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Abstract 
This paper presents a method based on formal 

specifications for building robust real-time microkernels. 
Temporal logic is used to specih the functional and 
temporal properties of real-time kernels with respect to 
their main services (e.g., scheduling, time, 
synchronization, and clock interrupts). As an example of 
a synchronization mechanism, the specification of the 
Priority Ceiling Protocol is provided The objective is to 
veri& kernel properties at runtime in order to improve 
the internal kernel’s detection mechanisms and 
complement their weaknesses. The core of this paper is a 
complete description of the temporal logic formulas 
corresponding to real-time kernel specifications. The 
formulas developed in this paper are the basis for the 
implementation of fault containment wrappers. The 
combination of COTS microkernels and wrappers l e a k  
to the notion of robust microkernels. The provided case 
study illustrates the approach on top of an instance of the 
Chorus microkernel. 

1 Introduction 
The use of commercial-off-the-shelf (COTS) real-time 
microkernels is today a target objective for the designers 
of safety-critical systems, mainly for economic reasons. 
However, the main worry of the designers is the 
correctness of this vital component. Providing a solution 
to guarantee that the preferred candidate fulfills the 
expected specifications is of very high interest for system 
integrators. The expression of the specifications using 
formal methods increases very much the confidence one 
can have in the final result. Indeed, formal methods are 
widely used as a mathematical support for the 
specification and the verification of systems, as well as 
for the synthesis of implementations whose correctness is 
then given by construction. The main contribution of this 
paper is the ability to combine both formal methods and 
error detection mechanisms for building fault tolerant 
systems based on robust real-time microkernels. 

The approach proposed aims at providing formal 
specifications for building robust real-time microkernels. 
The specifications describe properties that are 
independent of any actual implementation of a given 

real-time kernel. Temporal logic is used as the 
specification language, since it constitutes a good 
framework for expressing both functional and timing 
properties of systems, as stated in [l]. Properties of real- 
time kernels are specified with respect to their main 
services (e.g., scheduling, time, synchronization, and 
clock interrupts). As an example of a synchronization 
mechanism, we provide the specification of the Priority 
Ceiling Protocol [lo]. The set of temporal logic formulas 
can be verified at runtime and the violation of a formula 
is interpreted as the detection of an error of the kernel. 
The on-line verification of properties can thus be viewed 
as a fault containment wrapper based on formal 
expressions. This approach efficiently combines both an 
abstract model of the expected behavior of the kernel, as 
well as error detection mechanisms for hardening the 
microkernel. 

The basic assumption is to consider the microkernel as 
a finite state machine, as stated in [2]. However, to 
practically verify kernel properties, it is necessary to 
reduce the complexity of the model. Our approach 
consists in defining a nondeterministic, abstract finite 
state machine (AFSM) of the candidate microkernel, 
which avoids the so-called state explosion problem [3]. 
This is viable because the detailed functionality of some 
parts of the kernel behavior are irrelevant to the 
properties that need to be checked. 

Transitions among states of the AFSM are defined by 
a number of microkernel events, which are triggered by 
the kernel execution flow, the kernel environment and 
the real-time clock. Microkernel events correspond to 
both external stimuli and the start or termination of 
actions. The kernel environment can be viewed as being 
composed of the user tasks, which issue system calls, the 
real world, which generates asynchronous inputs, and the 
harhare ,  which raises interrupts and exceptions (e.g., 
internal error detection). 

The runtime verification of the kernel’s properties, 
with respect to its AFSM, is performed by a model 
checker, which interprets on-line the temporal logic 
formulas. The model checker implements a required 
subset of the temporal logic. In practice, the model 
checker is implemented as an external module that needs 
to access internal data and events of the kernel. In short, 
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the model checker is responsible for both the verification 
of the kernel behavior at runtime, as well as the detection 
of errors. The description of the model checker is beyond 
the scope of this paper. 

A number of works have been published on the 
application of formal methods to microkernels. For 
instance, in [4], a restricted Ada 95 runtime support is 
specified, together with a minimal model of the system, 
using a version of RTL expressed in PVS. In [5],  some 
kernel services are specified in VDM, and then compared 
to a less abstract specification of a simple kernel written 
in Modula2. In [6] ,  the Z notation is chosen to specify the 
behavior of the scheduler and interrupt handling 
components of a kernel for a diagnostic X-ray machine. 
These works are mainly intended to provide a formal 
description of the kernel which would replace its 
ambiguous documentation, and also aim at analyzing 
kernel properties that may help errors to be detected at 
early stages in the design process of the system, or in an 
actual implementation of the kernel. A very interesting 
architectural model for safety kernels is proposed in [2] .  
It suggests supplying the kernel with an interface 
implemented in Ada95 that offers safety services to 
critical applications. Such an interface is the result of 
successive refinements from the specification in RTL and 
Z of safety invariants defined by the applications. 

However, to our knowledge, no published work has 
focused on formal specifications for the runtime 
verification of the correctness of real-time microkernel 
services. The runtime verification of formal expressions 
is a major step forward of our previous work done for the 
hardening of COTS microkernels for the development of 
efficient fault tolerant-systems [7]. This work 
investigated wrappers based on executable assertions 
instead of formal specifications and it did not consider 
temporal aspects. The main benefit of the formal 
specifications described in this paper is two-fold: (i) the 
formal expressions based on temporal logic express the 
detailed behavior of a real-time kernel in both time and 
value domains, (ii) they can be tuned according to the 
needs and dynamically verified at runtime by a model 
checker. The combination of both formal specifications 
and the corresponding model checker can be seen as an 
extended error detection wrapper. 

This paper is organized as follows. Section 2 
describes how temporal logic can be extended to specify 
microkernel services. The specification of an abstract 
kernel is provided in Section 3, modeling the scheduling, 
time, synchronization, and clock interrupt services. 
Verification issues are illustrated in Section 4, regarding 
the timing properties of an instance of the Chorus 
microkernel. Finally, Section 5 concludes the paper. 

2 Temporal logic for the specification 
of kernels 
Temporal logic [8] is a useful formalism to describe both 
functional and temporal properties of systems. However, 
some extensions must be provided so that it can 
effectively be used to specify kernels. This section 
presents the temporal logic used for the kernel 
specification developed in Section 3. The syntax and 
semantics of the logic are first described, as well as the 
microkernel events necessary for the specification. The 
definition of discrete time in kernels is then developed. 
Finally, additional derived operators and the subset of the 
temporal logic used are described. 

2.1 Syntax and semantics 
Temporal logic formulas are built from predicates. A 
predicate describes or checks the state of the system at a 
particular instant in time. Predicates are composed of a 
number of expressions. Expressions are made up of: 

Constants (0: They comprise integer numbers (..., -1, 
0, 1, ...). 
Variables (9): They may be either a general variable 
(e.g., th,, which refers to a thread identifier, period, 
which refers to a time interval, etc.) or a state 
variable. By convention, state variables are enclosed 
in square brackets. Some examples are: 
- [Runnind: the currently running thread. 
- [Flow]: the current execution flow of the kernel. 
Functions, Ael,  ..., ek), where el, ..., ek are 
expressions: Functions may be i) arithmetic operators 
(e.g., +, -), ii) statefunctions, e.g.: 
- prio (rhd: the priority of thread th,. 
- highest ([ReacfvQueue]): the highest priority thread 

and also iii) microkernel events. Microkernel events 
are explained in Section 2.2. Yet, let us give some 
examples: 
- ?signal (th), beginning of thread th entering the 

- &ontext-switch, end of a context switch operation. 
Inductively, formulas (7) are built as follows: 
Predicates, p(eI,  ..., ek), where el, ..., ek are 
expressions: Predicates include the relational operators 
(e.g., =, <, >, I). For example: 
- prio (thd < prio (thJ: is the priority of thread thb 

- [Running7 = th,: is thread th, currently running? 
- [Flow] = BetTimer (tmm abs, period): does the 

execution flow correspond to the beginning of 
system call SetTimer, where timer parameter is 
equal to tm,, absolute start time is abs, and timer 
period is period? 

in the ready queue. 

ready queue. 

lower than the priority of thread th,? 
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Predicates combined with logical operators (e.g., 7, A) 

and temporal operators, such as Always (a), Next (0), 
and Sometime (0). For instance, the formula 
0 [[ReadyQueue] # 0j‘ A 0 [[Flow] = &signal (thJ 
A O[[Runnin@ = th J] 
is true iff the ready queue always contains at least one 
thread, and at the next instant of time the execution 
flow corresponds to thread tho entering the ready 
queue, which some time later is elected to run. 
The truth of a temporal logic formula is given with 

respect to a model defined by the triple (V, C, %?), where: 
V is the data domain. We take V to be the set of 
integer numbers, since all the microkernel variables 
can be represented by an integer. Non integer 
variables, such as structs, can be easily reduced to an 
integer. 

0 C is the set of microkernel states. C is defined by the 
set of all possible values taken by the microkernel 
variables at any instant of time. A state is a tuple of 
type V’ , where k is the number of variables handled 
by the microkernel. 

0 m is an interpretation, giving meaning to every 
function and predicate symbol, i.e.: 
- Letfbe a function symbol, then: 
m l l f l l  E (V’ + V )  

- Let p be a predicate symbol, then: 
m I1 p I t  E (V’ + (true, false})  

Let o be an interval of states in C+, the set of 
nonempty, finite sequences of states. Let I a I be the 
length of a, by convention equal to the number of states 
of ominus one. The individual states of an interval oa re  
denoted by ao, q, ..., ai,,,. The truth of a temporal logic 
formula is given with respect to an interval CT where the 
first state of the interval (i.e., ao) refers to the current 
time, and successive states refer to successive instants of 
time. Let C E &‘, V E V, and G, H E 7. Accordingly, 
oo IlVll corresponds to the value of the variable V at the 
current time. The semantics of an interpretation W for a 
given interval q is as follows: 
1. m,Ilcll=c 
2. mull v II = 00 I1 v II 
3.  mu Ilflel, ..., eh) 11 = W, llfll (mu I1 el I t ,  . . ., mu II ek II) 
4. mu II p(el, ..., en) II = mu II p II (mu I1 el 11, . . ., mu II ek II) 
5 .  ~ u I I ~ G I I ~ ~ ~ u I I G I I  

6. WuII G A H  It= mull G II ~W,,ll H II  
7. %full 0 G II = %Yc ,,”,, 4 ~ 1  II G II  
8. mu II 0 G II = %Yo ,,,,., II G I t ,  V i  I Id 
9. mu I I 0 G II = -, mu II 1~ II 

Scheduling 

For instance, an interval satisfies G A H if it satisfies 
both G and H (line 6), and it satisfies Next G (line 7) if G 
is true at the next instant of time, i.e., if the interval 
obtained by removing the first state of the interval 
satisfies G. 

2.2 Microkernel events 
A microkernel event denotes the current execution flow 
of the kernel. They can be viewed as markers 
corresponding to changes of the kernel state, triggered by 
both external stimuli and the start or termination of 
actions. Clock interrupts, entering a kernel function, or 
completing a context switch, are examples of events. The 
set of events needed for the specification developed in 
Section 3 is given in Table 1. 

?signal (th) 
hntext-switch 
Twait 

~ 

Process 
mgt. 

Synchro 
nization 

Time mgt. 

?wait From Delay --I f f i? lw!L-  
?Create (th) 
?Relinquish 
&Relinquish 
?Delay (ticks) 
?Take (cs) &winlock (th) 
&Take (cs) h h l o c k  (th) 
tGive (cs) 
&Give (cs) 
?SetTimer (tm, abs, $Timeoutset (tm, ticks) 

JTimeoutCancel (tm) 
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The semantics of some internal events is described 
hereafter (see also Section 2.1): 

Twait: The running thread requests to exit the ready 
queue. 
Gield (th): Start of thread th voluntarily changing of 

place in the ready queue. 
Jwinlock (th): Thread th gains the lock for a critical 
section. 
The description of other microkemel events is 

explicitly skipped here. A thorough explanation is 
provided in Section 3. 

2.3 Definition of discrete time in a microkernel 
Two types of scheduling can be identified: tick driven 
and event driven, as stated in [9]. Microkemels manage 
time differently, depending on which type of scheduling 
they use. Tick (or timer-driven) scheduling based 
microkernels use a periodic clock interrupt. At every 
clock interrupt (e.g., every 10 ms), a handler is in charge 
of performing a number of tasks, such as updating the 
system time, looking for elapsed timers, moving threads 
from a delay queue to the ready queue, etc. Discrete time 
is thus given by such a periodic clock interrupt. In 
contrast, event scheduling based microkernels explicitly 
program the hardware timer to interrupt the system at the 
next closest timeout. In this case, discrete time is given 
by each count of the hardware timer (e.g., 1 p between 
two counts). This paper adopts the convention of 
referring to each instant of discrete time (i.e., periodic 
clock interrupts or hardware timer counts) as tick. 

In fact, a tick can be viewed as another type of event. 
Tick events are synchronous, while the other microkemel 
events are asynchronous. A given tick may match the 
elapsed time of an on-going timer, whose expiration is 
managed by the kernel by executing a timeout handler. 
Let us define two more events. Event nick denotes the 
occurrence of a tick. If a timeout is triggered at a given 
tick, then event hick denotes the end of processing of the 
related timeout handler. If no timeout occurs, then both 
nick and hick denote the same instant of time. We 
assume that a timeout handler finishes within its tick 
interval. 

Since we are only interested in ticks leading to a 
timeout, we can revise the definition of microkernel 
states (X). Accordingly, Z will be made up of the 
instantaneous values of the microkernel variables at the 
occurrence of either a timeout or an asynchronous event. 
Subsequent computation steps modifying the kernel 
variables are thus not to be considered, which 
significantly reduces the number of states. 

2.4 Notation 
This section presents some additional derived temporal 
operators and the subset of the temporal logic used for 
the kernel specification developed in Section 3. 

The temporal operators Next and Sometime have been 
extended, as explained hereafter: 

Nextfiic;': Refers to the next i-th Gick event. 
Nexthic;': Refers to the next i-th kick  event. 
Next,,,,': Refers to the next i-th asynchronous event. 
Nexte,,,@vC'oup): Refers to the next asynchronous event 
from those of the set JevGroup}. 
Sometime" (p): Refers to some instant in the future 
before the occurrence of i nick events. 

The use of these operators is illustrated in Section 3. 
The specification uses a subset of the temporal logic. 

Let p and q be temporal logic formulas, as defined in 
Section 2.1. The specification is compliant with the 
following restrictions: 

Sometime is always guarded by an event, for example: 
Sometime ([Flow] = BetTimer ~ p )  
where p is not verified until the occurrence of 
fietrimer. 
The kernel specification consists of a set of formulas 
with the following structure: 
Always ([Flow] = event ~p - 4) 
which means that the verification of q is not carried 
out until the occurrence of event, as long as p is true, 
where event is one of the microkernel events given in 
Table 1, and p, q are temporal logic formulas which 
do not use the operator Always. The term 
[Flow] = event A p is the antecedent, which can be 
thought of as supplying the input or stimulus, whereas 
the term q is the consequent, which is the expected 
behavior of the kernel to the stimulus. 

3 Microkernel specification 
A microkernel is usually made up of a set of components 
that provide basic system services, such as scheduling, 
process management, synchronization, time 
management, interrupt management, etc. The number of 
such components varies from one microkernel to another, 
and most of the times the kernel can be customized so as 
to be kept as small as possible. The specification of the 
kernel can thus be made on the basis of these basic 
components. This paper mainly concentrates on the 
specification of scheduling, time management, and 
synchronization, since they are essential services which 
must be provided by any real-time system. The 
specification of the real-time clock interrupts is 
embedded in the temporal logic notation, as explained in 
Sections 2.3 and 2.4. 
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The scheduling specification describes the behavior of 
a general priority-based WO-preemptive scheduler (see 
Section 3.1), commonly used in real-time systems. 
Real-time tasks usually define a number of timing 
parameters, such as the period and the deadline, that 
greatly depend on the correct behavior of the timer 
service offered by the kernel. The specification of the 
timer service is developed in Section 3.2. In Section 3.3 
we address synchronization services. Two main types of 
synchronization are supported by any kernel: mutual 
exclusion between tasks executing user code, and mutual 
exclusion between tasks executing kernel code. The 
former gathers user mutexes, condition variables, 
semaphores, monitors, an also several synchronization 
protocols for real-time systems. The Priority Ceiling 
Protocol [lo], a common mechanism to synchronize real- 
time tasks, is specified in Section 3.3.1. Finally, 
synchronization within the kernel is supplied by kernel 
mutexes, the scheduler lock, and the interrupts lock, as 
described in Section 3.3.2. 

3.1 Scheduling 
The scheduling specification describes the behavior of 
those system calls which can modify the scheduling of 
tasks, namely, Create, Relinquish, and Delay. This list 
is not exhaustive, as we mainly aim at illustrating the 
approach. Synchronization system calls, like Take and 
Give, also modify the scheduling but, for the sake of 
conciseness, they will only be briefly treated in 
Section 3.3.1. 

Consider the request for the creation of a new thread, 
specified by Create-I and Create-2: 

Create-1 
Alwavs [ [Flow] = ?Create(thb) A th. = [Running] A 

Sometime [[Flow] = ?signal(thb) A [Running] = tha A 

pflO(thb) 5 pi0  (tha)] * 
- Ne&,,,, [[Running] = tha A thb E [ R e a d y Q u e ~ e ~ ~ ~ ~ l l ]  

Create-2 
Alwavs [[Flow] = fCreate(thb) A th, = [Running] A 

Sometime [[Flow] = ?signal(thb) A [Running] = tha A 

pflo(thb) > PflO (tha)] * 
- N e a M  [[Flow] = &ontextswitch A 

tha E [ R e a d y Q u e ~ e ~ ~ b J  A [Running] = thb] ] 

Whenever a thread th, requests to create a new thread 
thb, the execution flow, denoted by the variable [Flow], 
enters the kernel handler devoted to the creation of 
threads, as described by the predicate 
[Flow] = ?Create (thb). Some time later, the kernel will 
initiate the insertion of a newly created thread thb in the 
ready queue (?signal). If the priority of thb is lower than 
or equal to th, (Createl),  by the occurrence of the next 
event, the insertion operation is finished, thread th, is still 
running, and thb  is inserted in the ready queue of its 
priority. However, if the priority of the newly created 

thread thb is higher than the priority of the running thread 
th, (Create-2), at the next event the kernel executes a 
context switch. As a result, thread th, is preempted and 
inserted in the ready queue, and thb is elected as the 
newly running thread. 

A thread that gives up the CPU is specified by 
Relinquish-I , Relinquish-2 and Relinquish-3: 

Relinquish1 
Alwavs [ [Flow] = ?Relinquish A th, = [Running] A 

[ReadyQueuel-th, # 0 A thb = highest ([ReadyQueuefth,) A 

PflO (fhb) = pfl0 (tha) + 
- N e a M  [[Flow] = ?yield(th,) A [Running] = th, A 

- Ne&.a [[Flow] = &ontext-switch A 

tha E [ R e a d y Q u e ~ e ~ ~ ~ ~ ~ ]  A [Running] = thb]] ] 

Relinquish-2 
Alwavs [ [Flow] = ?Relinquish A th, = [Running] A 

[ReadyQueueI-th. # 0 A thb = highest ([ReadyQueueI-th,) A 

pflo (thb) prio (tha) * 
- N e a m  [[Flow] = &Relinquish A [Running] = tha] ] 

Relinquish4 
Alwavs [ [Flow] = ?Relinquish A tha = [Running] A 

[ReadyQueue] - [tha] = 0 3 

- Ne&, [[Flow] = &Relinquish A [Running] = tha] ] 

Relinquish1 corresponds to the case where there are 
at least one ready thread of the same priority as the 
priority of the running thread th,, i.e., the ready queue of 
this priority is not empty. As a result of the relinquish 
operation, the kernel puts th, at the end of its ready queue 
(Tyield) and yields the thread at the head of the queue as 
the newly running thread. Conversely, if all ready threads 
are of lower priority (Relinquish-P), th, exits the 
relinquish operation (helinquish) without giving up the 
CPU. Finally, Relinquish-3 models the hypothetical case 
where the running thread is the only ready thread in the 
system (i.e., the idle thread) and decides to relinquish the 
CPU, being immediately elected to run again. 

A thread may decide to delay for a certain time. This 
is described by Delay-I : 

Delay-1 
Alwavs [ [Flow] = ?Delay (ticks) A ticks > 0 A tha = [Running] A 

Sometime [[Flow] = $Timeoutset (to,,, ticks) A [Running] = tha A 

systicks = [SysTicks] A 

Sometime [[Flow] = TwaitFromDelay A [Running] = tha]] * 
- N e a m  [[Flow] = ?wait A [Running] = tha A 

- Ne&Bnt[[Flow] = kontext-switch A 

toTicks = systicks + ticks - [SysTicks] A toTicks 2 0 A 

th, E [DeIayQueu&,~,~] A th. e [ReadyQueue] A 

[Running] = highest ([ReadyQueue]) A 

- Ne&lb>Rb' [th, E [DelayQueue] A tha +? [ReadyQueue] A 

[Running] = highest ([ReadyQueue]) A 

Sometime" [[Flow] = ?signal (tha) A 

&zi!&~ [tha E ~ R e ~ d ~ Q u e u ~ ~ ~ ~ ~ ~ l l l l l l l  
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Whenever the running thread th, requests to delay for 
ticks' units of time (?Delay (ticks)), the kernel will attach 
a timeout object to th, (JTimeoutSet (toa, ticks)). A wait 
operation is then requested from the delay handler 
(l'waitFromDelay), which will be served by the scheduler 
(fwait). Eventually, th, leaves the CPU (&context-switch) 
and enters the delay queue of its priority 
(tha E [De layQ~eue~~~ i~k~ ] ) .  The number of ticks that th, 
should actually wait (toTicks+l ) is calculated in the 
specification from the instant th, effectively yields the 
CPU ([SysTicks], i.e., the current system time). When the 
waiting time is elapsed (NeXtjticktoTickS+'), the clock 
interrupt handler must have extracted th, from the delay 
queue. Only some time later within the same tick 
(Sometime"), right after the clock handler is exited 
(?signal), th, should be made ready by the scheduler 
(tha E [ReadyQueue,rio(tha)]). 

3.2 Timer management 
Timer management provides two main system calls: 
SetTimer and CancelTimer, specified by Timer-I and 
Timer-2, respectively. SetTimer takes as input 
parameters a timer identifier, tmo, an absolute start time, 
abs, and a timer period, period. Both abs and period are 
given in ticks. If the period parameter is null, SetTimer 
behaves as a watchdog timer or an alarm. Timer-I uses a 
number of auxiliary predicates, namely: TooLate, 
Continue, LostTimeouts and PeriodicTimeout. Their 
description is given hereafter: 

Timer-1 
Alwavs [ [Flow] =?SetTimer(tm,,abs,period) A tmd0 A 

abs 
Sometime [[Flow] = LTimeoutSet (tm., ticks) A 

[Running] = th.] * 
0 A period 2 0 A th,=IRunning] A 

TooLate (tm,, abs, period) v (Continue (abs, period) A 

offset = 0 A LostTimeouts (tm., abs, period, offset, 0) A 

ticks = abs + offset - [SysTicks] - 1 A ticks 2 0 A 

tma E [Timeo~tQueu&~] A 

(Next?t,kabstcrtsat-[sFnkl [tma E [TimeoutQueue,,] A 

(period = 0 v (period > 0 A 

PeriodicTimeout ( h a ,  abs, period, period+offset)))] v 
Sometime'-"e'is"1 [[Flow] = JTimeoutCancel (tm,) 
A tm, e [TimeoutQueuel])) ] 

TooLate (tm, abs, period) 
abs S [SysTicks] A period = 0 A [LostTimeoutCount(tm)] = 1 A 

tm c [TimeoutQueue] 

Continue (abs, period) 
abs > [SysTicks] v period 5 0 

LostTimeouts (tm, abs, period, offset, lost) 
to = abs + offset - [SysTicks] A 

((to 5 0 A [LostTimeoutCount(tm)] = lost) v 
(to 50 A period > 0 A 

LostTimeouts (tm, abs, period, period+offset, lost+l))) 

* See Section 2.3 for the definition of ticks. 

PeriodicTimeout (tm, abs, period, offset) 
Sometime'' [[IntFlow] = JTimeoutSet (tm, ticks) A ticks = period 
A ticks = abs + offset - [SysTicks] A tm E [TimeoutQueueo] A 

W t t i C k P B ' ' O d  [tm E [TimeoutQueueo] A 

PeriodicTimeout (tm, abs, period, period+offset)] v 
Sometime'mod [[Flow] = JTimeoutCancel (tm) A 

tm e [TimeoutQueue]])] 

A running thread tha may set a timer tma (Timer-I), 
with absolute start time abs, and period equal to period. 
However, since the kernel is preemptive, an arbitrary 
amount of time can passed between the SetTimer request 
and its completion by the kernel ($Timeoutset). As a 
consequence, the absolute start time might become lower 
than the current time (abs < [SysTicks]). In this case, if tma 
behaves as an alarm (period = 0), then it is too late to set 
the timer (TooLate), and a check is made on whether the 
kernel notified an error ([LostTmeoutCount(tm)] = 1) and 
tma was not inserted in the timeout queue 
(tm e VimeoutQueue]). Otherwise (Continue), the kernel 
should set tma either at abs (abs > [SysTicks]), or to the 
next closest period (abs I [SysTicks] A period > 0). 
LostTimeouts checks the number of lost periods, so that 
the next release time can be computed 
(ticks = abs + offset - [SysTicks] - 1). Accordingly, the 
kernel inserts tma in the timeout queue with a timeout 
value of ticks units of time (tma E ~meoutQueueih] ) .  
Then, unless the timer is cancelled (JTimeoutCancel), it 
eventually elapses (Nextni~ww-'sY). A check is 
made right before the timeout handler is executed on 
whether tma is in the timeout queue of 0 ticks 
(tma E ~imeoutQueueo]). This process is periodically 
repeated, as specified by PeriodicTimeout, i.e., at every 
expiration of the period, the clock interrupt handler inserts 
tma in the timeout queue with a timeout value of period 
ticks, until it is cancelled. 

The specification for CancelTimer, Timer-2, is the 
following: 

Timer-2 
Alwavs [ [Flow] = TCancelTimer (tm.) A tma E VimeoutQueue] 
A th. = [Running] 
Sometime [[Flow] = JTimeoutCancel (tma) A [Running] = th. A 

t m a  c [TimeoutQueueU 

T i m e t 2  expresses that whenever a request to cancel 
an on-going timer tma is issued, some time later, the 
kernel extracts tma from the timeout queue. 

3.3 Synchronization 

3.3.1 Priority Ceiling Protocol 
The Priority Ceiling Protocol (PCP) [ 101 provides two 
main system calls, namely: Take, to ask for access to a 
critical section, and Give, to release a critical section. 
The protocol also defines two special queues: the block 
queue ([BlockQueue]), which is a priority-ordered list of 
threads blocked by the ceiling protocol, and the lock 
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queue ([LockQueue]), corresponding to a list of currently 
locked critical sections ordered according to their priority 
ceilings. The specification is given by a number of 
formulas, describing Take (Take-winlock, T a k e l ,  
Take-2), as well as Give (Give-owner; Give-1, 
Give-winlock, Give-2, Give-3, Give-lock-queue, 
Give-4, Give-5). Finally, as stated in Section 3.1, Take 
and Give can also modify the scheduling of tasks. This 
point is illustrated by Sched-take-2, which is the 
scheduling version of Take-2. 

An auxiliary constant, ZEvCeiling, and two boolean 
functions, TakeOccurs and GiveOccurs, have been 
defined, which are described hereafter: 

TEvCeiling = [?'Take, &Take, ?Give, &Give, &winlock, 
.l-winlock ) 

TakeOccurs (tha, cs.) = ([Flow] = fiake(csa) A th. = [Running] 
A ceiling (CSa) 2 static-prio (tha)) 

Giveoccurs (tha, csa) = ([Flow]=TGive(c~~) A th,=[Running] A 

[Owner]=th, A cs([Owner])=cs,) 

ZEvCeiling is a set containing the ceiling events 
(?Take, JTake, ?Give, JGive, Jwinlock, JTwinlock). 
TakeOccurs expresses that a Take operation (?Take) on 
a critical section cs, is permitted only if the ceiling of cs, 
is higher than or equal to the static priority of the running 
thread. Giveoccurs states that a critical section cs, cannot 
be released (TGive) unless the running thread is the 
owner of the lock ([Owner] = tha), and the current locked 
critical section is cs, (CS ([Owner]) = CSa). 

The operation Take is described by Take-winlock, 
Take1  and Take-2: 

Take-winlock 
[ TakeOccurs (tha, CSa) A [Owner] # 0 

- Ne&em*EvCeiling [([Flow] = &winlock (tha) v 
[Flow] = h i i n lock  (tha)) A [Running] = tha] ] 

Take-1 
Alwavs [ TakeOccurs (tha, CS~)  A ([Owner] = 0 v 
- NeXfevemxEVCeiling [[Flow] = &winlock (tha) A [Running] = tha]) * 
- Ne&ent*EVCdRng [[Flow] = &Take(csa) A [Running] = tha A 

csa E [LockQueue] A [Owner] = th] ] 

Take-2 
Alwavs [ TakeOccurs (tha, CSa) A [Owner] # 0 A 

- Ne&mfEVC""w [[Flow] = .hvinlock (tha) A [Running] = tha] a 
Sometime [[Flow] = ?wait A [Running] = thJ --f 
- Ne&ent [[Flow] = kontext-switch A prio ([Owner]) = prio (tha) 
A th, E [BlockQueue] A 

4cs ,  E [LockQueue]: thread (cst) = tha] ] 

Take-winlock states that whenever the running thread 
th, initiates a Take operation on a critical section csa, and 
the lock is not free ([Owner] f 0), by the occurrence of 
the next ceiling event (Ne&entfEVCeiling), either th, has 
gained the lock (Jwinlock), or it has not (&winlock). 
Take-1 expresses that if the lock is free ([Owner] = 0) or 

th, gains the lock (Jwinlock), at the next ceiling event th, 
exits the Take operation (&Take) being the new owner of 
the lock ([Owner] = tha), and also cs, is inserted in the 
lock queue (csa E [LockQueue]). On the contrary, 
Take-2 specifies that whenever the lock is not free and 
th, does not gain the lock, th, is blocked (?wait). Hence, 
by the end of the next context switch, the owner inherits 
th,'s priority (prio ([Owner]) = prio (tha)), tha is inserted in 
the block queue (th, E [BlockQueue]), and also it must be 
true that tha was not running within a critical section 
(4cst E [LockQueue]: thread (cst) = tha]). 

The specification of Give is given by the next 
formulas: 

Give-owner 
Alwavs [ [Flow] = ?Give (CSa) A tha = [Running] * 
[Owner] = t h a ~  cs ([Owner]) = CSa] 

Give-I 
Alwavs [ Giveoccurs (tha, cs.) A [BlockQueue] = 0 3 
- Ne&afEvcd'ing [[Flow] = &Give (=a) A [Running] = th, A 

[Owner] = thread (highest ([LockQueue]))] ] 

Give-winlock 
Alwavs [ GiveOccurs (tha, csa) A [BlockQueue] # 0 
A thb = highest ([BlockQueue]) * 
[Flow] = hVinbCk(thb)) A [Running] = thJ ] 

Give-2 
[ Giveoccurs (tha, cs.) A [BlockQueue] # 0 A 

fhb = highest ([BlockQueue]) A pri0 (fhb) = prio (tha) A 

- Ne&,JEming [([Flow] = LwinlOCk(thb) v 

- Ne&enrzEVCmlmw [[Flow] = &winlock (thb) A 

[Running] = tha] a 
Sometime [[Flow] = ?signal (thb) A [Running] = t h ~  + 
- Ne&& [[Flow] = kontext-switch A 

cs (thb) E [LockQueue] A [Owner] = t h b ~  
thb L [BlockQueue] A [Running] = thb] ] 

Give-3 
Alwavs [ Giveoccurs (tha, CS.) A [BlockQueue] # 0 A thb = 
highest ([BlockQueue]) A prio (thb) < prio (tha) A 

- Ne&m3E"B'uw [[Flow] = &winlock (thb) A [Running] = t h ~  =$ 

Sometime [[Flow] = ?signal (thb) A [Running] = th J --f 
- Ne&& [[Flow] = & Give(cs.) A [Running] = th. A 

CS (fhb) E [LockQueue] A [Owner] = fhb A 

fhb L [BlockQueue]] ] 

Give-loc k-queue 
Alwavs [ Giveoccurs (tha, CSa) A [BlockQueue] # 0 A 

- Ne&m*EVCJsw [[Flow] = h.inlock] * 
[LockQueue]-csa f 0 A [Running] = tha ] 

Give-4 
Alwavs [ Giveoccurs (the, CSa) A [BlockQueue] # 0 A 

thb = highest ([BlockQueue]) A 

- Ne&ent*EvCB"ng [[Flow] = d-winlock (thb) A [Running] = th, A 

- Ne&emfEVCd""e [[Flow] = &Give(csa) A [Running] = tha  A 

[Owner] = tha A prio ([Owner]) = prio (thb)] ] 

PfiO (thb) = PflO (tha)] * 
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Give-5 
Alwavs [ Giveoccurs (tha, CSa) A [BlockQueue] # 0 A 

thb = highest ([BlockQueue]) A 

- Ne&m*Evc"u"B [[Flow] = kvinlock (thb) A [Running] = thaA 

p i0  (thb) < pn0 (th.)] * 
- 
([Owner] = tha v 

[[Flow] = JGive (cs.) A [Running] = th, A 

([Owner] # th. A [Owner] =thread (highest ([LockQueue])) 
A prio ([Owner]) = prio (thb)))ll 

Give-owner states that every time the running thread 
th, releases a critical section cs,, th, must be the owner of 
the lock and cs, must be the current locked critical 
section. Whenever the latter is true and the block queue 
is empty (Give-I), the owner is equal to the ready thread 
holding the critical section with the highest priority 
ceiling ([Owner] = thread (highest ([LockQueue]))). 
Conversely, if there are threads in the block queue, once 
cs, is released, the highest priority blocked thread tries to 
become the owner (Give-winlock). Give-2 specifies the 
case where the running thread th, is blocking a thread thb 
(i.e., th, had inherited thb's priority) and thb gains the 
lock. In this case, thb is extracted from the block queue 
(thb P [BlockQueue]), its critical section is inserted in the 
lock queue (cs (thb) E [LockQueue]), and thb becomes the 
newly running thread. However, if thb is being blocked 
by another thread (and hence thb's priority is lower than 
th,'s priority, as described by Give-3), th, keeps running. 
Further on, consider the case where the highest priority 
blocked thread thb does not gain the lock. This means 
that, apart from cs,, there is at least one more critical 
section in the lock queue, as described by 
Give-lock-queue. If th, is blocking thb (Give4) ,  this 
means that th,, did not gain the lock because of a nested 
critical section being locked by th,. Hence, th, remains 
the owner and enters the nested critical section inheriting 
thb's priority. On the other hand, the priority of the 
blocked thread thb might be lower than th,'s priority, i.e., 
thb is not being blocked by th, (Give-5). In this case, as 
long as th, does not hold any nested locked critical 
sections, the owner is substituted by the highest priority 
thread currently executing inside a critical section 
([Owner] = thread (highest ([LockQueue]))), which 
inherits thb ' s  priority. 

Take-2, Give-2 and Give-3 also modify the 
scheduling state, since they involve a number of 
scheduling operations, as indicated by events ?signal, 
?wait, and kcontext-switch. Consider Sched-take-2, 
which is the scheduling version of Take-2: 

Sched-take-2 
Alwavs [ TakeOccurs (tha, CS.) A 

- Next.,dEVCdiW [[Flow] = .kinlock (th.) A [Running] = thd 3 
Sometime [[Flow] = ?wait A [Running] = thah 
th, = highest ([ReadyQueueI-th,)] + 

[Running] = th,] ] 
[[Flow] = &context-switch A tha B [ReadyQueue] A 

Sched-take-2 has the same antecedent as Take-2. 
However, its consequent specify the state of scheduling 
variables (e.g., ReadyQueue), instead of PCP variables. 
3.3.2 Internal synchronization 
Microkernels use three different kinds of locks for 
internal synchronization, namely: mutex locks 
(Mutext-lock), the scheduling lock (Sched-lock), and the 
interrupt lock (Int-lock). A mutex lock is a binary 
semaphore of general use, which can be open or closed. 
It is used to prevent a region in the microkernel from 
being entered by more than one thread at a time. The 
scheduling lock is a special mutex that controls access to 
the scheduling resource. When the scheduling lock is 
closed, the running thread cannot be preempted. Even 
though it provides mutual exclusion between threads, it 
does not prevent interrupts from getting the CPU. 
Finally, the interrupt lock avoids interrupts from 
occurring, and is equivalent to disabling interrupts at the 
processor level. Therefore, lnt-lock is the most stringent 
lock mechanism, whereas Mutex-lock is the least one. 
This relation can be represented in the following way: 

Mutex-lock =I SchedJock 3 lnt-lock 

Lock-I, Lock-2, and Lock-3 specify the least 
stringent lock that the kernel must be using at the 
occurrence of an event (if needed). 

Lock-1 
Alwavs [ [Flow] =Rake v [Flow] =&Take v [Flow] =?Give v 
[Flow] =&Give v [Flow] =Jwinlock v [Flow] =Lwinlock 

Lock-2 
Alwavs [[Flow] = kontea-switch v [Flow] = ?signal v 
[Flow] = twait v [Flow] = ?yield v [Flow] = ?Relinquish v 

[Flow] = &elinquish v [Flow] = TwaitFromDelay a 

[Lock] .= Mutex-lock ] 

[Lock] G Sched-lock ] 

Lock-3 
Alwavs [ [Flow] = JTimeoutSet v [Flow] = JTimeoutCancel j 

[Lock] G lnt-lock ] 

Lock-I specifies than whenever Take, Give (both 
start and ending), Lwinlock, or Lwinlock events occur, 
the kernel must be at least running under the mutex lock, 
but it could also be running under the scheduling or 
interrupt locks. Lock-2 encompasses those events whose 
corresponding actions use some scheduling-related data, 
as the priority of the running thread. Hence, the 
scheduling events (kcontext-switch, ?signal, ?wait, and 
?yield), and other events, such as ?Relinquish, 
kRelinquish, and TwaitFromDelay, require preemption to 
be disable. Finally, JTimeoutSet and JTimeoutCancel 
(Lock-3) are triggered from the clock interrupt handler, 
which accesses time-related queues (e.g., the 
TimeoutQueue), so interrupts are required to be disabled 
(specially the clock interrupt, which is the highest 
priority interrupt). 
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4 Verification of the timer properties 
To illustrate the verification and fault tolerance 
capabilities offered by the specification, an instance of 
the Chorus/ClassiX r3.1 microkernel [ l l ]  has been 
verified against the timer properties defined in 
Section 3.2 (Timer-1 and Timer-2). The workload used 
is a general periodic task, zA, whose pseudo-code is 
shown in Figure 1. 

1. task body Thread is 
2. begin 
3. Initialize 0 ;  
4. set-timer (tm, tmS, T); ! 

i j ;: loop 
wait-next-release 0 ;  

i 7. Periodic-Code ( ) ; 
8. end loop; 
19. end Thread; ~ 

Figure I .  Periodic task 

The task first initializes (line 3) and executes the 
set-timer system call, which requests to the kernel to 
set a periodic timer tm, with absolute start time tmS, and 
period equal to T (line 4). Next, it enters a loop where the 
task first suspends until its next release (line 6) and then 
executes its periodic code (line 7). Each release of the task 
is referred to as instance (Ii). 

Suppose that a higher priority task, zB, preempts task 
TA while it is executing set-timer, i.e., before the call 
returns. Tasks zA and ZB have been run on Chorus2 along 
with the timer formulas, and the messages issued during 
their verification are shown in Figure 2. 

At time t2, the kernel computes the first release time 
of zA, namely, A, as the difference between tABS and the 
current time t2. Unfortunately, task zA is preempted at time 
t2, right after the kernel has computed A. As a result, once 
TA resumes at t3, the kernel works out TA’s first release as 
the current time t3 plus A. This means that ZA’S instances 
are executed out of pace. This behavior leads to the 
violation of Timer-I at time t3, as shown in lines 9 and 17, 
which can be viewed as the detection of a kernel error. 
Line 9 notifies that A (labeled as delta in Figure 2) has 
been given an erroneous value, whereas line 17 (some 
microseconds later) warns about timer tm, being inserted 
in an incorrect timeout queue. The verification of the timer 
properties in Chorus allows this behavior to be 
successfully detected. Otherwise, if not taken into account, 
such a behavior is prone to cause missed deadlines or 
inexplicable delays in data transmission. 

* set-timer and wait-next-release correspond to 
timerset and timerThreadPoolWait in Chorus, resp. 

1. Violation at [214893488 us] 
2. -- [Formula = Timer-11 
3. -- [tha = 111 
4. -- [tma = 309618161 

-- [abs = 21552 ticks] 5. 
6. -- [period = 10 ticks] 
7. -- [offset = 0 ticks] 
8. -- [SysTicks = 214891 
9. -- [delta==abs+offset- [SysTicks 1-1 I : 

10. Violation at [214894028 us] 
11. -- [Formula = Timer11 
12. -- [tha = 111 
13. -- [tma = 309618161 
14. -- labs = 21552 ticks] 
15. -- [period = 10 ticks] 
16. -- [ticks = 621 
17. -- [tma in [TimeoutQ(ticks)l==TRUEl: 

Figure 2. Verification of the timer properties in Chorus 

[70 == 621 

[ O  == 11 

(note that the diagram is not to scale) 
As illustrated in this section, our approach provides 

error detection in the time domain. It is worth noting 
however that error recovery mechanisms could also be 
implemented to let the kernel run in a graceful degraded 
mode. From a performance point of view, the overhead 
of verifying Timer-I on task TA was 2 3 2 ~ .  Further 
measurements are currently being carried out, but the 
first results obtained show that the overhead is limited. 

5 Conclusion 
In this paper, we have provided a method for building 
robust real-time microkemels based on formal 
specifications. The specifications consist of an abstract 
model of the kernel behavior that describes some of the 
essential services offered by any real-time kernel, 
namely, scheduling, time, synchronization, and clock 
interrupt management. Kernel services and their 
corresponding properties are specified in temporal logic. 
The specification is split into a set of temporal logic 
formulas that can be verified at runtime. The violation of 
a formula entails the detection of an error, which can 
further lead to error recovery actions so as to put the 
kernel in a safety state. Actually, the specification and 
the related model checker correspond to a functional and 
timing wrapper of the kernel. A microkernel 
encapsulated with such a wrapper leads to the notion of 
robust real-time microkernel. A very positive aspect of 
the method is also that such wrappers can be easily 
customized and ported to various COTS microkernels. 
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The specification presented in this paper is being 
extended and used for the verification and hardening of 
microkernels, presently the Chorus/ClassiX microkernel 
as a first target candidate. The efficient implementation 
of wrappers based on formal specifications is also a 
current subject of research. From our first experiments, 
the overhead introduced by the verification of the 
temporal logic formulas by the runtime model checker is 
very limited. Moreover, this overhead can be taken into 
account in the design of upper level real-time 
applications, i.e., included in the real-time development 
process. It is worth noting that we are also addressing 
issues concerning the impact of wrappers in both hard 
and soft real-time systems, where predictability and 
performance are of primary importance. The assessment 
of the robustness of the resulting microkernels 
encapsulated with formal wrappers will be done using 
fault injection techniques [ 121 and tools [ 131. 

Finally, the method and the experimental fault 
injection environment will be used to improve and assess 
the robustness of other real-time kernels currently used in 
industrial safety critical systems, in particular in the 
avionics domain. 
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