are based on the classical two phase commit (2PC) 
protocol [4]. In this section, we briefly describe the 2PC 
protocol and a few popular variations of this protocol - 
complete descriptions are available in [9, 10, 121. 

In the two phase commitprotocol, the master initiates the 
first phase of the commit protocol by sending PREPARE 
(to commit) messages in parallel to all the cohorts. Each 
cohort that is ready to commit first force-writes a prepare 
log record to its local stable storage and then sends a YES 
vote to the master. At this stage, the cohort has entered 
a prepared state wherein it cannot unilaterally commit or 
abort the transaction but has to wait for the final decision 
from the master. On the other hand, each cohort that de- 
cides to abort force-writes an abor t  log record and sends 
a NO vote to the master. Since a NO vote acts like a veto, 
the cohort is permitted to unilaterally abort the transaction 
without waiting for the final decision from the master. 

After the master receives the votes from all the cohorts, 
it initiates the second phase of the protocol. If all the votes 
are YES, i t  moves to a committing state by force-writing a 
commit log record and sending COMMIT messages to all 
the cohorts. Each cohort after receiving a COMMIT mes- 
sage moves to the committing state, force-writes a commit 
log record, and sends an ACK message to the master. 

If the master receives even one NO vote, it moves to 
the aborting state by force-writing an abort  log record 
and sends ABORT messages to those cohorts that are in the 
prepared state. These cohorts, after receiving the ABORT 
message, move to the aborring state, force-write an abort  
log record, and send an ACK message to the master. 

Finally, the master, after receiving acknowledgments 
from all the prepared cohorts, writes an end log record 
and then “forgets” the transaction. 

Two variants of the 2PC protocol called presumed abort 
(PA) and presumed commit (PC) were presented in  [9]. 
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These protocols try to reduce the message and logging over- 
heads by requiring all participating cohorts to follow certain 
rules at failure recovery time. The protocols have been 
implemented in a number of database products and PA is, 
in fact, now part of the ISO-OSI and WOPEN distributed 
transaction processing standards [ 101. 

A fundamental problem with all of the above protocols is 
that cohorts may become blocked waiting for a decision in 
the event of a failure at the master site and remain blocked 
until the failed site recovers [6]. To address the block- 
ing problem, a three phase commit (3PC) protocol was 
proposed in [12]. This protocol achieves a non-blocking 
capability by inserting an extra phase, called the “precom- 
mit phase”, in between the two phases of the 2PC protocol. 
In the precommit phase, a preliminary decision is reached 
regarding the fate of the transaction. The information made 
available to the participating sites as a result of this prelimi- 
nary decision allows a global decision to be made despite a 
subsequent failure of the master site. Note, however, that the 
price of gaining non-blocking functionality is an increase in 
the communication overheads since there is an extra round 
of message exchange between the master and the cohorts. In 
addition, both the master and the cohorts have to force-write 
additional log records in the precommit phase. 

3. Real-Time Commit Processing 

The commit protocols described above were designed 
for conventional database systems and do not take trans- 
action priorities into account. In a real-time environment, 
this is clearly undesirable since it may result in priority in- 
version [ 1 I], wherein high priority transactions are made 
to wait by low priority transactions. Priority inversion is 
usually prevented by resolving all conflicts in favor of trans- 
actions with higher priority. Removing priority inversion in 
the commit protocol, however, is not fully feasible. This is 
because, once a cohort reaches the prepared state, i t  has to 
retain all its data locks until it receives the global decision 
from the master - this retention is fundamentally neces- 
sary to maintain atomicity. Therefore, if a high priority 
transaction requests access to a data item that is locked by 
a “prepared cohort” of lower priority, it is not possible to 
forcibly obtain access by preempting the low priority cohort. 
In this sense, the commit phase in a distributed RTDBS is 
inherently susceptible to priority inversion. More impor- 
tantly, the priority inversion interval is not bounded since 
the time duration that a cohort is in the prepared state can 
be arbitrarily long (for example, due to network delays). 

It is important to note that the prepared data blocking 
described above is orthogonal to the decision blocking (be- 
cause of failures) that was discussed under 3PC. That is, in  
all the commit protocols, including 3PC, transactions can 

be affected by prepared data blocking. Moreover, such data 
blocking occurs during normal processing whereas decision 
blocking occurs only during failure situations. 

3.1. The OPT Protocol 

The OPT protocol [6] was designed to address the above- 
mentioned issue of prepared data blocking. The main feature 
of OPT (the complete description is available in [6]) is that 
transactions requesting data items held by other transactions 
in the prepared state are allowed to access this data. That 
is, prepared cohorts lend uncommitted data to concurrently 
executing transactions in the “optimistic” belief that this 
data will eventually be committed. 

The mechanics of the interactions between lenders and 
borrowers are captured in the following two scenarios: 

Lender Receives Decision First: Here, the lending cohort 
receives its global decision before the borrowing cohort 
has completed its execution. If the global decision is 
to commit, the lending cohort completes its processing 
in the normal fashion. On the other hand, if the global 
decision is to abort, the lender is aborted in the normal 
fashion. In addition, the borrower is also aborted since 
it has utilized inconsistent data. 

Borrower Completes Execution First: Here, the borrow- 
ing cohort completes its execution and receives its 
PREPARE message before the lendingcohort receives 
its global decision. The borrower is then “put on the 
shelf”, that is, it is made to wait and not allowed to en- 
ter the prepared state (and hence, to send a YES vote). 
The borrower waits until either the lender receives its 
global decision or its own deadline expires, whichever 
occurs earlier. In the former case, if the lender commits, 
the borrower is “taken off the shelf” and allowed to re- 
spond to its master’s messages, whereas if the lender 
aborts, the borrower is also aborted immediately since 
i t  has read inconsistent data. In the latter case, the 
borrower is killed in the normal manner. 

OPT also features an optimization called “Active Abort” 
to enhance its real-time performance which operates as fol- 
lows: In the basic 2PC protocol, cohorts are passive in that 
they inform the master of their status only upon explicit re- 
quest by the master. However, in a real-time situation, it 
may be better for an aborting cohort to immediately inform 
the master so that the abort of the transaction at the sibling 
sites can be done earlier. Therefore, cohorts in OPT inform 
the master as soon as they decide to abort locally. 

Finally, as explained in detail in [6], although OPT per- 
mits use of uncommitted data, because only transactions in 
the prepared state are allowed to lend, the borrowing does 
not result in the well-known problem of cascading aborts [2]. 
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3.2. Shadow-OPT 

As mentioned in the Introduction, we wished to evaluate 
the efficiency of OPT with respect to the extent to which 
its real-time performance was adversely affected by those 
cases where its optimism turned out to be misplaced. This 
was achieved by comparing its performance with that of the 
Shadow-OPT protocol, described below. 

The Shadow-OPT protocol combines the OPT protocol 
with the “shadow transaction” approach suggested in [3]. 
In this combined technique, a cohort forks off a replica of 
the transaction, called a shadow, whenever it borrows a data 
page. The original incarnation of the transaction continues 
the execution while the shadow transaction is blocked at 
the point of borrowing. If the lending transaction finally 
commits, the (original) borrowing cohort continues its on- 
going execution and the shadow is discarded. Otherwise, if 
the lender aborts, the borrowing cohort is aborted and the 
shadow, which was blocked so far, is activated. Thus the 
work done by the borrowing transaction prior to its borrow- 
ing is never wasted even if the wrong borrowing choice is 
made. Therefore, if we ignore the overheads of the shadow 
mechanism (which may be significant in practice), Shadow- 
OPT represents the best on-line performance that could be 
achieved using the optimistic approach. We model such a 
zero-overhead Shadow-OPT protocol in our experiments. 

For correctness, a shadow cohort can resume execution 
only if the original cohort had not exchanged any message 
with the master after the creation of the shadow. Otherwise, 
there can be dependencies among the original cohort and 
the master of which the shadow cohort is unaware of, and 
these dependencies need to be handled before the shadow 
cohort can resume the execution. In our experiments, such 
dependencies can arise only if the original cohort has sent 
the WORKDONE message to the master, in which case we 
discard the shadow cohort. 

In addition, for the sake of simplicity, we allow in our 
experiments at most one shadow (for each cohort) to exist 
at any given time. The first shadow is created at the time of 
the first borrowing - creation of another shadow is allowed 
only if the original cohort aborts and the shadow resumes 
its execution replacing the original cohort. 

3.3. Healthy-OPT 

As mentioned in the Introduction, the OPT protocol does 
not take into account the possibility that a transaction en- 
tering its commit phase close to its deadline may be killed 
due to deadline expiry before the commit processing is over. 
Lendings by such transactions are obviously harmful to sys- 
tem performance since they result in the aborts of all the 
associated borrowers and therefore should be avoided. To 
address this issue, we have designed the Healthy-OPT pro- 
tocol, described below. 

The Healthy-OPT protocol augments the basic OPT pro- 
tocol with a simple heuristic called “healthy lenders” that 
ensures only transactions whose deadlines are not very close 
(i.e., healthy transactions) are allowed to lend their prepared 
data. This is implemented in the following manner: A 
health factor HT is associated with each transaction T and 
a transaction is allowed to lend its data only if its health 
factor is greater than a (system-specified) minimum value 
M .  The health factor is computed at the point of time when 
the master is ready to send the PREPARE messages and is 
defined to be the ratio TimeLeft /MinTime, where TimeLeft 
is the time left until the transaction’s deadline, and MinTime 
is the minimum time required for commit processing (a 
minimum of two messages and one force-write need to be 
processed before the master can take a decision). 

The success of the above scheme is directly dependent on 
the threshold health factor M - set too conservatively, it will 
turn off the borrowing feature to a large extent, thus effec- 
tively reducing Healthy-OPT to standard 2PC; on the other 
hand, set too aggressively, it will fail to stop several lenders 
that will eventually abort, effectively reducing Healthy-OPT 
to basic OPT. In our experiments, we consider a range of 
values for M to determine the best choices. 

An important point to note here is that the health factor 
is not used to decide the fate of the transaction but merely 
to decide whether the transaction can lend its data. Thus, 
erroneous estimates about the message processing times and 
log force-write times only affect the extent to which the 
optimistic feature of OPT is used, as explained above. 

3.4. Shadow-OPT versus Healthy-OPT 

At this point, i t  may be asked as to why there is a need for 
the Healthy-OPT protocol when Shadow-OPT with its guar- 
antee of eventually making the right borrowing decision can 
itself be implemented as discussed above. The point to note 
here is that Shadow-OPT, in contrast to Healthy-OPT, re- 
quires significant reworking of the transaction management 
system to support the shadow concept. Further, its realiza- 
tion may incur non-negligible overheads in a real system, 
for example, for creating shadows and for managing updates 
to buffers from the multiple versions of a transaction. This 
may result in significant differences between its actual per- 
formance and that seen in the artificial zero-overhead model 
used in our experiments. In addition, Shadow-OPT has re- 
strictions on its applicability (for example, the dependency 
constraints discussed i n  Section 3.2). 

Keeping the above points in mind, Healthy-OPT pro- 
vides. as will be quantitatively demonstrated in  our experi- 
ments, a simple and efficient alternative that performs almost 
as well as Shadow-OPT and can at the same time be easily 
integrated into current systems. 
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3.5. The PIC Protocol 

As discussed above, OPT addresses the priority inver- 
sion problem in the commit phase by allowing transactions 
to access uncommitted prepared data. A plausible alterna- 
tive approach is the well-known priority inheritance (PI) 
mechanism [ 113. In this scheme, a low priority transaction 
that blocks a high priority transaction inherits the priority 
of the high priority transaction. The expectation is that the 
blocking time of the high priority transaction will be re- 
duced since the low priority transaction will now execute 
faster and release its resources earlier. 

A positive feature of the PI approach is that it does not 
run the risk of transaction aborts, unlike the optimistic ap- 
proach. Further, a study of PI in the context of (centralized) 
transaction concurrency control was made in [S] and the 
results suggest that priority inheritance is useful only if it 
occurs towards the end of the low priority transaction’s life- 
time. This seems to fit well with handling priority inversion 
during commit processing since this stage occurs at the end 
of transaction execution. 

We evaluate in our experiments the performance of PIC, 
a real-time commit protocol based on the PI approach. In the 
PIC protocol, when a high priority transaction is blocked due 
to the data locked by a low priority cohort in the prepared 
state, the latter inherits the priority of the former to expedite 
its commit processing. To propagate this inherited priority 
to the master and the sibling cohorts, the inherited cohort 
sends a PRIORITY-INHERIT message to the master. The 
master, in turn, sends this message to all other cohorts. Af- 
ter the master or a cohort receives a PRIORITY-INHERIT 
message, all further processing related to the transaction at 
that site (processing of the messages, writing log records, 
etc.) is carried out at the inherited priority.’ 

4. Simulation Model 

To evaluate the performance of the various commit pro- 
tocols described in the previous sections, we used a detailed 
simulator of a distributed RTDBS. The simulator imple- 
ments a more realistic version of the model used in our 
previous study [6]. Due to space limitations, we only high- 
light the main features here - the complete details are in [ 5 ] .  
A summary of the parameters used in the model are given 
in Table 1. 

The database is a collection of DBSize pages that are 
uniformly distributed across all the NumSites  sites. At 
each site, transactions arrive in an independent Poisson 
stream with rate ArrivalRate, and each transaction has an 
associated firm deadline. The deadline is assigned using the 
formula DT = AT + S F  * RT, where DT, AT and RT are 

‘For simplicity, the priority is not reverted to its old value if the high 
priority waiter is restaned. 

the deadline, arrival time and resource time, respectively, of 
transaction T, while SF  is a slack factor. The resource time 
is the total service time at the resources that the transaction 
requires for its execution.’ The SlackFador parameter is 
a constant that provides control over the tightnedslackness 
of transaction deadlines. 

Each transaction in the workload has the “single master - 
multiple cohort” structure described in Section 2. The num- 
ber of sites at which each transaction executes is specified 
by the DistDegree parameter. The master and one cohort 
reside at the site where the transaction is submitted whereas 
the remaining DistDegree - 1 cohorts are set up at sites 
chosen at random from the remaining NumSites  - 1 sites. 
All these cohorts execute in parallel at their respective sites. 
At each of the execution sites, the number of pages accessed 
by the transaction’s cohort varies uniformly between 0.5 and 
1.5 times CohortSize. These pages are chosen randomly 
from among the database pages located at that site. A page 
that is read is updated with probability UpdateProb. A 
transaction that is restarted due to a data conflict makes the 
same data accesses as its original incarnation. 

A read access involves a concurrency control request to 
obtain access permission, followed by a disk I/O to read the 
page, followed by a period of CPU usage for processing the 
page. Write requests are handled similarly except for their 
disk I/O - the writing of the data pages takes place asyn- 
chronously after the transaction has committed. We assume 
sufficient buffer space to allow the retention of updates until 
commit time. 

The commit protocol is initiated when the transaction has 
completed its data processing. If the transaction’s deadline 
expires either before this point, or before the master has writ- 
ten the global decision log record, the transaction is killed 
(the precise semantics of firm deadlines in a distributed en- 
vironment are defined in [ 5 ] ) .  

As mentioned earlier, transactions in an RTDBS are typ- 
ically assigned priorities so as to minimize the number of 
missed deadlines. In our model, all cohorts inherit their 
parent transaction’s priority. Further, this priority, which is 
assigned at arrival time, is maintained throughout the course 
of the transaction’s existence in the system. 

The physical resources at each site include NumCPUs  
CPUs, NurnDataDisks data disks and NumLogDisks 
log disks. There is a single common queue for the CPUs and 
the service discipline is Pre-emptive Resume, with preemp- 
tions being based on transaction priorities. Each of the disks 
has its own queue and is scheduled according to a Head-Of- 
Line (HOL) policy, with the request queue being ordered 
by transaction priority. The PageCPU and PageDisk pa- 

’ Since the resource time is a function of the number of mrssages and 
the number of forced-writes, which differ from one commit protocol to 
another, we compute the resource time assuming execution in a centrulized 
system. 
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Table 1. Simulation Model Parameters 

NumSitea 
DBSize 
Arrival Rate 
SlackFactor 
TranaType 
DiatDegree 
CohortSize 

Number of sites in the database 
Number of pages in the database 
Transaction arrival rate / site 
Slack Factor in Deadline formula 
Trans. Type (Sequential or Parallel) 
Degree of Distribution 
Average cohort size (in pages) 

Update Prob 
NumCPUa 
NumDataDiaka 
NumLogDiaka 
PageC PU 
Page Disk 
MagCPU 
Bu f Hit  

Page update probability 
Number of processors per site 
Number of data disks per site 
Number of log disks per site 
CPU page processing time 
Disk page access time 
Message send / receive time 
Probabilitv of buffer hit 

rameters capture the CPU and disk processing times per data 
page, respectively. The BufHit parameter gives the proba- 
bility of finding a page that is requested already resident in 
the buffer pool. 

The communication network is simply modeled as a 
switch that routes messages since we assume a local area 
network that has high bandwidth. However, the CPU over- 
head of message transfer is taken into account at both the 
sending and the receiving sites, and these overheads are 
captured by the Msg C PU parameter. 

With regard to logging costs, we explicitly model only 
forced log writes since they are done synchronously and 
suspend transaction operation until their completion. 

5. Experiments and Results 

Using the distributed firm-deadline RTDBS model de- 
scribed in the previous section, we conducted an extensive 
set of simulation experiments comparing the performance 
of the various commit protocols presented earlier. Due to 
space limitations, we discuss only a representative set of 
results here - the complete details are available in [ 5 ] .  

The performance metric in all of our experiments is 
MissPercent, which is the percentage of input transac- 
tions that the system is unable to complete before their 
 deadline^.^ Misspercent values in the range of 0 to 20 
percent are taken to represent system performance under 
“normal” loads, while values beyond this represent “heavy” 
load performance. The transaction priority assignment used 
in all of the experiments described here is Earliest Deadline, 

The Misspercent values shown here have relative half-widths about 
the mean of less than 10% at the 90% confidence level - each experiment 
was run until at least 20000 transactions were processed by the system. 

Table 2. Baseline Parameter Settings 

SlackFactor NumLoqDiaks 

- L I _. . 

t CohortSize I 6 t )a~es  I MaaCPU 1 5 m s  I , I ”  I - I I UpdateProb I 1.0 I B u f H i t  I 0.1 I 

wherein transactions with earlier deadlines have higher pri- 
ority than transactions with later deadlines. For concurrency 
control, the 2PL High Priority scheme [ I ]  is employed. 

5.1. Comparative Protocols 

To help isolate and understand the performance effects of 
distribution and atomicity, we have also simulated, just as in 
[6 ] ,  the performance behavior for two additional scenarios, 
CENT and DPCC, described below: 

In CENT (Centralized), a centralized database system 
that is equivalent (in terms of database size and physical 
resources) to the distributed database system is modeled. 
Messages are obviously not required here and commit pro- 
cessing only requires force-writing a single decision log 
record. Modeling this scenario helps to isolate the overall 
effect of distribution on Misspercent performance. 

In DPCC (Distributed Processing, Centralized Commit), 
data processing is executed in the normal distributed fashion, 
that is, involving messages. The commit processing, how- 
ever, is like that of a centralized system, requiring only the 
force-writing of the decision log record at the master. While 
this system is clearly artificial, modeling it helps to isolate 
the effect of distributed commit processing on Misspercent 
performance (as opposed to CENT which eliminates the 
entire effect of distributed processing). 

5.2. Expt. 1: Parallel (RC+DC) 

In our first experiment, the performance of the various 
commit protocols wals evaluated for a parallel transaction 
workload. The settings of the workload and system param- 
eters for this experiment are listed in Table 2. These values 
were chosen to ensure significant levels of both resource 
contention (RC) and data contention (DC) in the system, 
thus helping to bring; out the performance differences be- 
tween the protocols. With the given settings, each transac- 
tion executes in a parallel fashion at three sites, accessing 
and updating an average of six pages at each site. 

For this experiment, Figures 1 a and 1 b show the MissPer- 
cent behavior under normal load and heavy load conditions, 
respectively. In these graphs, we first observe that there is a 
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noticeable difference between the performance of the base- 
line systems (CENT and DPCC) and the performance of 
the classical protocols (2PC, PA, PC, 3PC) throughout the 
loading range. This demonstrates that distributed commit 
processing can have considerably more effect (difference 
between DPCC and 2PC) than distributed data processing 
(difference between CENT and DPCC) on the MissPercent 
performance. This highlights the need for designing high- 
performance commit protocols. 

Moving on to the relative performance of 2PC and 3PC, 
we observe a noticeable difference which arises from the 
additional message and logging overheads involved in 3PC. 
The performance of PA and PC, however, is only marginally 
different from that of 2PC. 

Finally, OPT provides a performance that is significantly 
better than that of 2PC under normal loads. In Figure Ic, 
OPT’s “success ratio”, that is, the fraction of times that a 
borrowing was successful, is shown. This statistic clearly 
shows that under normal loads, optimism is the right choice 
since the success ratio is almost one. Under heavy loads, 
however, there is a decrease in the success ratio - the reason 
for this is that transactions reach their commit phase only 
close to their deadlines and in this situation, a lending trans- 
action may often abort due to missing its deadline. That is, 
many lenders turn out to be “not healthy” - we address this 
issue in more detail in Experiment 3 (Section 5.4). 

The observations made above were also seen, to a large 
extent, for sequential transactions in our previous study - for 
ease of comparison, Figures 2a through 2c present these cor- 
responding results for the sequential transactions4 There 
are a few changes, however, with respect to OPT’s perfor- 
mance: 

First, although OPT continues to perform the best under 
normal loads, its effect on the Misspercent performance is 
partially reduced as compared to that for sequential trans- 
actions. This is because the Active Abort policy, which 
had significant impact in the sequential environment, is less 
useful in the parallel environment. The reason for its re- 
duced utility is that due to cohorts executing in parallel, 
there are much fewer chances of a cohort aborting after 
sending the WORKDONE message, but before receiving 
the PREPARE message, which is when the active abort 
policy mostly comes into play for the parallel case. 

Second, the performance of OPT under heavy loads is 
marginally worse than that of 2PC, whereas in the sequen- 
tial case OPT was always better or matched 2PC. This is 
explained by comparing OPT’S success ratios in Figures l c  
and 2c, which clearly indicate that the heavy-load degra- 
dation in OPT’s success ratio is much more under parallel 
workloads than under sequential workloads. The reason for 

‘The sequential results shown here were obtained using the rejinedsys- 
tem model described in Section 4 and are therefore quantitatively different 
from those shown in [ 6 ] .  

this is the following: The data contention level is smaller 
with parallel execution than with sequential execution since 
locks are held for shorter times on average. Therefore in gen- 
eral, cohorts are able to obtain the necessary locks sooner 
than in the sequential case and hence those that are aborted 
due to deadline expiry tend to make further progress than 
in the sequential case. This leads to a proportionally larger 
group of cohorts finishing their work closer to the deadline 
and hence becoming unhealthy lenders thereby resulting in 
a worse success ratio. 

The above experiment was repeated for a pure data con- 
tention (pure DC) environment, wherein there is no queuing 
for the physical resources, in order to isolate the influence 
of data contention on the real-time performance. The per- 
formance (not shown here but available in [ 5 ] )  of OPT in 
this experiment was, unlike the RC+DC environment, com- 
parable to that for the corresponding sequential transaction 
experiment. The reason for this is that in the pure DC sce- 
nario the OPT approach, due to its increased concurrency, 
reduces the data contention significantly. This results in a 
high success ratio for OPT and consequently significantly 
better performance than that of the standard commit proto- 
cols. 

5.3. Expt. 2: Efficiency of OPT 

In our next experiment, we compared the performance of 
OPT to that of the (zero-overhead) Shadow-OPT protocol 
described in Section 3.2. The results of this experiment 
are depicted in Figures 3 and 4 under RC+DC and pure 
DC conditions, respectively. We see from these figures 
that the performance of Shadow-OPT is better than that of 
OPT only by a marginal amount under RC+DC and by a 
modest amount in the pure DC environment. In fact, in all 
our experiments, maximum improvement for Shadow-OPT 
over OPT was never more than ten percent. Moreover, this 
improvement was restricted to the heavily loaded region and 
never occurred in the normal load region. The above results 
indicate that OPT is highly successful in its utilizationof the 
optimistic premise. 

5.4. Expt. 3: Healthy Lenders 

In our next experiment, we evaluated the performance of 
the Healthy-OPT protocol. The results for this experiment 
are shown in Figures 5a through 5c for the RC+DC scenario, 
and in Figures 6a through 6c for the pure DC scenario. The 
results for two different values (1.0 & 2.0) of the health 
threshold M are shown in these figures (the Healthy-OPT 
curves are very close to Shadow-OPT in Figures 5a and 6a 
and may therefore be difficult to distinguish visually). 

From the Misspercent graphs (Figures 5a and 6a), we 
see that Healthy-OPT (for M = 1) is in general superior 
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to OPT and especially so under heavy loads in the pure DC 
environment. The reason for the improvement is evident in 
Figures 5b and 6b where the success ratio of Healthy-OPT 
( M  = 1) is seen to be considerably higher than that of basic 
OPT. In Experiment 1, we had observed that OPT’s heavy 
load performance in the RC+DC environment was worse 
than that of 2PC (see Figure la) - notice now that with the 
Healthy Lenders optimization, OPT’s performance matches 
that of 2PC in this region (Figure 5a). 

Figures 5c and 6c present the “borrow ratio” (average 
number of data items borrowed per transaction). It is clear 
from these figures that Healthy-OPT ( M  = 1) is “efficient” 
in that it restricts borrowing only in the heavy load region 
but not in the normal load region where optimism is almost 
always a good idea. That is, healthy lenders are very rarely 
tagged as unhealthy. 

The last observation deals with the “completeness” and 
“precision” of borrowing, that is: (1) Do we always bor- 
row when the borrowing is going to be successful, and (2) Is 
what we borrow always going to be successful. OPT is com- 
plete by design since it does not miss out on any successful 
borrowing opportunities, but because it may also borrow 
without success, it is not precise. The experimental results 
for Healthy-OPT show that it is far more precise in compar- 
ison but sacrifices very little completeness in achieving this 
goal. 

Turning our attention to Healthy-OPT ( M  = 2), we ob- 
serve that the performance of Healthy-OPT for M = 1 and 
for M = 2 are almost identical, indicating that a health 
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Figure 4: Shadow-OPT (pure DC) 

threshold of unity is sufficient to filter out the transactions 
vulnerable to deadline kill in the commit phase. The reason 
for this is that, by virtue of the Earliest Deadline priority 
policy used in our experiments, transactions that are close 
to their deadlines have the highest priority at the physi- 
cal resources, and therefore the minimum time required to 
do the commit processing is actually sufficient for them to 
complete this operation. 

Finally, we observe that the performance improvement 
of Healthy-OPT over basic OPT is very similar to that ob- 
tained by Shadow-OPT. In fact, in all our experiments, the 
performance difference between Shadow-OPT and Healthy- 
OPT was never more than M O  percent. This means that 
Healthy-OPT can provide performance gains similar to 
that of Shadow-OPT without attracting the implementation 
problems and overheads associated with Shadow-OPT. We 
have also found that a health threshold of M = 1 provides 
good performance for a wide range of workloads and sys- 
tem configurations, that is, this setting is robust. In short, 
Healthy-OPT provides extremely efJicient use of the opti- 
mistic premise in terms of both performance and simplicity. 

5.5. Expt. 4: Priority Inheritance 

In our final experiment, we evaluated the performance 
of the PIC protocol described in Section 3.5, which incor- 
porates the priority-inheritance approach to addressing the 
problem of commit-phase priority inversion. The results 
showed that the performance of PI is virtually identical to 
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that of 2PC. The reason for this is the following: PI comes 
into play only when a high priority transaction is blocked by 
a low priority prepared cohort, which means that this cohort 
has already sent the YES vote to its master. Since it takes 
two message delays for dissemination of the priority inher- 
itance information to the sibling cohorts, PI expedites at 
most the processing of only the decision message. Further, 
even the minor advantage that may be obtained by PI is par- 
tially offset by the extra overheads involved in processing 
the priority inheritance information messages. 

In summary, PI fails to provide any performance bene- 
fits over 2PC due to a fundamental problem of distributed 
processing - delay in the dissemination of information (in 
this case, priority inheritance information) to remote sites 
(in this case, the sibling cohorts). 

6. Conclusions 

In this paper, we have significantly extended and im- 
proved on our earlier simulation-based study [6] of the 
performance implications of supporting transaction atom- 
icity in a distributed firm-deadline RTDBS environment. 
These improvements included enhancements in the model, 
the workloads, the protocols and the paradigms considered 
for real-time commit processing. The main conclusions of 
our current study are the following: 

First, the results obtained for parallel distributed trans- 
action workloads were generally similar to those observed 
for the sequential-transaction environment in [6]. But, per- 
formance improvement due to the basic OPT protocol was 
not as high for two reasons: (1) Its Active Abort policy, 
which contributed significantly to improved performance in 
the sequential environment, has reduced effect in the paral- 
lel domain. (2) Parallel execution, by virtue of reducing the 
data contention, results in an increased number of unhealthy 
lenders. 

Second, the basic OPTprotocol was shown to make good 
use of the optimistic premise - the difference between OPT 
and Shadow-OPT, which represents the best on-line usage 
of the optimistic approach, never exceeded ten percent and 
occurred only under significantly overloaded conditions. 

Third, the Healthy-OPT protocol, which augments basic 
OPT with a simple “healthy lenders” heuristic was found to 
provide performance very close to that of Shadow-OPT. It 
is especially important to note that Healthy-OPT provides 
this high level of performance without incurring the poten- 
tially significant overheads associated with implementing 
the Shadow mechanism in a real system. 

Finally, we evaluated the priority inheritance approach to 
addressing the priority inversion problem. Our experiments 
showed that this approach provides virtually no performance 
benefits, primarily due to the intrinsic delays involved in dis- 
seminating information in a distributed system. It therefore 

does not appear to be a viable alternative to OPT for en- 
hancing distributed commit processing performance. 

In summary, we suggest that designers of distributedreal- 
time database systems may find the Healthy-OPT protocol to 
be a good choice for achieving high-performance real-time 
distributed commit processing. 
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