
Formal Specification for Building Robust Real-time Microkernels

Manuel Rodriguez, Jean-Charles Fabre and Jean Arlat

7, Avenue du Colonel Roche
3 1077 Toulouse Cedex 4 - France

E-mail: {rodriguez,fabre,arlat)@laas.fr

LAAS-CNRS

Abstract
This paper presents a method based on formal

specifications for building robust real-time microkernels.
Temporal logic is used to specih the functional and
temporal properties of real-time kernels with respect to
their main services (e.g., scheduling, time,
synchronization, and clock interrupts). As an example of
a synchronization mechanism, the specification of the
Priority Ceiling Protocol is provided The objective is to
veri& kernel properties at runtime in order to improve
the internal kernel’s detection mechanisms and
complement their weaknesses. The core of this paper is a
complete description of the temporal logic formulas
corresponding to real-time kernel specifications. The
formulas developed in this paper are the basis for the
implementation of fault containment wrappers. The
combination of COTS microkernels and wrappers l e a k
to the notion of robust microkernels. The provided case
study illustrates the approach on top of an instance of the
Chorus microkernel.

1 Introduction
The use of commercial-off-the-shelf (COTS) real-time
microkernels is today a target objective for the designers
of safety-critical systems, mainly for economic reasons.
However, the main worry of the designers is the
correctness of this vital component. Providing a solution
to guarantee that the preferred candidate fulfills the
expected specifications is of very high interest for system
integrators. The expression of the specifications using
formal methods increases very much the confidence one
can have in the final result. Indeed, formal methods are
widely used as a mathematical support for the
specification and the verification of systems, as well as
for the synthesis of implementations whose correctness is
then given by construction. The main contribution of this
paper is the ability to combine both formal methods and
error detection mechanisms for building fault tolerant
systems based on robust real-time microkernels.

The approach proposed aims at providing formal
specifications for building robust real-time microkernels.
The specifications describe properties that are
independent of any actual implementation of a given

real-time kernel. Temporal logic is used as the
specification language, since it constitutes a good
framework for expressing both functional and timing
properties of systems, as stated in [l]. Properties of real-
time kernels are specified with respect to their main
services (e.g., scheduling, time, synchronization, and
clock interrupts). As an example of a synchronization
mechanism, we provide the specification of the Priority
Ceiling Protocol [lo]. The set of temporal logic formulas
can be verified at runtime and the violation of a formula
is interpreted as the detection of an error of the kernel.
The on-line verification of properties can thus be viewed
as a fault containment wrapper based on formal
expressions. This approach efficiently combines both an
abstract model of the expected behavior of the kernel, as
well as error detection mechanisms for hardening the
microkernel.

The basic assumption is to consider the microkernel as
a finite state machine, as stated in [2]. However, to
practically verify kernel properties, it is necessary to
reduce the complexity of the model. Our approach
consists in defining a nondeterministic, abstract finite
state machine (AFSM) of the candidate microkernel,
which avoids the so-called state explosion problem [3].
This is viable because the detailed functionality of some
parts of the kernel behavior are irrelevant to the
properties that need to be checked.

Transitions among states of the AFSM are defined by
a number of microkernel events, which are triggered by
the kernel execution flow, the kernel environment and
the real-time clock. Microkernel events correspond to
both external stimuli and the start or termination of
actions. The kernel environment can be viewed as being
composed of the user tasks, which issue system calls, the
real world, which generates asynchronous inputs, and the
harhare , which raises interrupts and exceptions (e.g.,
internal error detection).

The runtime verification of the kernel’s properties,
with respect to its AFSM, is performed by a model
checker, which interprets on-line the temporal logic
formulas. The model checker implements a required
subset of the temporal logic. In practice, the model
checker is implemented as an external module that needs
to access internal data and events of the kernel. In short,

119
0-7695-0900-2/00 $10.00 0 2000 IEEE

mailto:rodriguez,fabre,arlat)@laas.fr

the model checker is responsible for both the verification
of the kernel behavior at runtime, as well as the detection
of errors. The description of the model checker is beyond
the scope of this paper.

A number of works have been published on the
application of formal methods to microkernels. For
instance, in [4], a restricted Ada 95 runtime support is
specified, together with a minimal model of the system,
using a version of RTL expressed in PVS. In [5], some
kernel services are specified in VDM, and then compared
to a less abstract specification of a simple kernel written
in Modula2. In [6] , the Z notation is chosen to specify the
behavior of the scheduler and interrupt handling
components of a kernel for a diagnostic X-ray machine.
These works are mainly intended to provide a formal
description of the kernel which would replace its
ambiguous documentation, and also aim at analyzing
kernel properties that may help errors to be detected at
early stages in the design process of the system, or in an
actual implementation of the kernel. A very interesting
architectural model for safety kernels is proposed in [2] .
It suggests supplying the kernel with an interface
implemented in Ada95 that offers safety services to
critical applications. Such an interface is the result of
successive refinements from the specification in RTL and
Z of safety invariants defined by the applications.

However, to our knowledge, no published work has
focused on formal specifications for the runtime
verification of the correctness of real-time microkernel
services. The runtime verification of formal expressions
is a major step forward of our previous work done for the
hardening of COTS microkernels for the development of
efficient fault tolerant-systems [7]. This work
investigated wrappers based on executable assertions
instead of formal specifications and it did not consider
temporal aspects. The main benefit of the formal
specifications described in this paper is two-fold: (i) the
formal expressions based on temporal logic express the
detailed behavior of a real-time kernel in both time and
value domains, (ii) they can be tuned according to the
needs and dynamically verified at runtime by a model
checker. The combination of both formal specifications
and the corresponding model checker can be seen as an
extended error detection wrapper.

This paper is organized as follows. Section 2
describes how temporal logic can be extended to specify
microkernel services. The specification of an abstract
kernel is provided in Section 3, modeling the scheduling,
time, synchronization, and clock interrupt services.
Verification issues are illustrated in Section 4, regarding
the timing properties of an instance of the Chorus
microkernel. Finally, Section 5 concludes the paper.

2 Temporal logic for the specification
of kernels
Temporal logic [8] is a useful formalism to describe both
functional and temporal properties of systems. However,
some extensions must be provided so that it can
effectively be used to specify kernels. This section
presents the temporal logic used for the kernel
specification developed in Section 3. The syntax and
semantics of the logic are first described, as well as the
microkernel events necessary for the specification. The
definition of discrete time in kernels is then developed.
Finally, additional derived operators and the subset of the
temporal logic used are described.

2.1 Syntax and semantics
Temporal logic formulas are built from predicates. A
predicate describes or checks the state of the system at a
particular instant in time. Predicates are composed of a
number of expressions. Expressions are made up of:

Constants (0: They comprise integer numbers (..., -1,
0, 1, ...).
Variables (9): They may be either a general variable
(e.g., th,, which refers to a thread identifier, period,
which refers to a time interval, etc.) or a state
variable. By convention, state variables are enclosed
in square brackets. Some examples are:
- [Runnind: the currently running thread.
- [Flow]: the current execution flow of the kernel.
Functions, Ael, ..., ek), where el, ..., ek are
expressions: Functions may be i) arithmetic operators
(e.g., +, -), ii) statefunctions, e.g.:
- prio (rhd: the priority of thread th,.
- highest ([ReacfvQueue]): the highest priority thread

and also iii) microkernel events. Microkernel events
are explained in Section 2.2. Yet, let us give some
examples:
- ?signal (th), beginning of thread th entering the

- &ontext-switch, end of a context switch operation.
Inductively, formulas (7) are built as follows:
Predicates, p(eI, ..., ek), where el, ..., ek are
expressions: Predicates include the relational operators
(e.g., =, <, >, I). For example:
- prio (thd < prio (thJ: is the priority of thread thb

- [Running7 = th,: is thread th, currently running?
- [Flow] = BetTimer (tmm abs, period): does the

execution flow correspond to the beginning of
system call SetTimer, where timer parameter is
equal to tm,, absolute start time is abs, and timer
period is period?

in the ready queue.

ready queue.

lower than the priority of thread th,?

120

Predicates combined with logical operators (e.g., 7, A)

and temporal operators, such as Always (a), Next (0),
and Sometime (0). For instance, the formula
0 [[ReadyQueue] # 0j‘ A 0 [[Flow] = &signal (thJ
A O[[Runnin@ = th J]
is true iff the ready queue always contains at least one
thread, and at the next instant of time the execution
flow corresponds to thread tho entering the ready
queue, which some time later is elected to run.
The truth of a temporal logic formula is given with

respect to a model defined by the triple (V, C, %?), where:
V is the data domain. We take V to be the set of
integer numbers, since all the microkernel variables
can be represented by an integer. Non integer
variables, such as structs, can be easily reduced to an
integer.

0 C is the set of microkernel states. C is defined by the
set of all possible values taken by the microkernel
variables at any instant of time. A state is a tuple of
type V’ , where k is the number of variables handled
by the microkernel.

0 m is an interpretation, giving meaning to every
function and predicate symbol, i.e.:
- Letfbe a function symbol, then:
m l l f l l E (V’ + V)

- Let p be a predicate symbol, then:
m I1 p I t E (V’ + (true, false})

Let o be an interval of states in C+, the set of
nonempty, finite sequences of states. Let I a I be the
length of a, by convention equal to the number of states
of ominus one. The individual states of an interval oa re
denoted by ao, q, ..., ai,,,. The truth of a temporal logic
formula is given with respect to an interval CT where the
first state of the interval (i.e., ao) refers to the current
time, and successive states refer to successive instants of
time. Let C E &‘, V E V, and G, H E 7. Accordingly,
oo IlVll corresponds to the value of the variable V at the
current time. The semantics of an interpretation W for a
given interval q is as follows:
1. m,Ilcll=c
2. mull v II = 00 I1 v II
3. mu Ilflel, ..., eh) 11 = W, llfll (mu I1 el I t , . . ., mu II ek II)
4. mu II p(el, ..., en) II = mu II p II (mu I1 el 11, . . ., mu II ek II)
5 . ~ u I I ~ G I I ~ ~ ~ u I I G I I

6. WuII G A H It= mull G II ~W,,ll H II
7. %full 0 G II = %Yc ,,”,, 4 ~ 1 II G II
8. mu II 0 G II = %Yo ,,,,., II G I t , V i I Id
9. mu I I 0 G II = -, mu II 1~ II

Scheduling

For instance, an interval satisfies G A H if it satisfies
both G and H (line 6), and it satisfies Next G (line 7) if G
is true at the next instant of time, i.e., if the interval
obtained by removing the first state of the interval
satisfies G.

2.2 Microkernel events
A microkernel event denotes the current execution flow
of the kernel. They can be viewed as markers
corresponding to changes of the kernel state, triggered by
both external stimuli and the start or termination of
actions. Clock interrupts, entering a kernel function, or
completing a context switch, are examples of events. The
set of events needed for the specification developed in
Section 3 is given in Table 1.

?signal (th)
hntext-switch
Twait

~

Process
mgt.

Synchro
nization

Time mgt.

?wait From Delay --I f f i? lw!L-
?Create (th)
?Relinquish
&Relinquish
?Delay (ticks)
?Take (cs) &winlock (th)
&Take (cs) h h l o c k (th)
tGive (cs)
&Give (cs)
?SetTimer (tm, abs, $Timeoutset (tm, ticks)

JTimeoutCancel (tm)

12 1

The semantics of some internal events is described
hereafter (see also Section 2.1):

Twait: The running thread requests to exit the ready
queue.
Gield (th): Start of thread th voluntarily changing of

place in the ready queue.
Jwinlock (th): Thread th gains the lock for a critical
section.
The description of other microkemel events is

explicitly skipped here. A thorough explanation is
provided in Section 3.

2.3 Definition of discrete time in a microkernel
Two types of scheduling can be identified: tick driven
and event driven, as stated in [9]. Microkemels manage
time differently, depending on which type of scheduling
they use. Tick (or timer-driven) scheduling based
microkernels use a periodic clock interrupt. At every
clock interrupt (e.g., every 10 ms), a handler is in charge
of performing a number of tasks, such as updating the
system time, looking for elapsed timers, moving threads
from a delay queue to the ready queue, etc. Discrete time
is thus given by such a periodic clock interrupt. In
contrast, event scheduling based microkernels explicitly
program the hardware timer to interrupt the system at the
next closest timeout. In this case, discrete time is given
by each count of the hardware timer (e.g., 1 p between
two counts). This paper adopts the convention of
referring to each instant of discrete time (i.e., periodic
clock interrupts or hardware timer counts) as tick.

In fact, a tick can be viewed as another type of event.
Tick events are synchronous, while the other microkemel
events are asynchronous. A given tick may match the
elapsed time of an on-going timer, whose expiration is
managed by the kernel by executing a timeout handler.
Let us define two more events. Event nick denotes the
occurrence of a tick. If a timeout is triggered at a given
tick, then event hick denotes the end of processing of the
related timeout handler. If no timeout occurs, then both
nick and hick denote the same instant of time. We
assume that a timeout handler finishes within its tick
interval.

Since we are only interested in ticks leading to a
timeout, we can revise the definition of microkernel
states (X). Accordingly, Z will be made up of the
instantaneous values of the microkernel variables at the
occurrence of either a timeout or an asynchronous event.
Subsequent computation steps modifying the kernel
variables are thus not to be considered, which
significantly reduces the number of states.

2.4 Notation
This section presents some additional derived temporal
operators and the subset of the temporal logic used for
the kernel specification developed in Section 3.

The temporal operators Next and Sometime have been
extended, as explained hereafter:

Nextfiic;': Refers to the next i-th Gick event.
Nexthic;': Refers to the next i-th kick event.
Next,,,,': Refers to the next i-th asynchronous event.
Nexte,,,@vC'oup): Refers to the next asynchronous event
from those of the set JevGroup}.
Sometime" (p): Refers to some instant in the future
before the occurrence of i nick events.

The use of these operators is illustrated in Section 3.
The specification uses a subset of the temporal logic.

Let p and q be temporal logic formulas, as defined in
Section 2.1. The specification is compliant with the
following restrictions:

Sometime is always guarded by an event, for example:
Sometime ([Flow] = BetTimer ~ p)
where p is not verified until the occurrence of
fietrimer.
The kernel specification consists of a set of formulas
with the following structure:
Always ([Flow] = event ~p - 4)
which means that the verification of q is not carried
out until the occurrence of event, as long as p is true,
where event is one of the microkernel events given in
Table 1, and p, q are temporal logic formulas which
do not use the operator Always. The term
[Flow] = event A p is the antecedent, which can be
thought of as supplying the input or stimulus, whereas
the term q is the consequent, which is the expected
behavior of the kernel to the stimulus.

3 Microkernel specification
A microkernel is usually made up of a set of components
that provide basic system services, such as scheduling,
process management, synchronization, time
management, interrupt management, etc. The number of
such components varies from one microkernel to another,
and most of the times the kernel can be customized so as
to be kept as small as possible. The specification of the
kernel can thus be made on the basis of these basic
components. This paper mainly concentrates on the
specification of scheduling, time management, and
synchronization, since they are essential services which
must be provided by any real-time system. The
specification of the real-time clock interrupts is
embedded in the temporal logic notation, as explained in
Sections 2.3 and 2.4.

122

The scheduling specification describes the behavior of
a general priority-based WO-preemptive scheduler (see
Section 3.1), commonly used in real-time systems.
Real-time tasks usually define a number of timing
parameters, such as the period and the deadline, that
greatly depend on the correct behavior of the timer
service offered by the kernel. The specification of the
timer service is developed in Section 3.2. In Section 3.3
we address synchronization services. Two main types of
synchronization are supported by any kernel: mutual
exclusion between tasks executing user code, and mutual
exclusion between tasks executing kernel code. The
former gathers user mutexes, condition variables,
semaphores, monitors, an also several synchronization
protocols for real-time systems. The Priority Ceiling
Protocol [lo], a common mechanism to synchronize real-
time tasks, is specified in Section 3.3.1. Finally,
synchronization within the kernel is supplied by kernel
mutexes, the scheduler lock, and the interrupts lock, as
described in Section 3.3.2.

3.1 Scheduling
The scheduling specification describes the behavior of
those system calls which can modify the scheduling of
tasks, namely, Create, Relinquish, and Delay. This list
is not exhaustive, as we mainly aim at illustrating the
approach. Synchronization system calls, like Take and
Give, also modify the scheduling but, for the sake of
conciseness, they will only be briefly treated in
Section 3.3.1.

Consider the request for the creation of a new thread,
specified by Create-I and Create-2:

Create-1
Alwavs [[Flow] = ?Create(thb) A th. = [Running] A

Sometime [[Flow] = ?signal(thb) A [Running] = tha A

pflO(thb) 5 pi0 (tha)] *
- Ne&,,,, [[Running] = tha A thb E [R e a d y Q u e ~ e ~ ~ ~ ~ l l]

Create-2
Alwavs [[Flow] = fCreate(thb) A th, = [Running] A

Sometime [[Flow] = ?signal(thb) A [Running] = tha A

pflo(thb) > PflO (tha)] *
- N e a M [[Flow] = &ontextswitch A

tha E [R e a d y Q u e ~ e ~ ~ b J A [Running] = thb]]

Whenever a thread th, requests to create a new thread
thb, the execution flow, denoted by the variable [Flow],
enters the kernel handler devoted to the creation of
threads, as described by the predicate
[Flow] = ?Create (thb). Some time later, the kernel will
initiate the insertion of a newly created thread thb in the
ready queue (?signal). If the priority of thb is lower than
or equal to th, (Createl), by the occurrence of the next
event, the insertion operation is finished, thread th, is still
running, and thb is inserted in the ready queue of its
priority. However, if the priority of the newly created

thread thb is higher than the priority of the running thread
th, (Create-2), at the next event the kernel executes a
context switch. As a result, thread th, is preempted and
inserted in the ready queue, and thb is elected as the
newly running thread.

A thread that gives up the CPU is specified by
Relinquish-I , Relinquish-2 and Relinquish-3:

Relinquish1
Alwavs [[Flow] = ?Relinquish A th, = [Running] A

[ReadyQueuel-th, # 0 A thb = highest ([ReadyQueuefth,) A

PflO (fhb) = pfl0 (tha) +
- N e a M [[Flow] = ?yield(th,) A [Running] = th, A

- Ne&.a [[Flow] = &ontext-switch A

tha E [R e a d y Q u e ~ e ~ ~ ~ ~ ~] A [Running] = thb]]]

Relinquish-2
Alwavs [[Flow] = ?Relinquish A th, = [Running] A

[ReadyQueueI-th. # 0 A thb = highest ([ReadyQueueI-th,) A

pflo (thb) prio (tha) *
- N e a m [[Flow] = &Relinquish A [Running] = tha]]

Relinquish4
Alwavs [[Flow] = ?Relinquish A tha = [Running] A

[ReadyQueue] - [tha] = 0 3

- Ne&, [[Flow] = &Relinquish A [Running] = tha]]

Relinquish1 corresponds to the case where there are
at least one ready thread of the same priority as the
priority of the running thread th,, i.e., the ready queue of
this priority is not empty. As a result of the relinquish
operation, the kernel puts th, at the end of its ready queue
(Tyield) and yields the thread at the head of the queue as
the newly running thread. Conversely, if all ready threads
are of lower priority (Relinquish-P), th, exits the
relinquish operation (helinquish) without giving up the
CPU. Finally, Relinquish-3 models the hypothetical case
where the running thread is the only ready thread in the
system (i.e., the idle thread) and decides to relinquish the
CPU, being immediately elected to run again.

A thread may decide to delay for a certain time. This
is described by Delay-I :

Delay-1
Alwavs [[Flow] = ?Delay (ticks) A ticks > 0 A tha = [Running] A

Sometime [[Flow] = $Timeoutset (to,,, ticks) A [Running] = tha A

systicks = [SysTicks] A

Sometime [[Flow] = TwaitFromDelay A [Running] = tha]] *
- N e a m [[Flow] = ?wait A [Running] = tha A

- Ne&Bnt[[Flow] = kontext-switch A

toTicks = systicks + ticks - [SysTicks] A toTicks 2 0 A

th, E [DeIayQueu&,~,~] A th. e [ReadyQueue] A

[Running] = highest ([ReadyQueue]) A

- Ne&lb>Rb' [th, E [DelayQueue] A tha +? [ReadyQueue] A

[Running] = highest ([ReadyQueue]) A

Sometime" [[Flow] = ?signal (tha) A

&zi!&~ [tha E ~ R e ~ d ~ Q u e u ~ ~ ~ ~ ~ ~ l l l l l l l

123

Whenever the running thread th, requests to delay for
ticks' units of time (?Delay (ticks)), the kernel will attach
a timeout object to th, (JTimeoutSet (toa, ticks)). A wait
operation is then requested from the delay handler
(l'waitFromDelay), which will be served by the scheduler
(fwait). Eventually, th, leaves the CPU (&context-switch)
and enters the delay queue of its priority
(tha E [De layQ~eue~~~ i~k~]) . The number of ticks that th,
should actually wait (toTicks+l) is calculated in the
specification from the instant th, effectively yields the
CPU ([SysTicks], i.e., the current system time). When the
waiting time is elapsed (NeXtjticktoTickS+'), the clock
interrupt handler must have extracted th, from the delay
queue. Only some time later within the same tick
(Sometime"), right after the clock handler is exited
(?signal), th, should be made ready by the scheduler
(tha E [ReadyQueue,rio(tha)]).

3.2 Timer management
Timer management provides two main system calls:
SetTimer and CancelTimer, specified by Timer-I and
Timer-2, respectively. SetTimer takes as input
parameters a timer identifier, tmo, an absolute start time,
abs, and a timer period, period. Both abs and period are
given in ticks. If the period parameter is null, SetTimer
behaves as a watchdog timer or an alarm. Timer-I uses a
number of auxiliary predicates, namely: TooLate,
Continue, LostTimeouts and PeriodicTimeout. Their
description is given hereafter:

Timer-1
Alwavs [[Flow] =?SetTimer(tm,,abs,period) A tmd0 A

abs
Sometime [[Flow] = LTimeoutSet (tm., ticks) A

[Running] = th.] *
0 A period 2 0 A th,=IRunning] A

TooLate (tm,, abs, period) v (Continue (abs, period) A

offset = 0 A LostTimeouts (tm., abs, period, offset, 0) A

ticks = abs + offset - [SysTicks] - 1 A ticks 2 0 A

tma E [Timeo~tQueu&~] A

(Next?t,kabstcrtsat-[sFnkl [tma E [TimeoutQueue,,] A

(period = 0 v (period > 0 A

PeriodicTimeout (h a , abs, period, period+offset)))] v
Sometime'-"e'is"1 [[Flow] = JTimeoutCancel (tm,)
A tm, e [TimeoutQueuel]))]

TooLate (tm, abs, period)
abs S [SysTicks] A period = 0 A [LostTimeoutCount(tm)] = 1 A

tm c [TimeoutQueue]

Continue (abs, period)
abs > [SysTicks] v period 5 0

LostTimeouts (tm, abs, period, offset, lost)
to = abs + offset - [SysTicks] A

((to 5 0 A [LostTimeoutCount(tm)] = lost) v
(to 50 A period > 0 A

LostTimeouts (tm, abs, period, period+offset, lost+l)))

* See Section 2.3 for the definition of ticks.

PeriodicTimeout (tm, abs, period, offset)
Sometime'' [[IntFlow] = JTimeoutSet (tm, ticks) A ticks = period
A ticks = abs + offset - [SysTicks] A tm E [TimeoutQueueo] A

W t t i C k P B ' ' O d [tm E [TimeoutQueueo] A

PeriodicTimeout (tm, abs, period, period+offset)] v
Sometime'mod [[Flow] = JTimeoutCancel (tm) A

tm e [TimeoutQueue]])]

A running thread tha may set a timer tma (Timer-I),
with absolute start time abs, and period equal to period.
However, since the kernel is preemptive, an arbitrary
amount of time can passed between the SetTimer request
and its completion by the kernel ($Timeoutset). As a
consequence, the absolute start time might become lower
than the current time (abs < [SysTicks]). In this case, if tma
behaves as an alarm (period = 0), then it is too late to set
the timer (TooLate), and a check is made on whether the
kernel notified an error ([LostTmeoutCount(tm)] = 1) and
tma was not inserted in the timeout queue
(tm e VimeoutQueue]). Otherwise (Continue), the kernel
should set tma either at abs (abs > [SysTicks]), or to the
next closest period (abs I [SysTicks] A period > 0).
LostTimeouts checks the number of lost periods, so that
the next release time can be computed
(ticks = abs + offset - [SysTicks] - 1). Accordingly, the
kernel inserts tma in the timeout queue with a timeout
value of ticks units of time (tma E ~meoutQueueih]) .
Then, unless the timer is cancelled (JTimeoutCancel), it
eventually elapses (Nextni~ww-'sY). A check is
made right before the timeout handler is executed on
whether tma is in the timeout queue of 0 ticks
(tma E ~imeoutQueueo]). This process is periodically
repeated, as specified by PeriodicTimeout, i.e., at every
expiration of the period, the clock interrupt handler inserts
tma in the timeout queue with a timeout value of period
ticks, until it is cancelled.

The specification for CancelTimer, Timer-2, is the
following:

Timer-2
Alwavs [[Flow] = TCancelTimer (tm.) A tma E VimeoutQueue]
A th. = [Running]
Sometime [[Flow] = JTimeoutCancel (tma) A [Running] = th. A

t m a c [TimeoutQueueU

T i m e t 2 expresses that whenever a request to cancel
an on-going timer tma is issued, some time later, the
kernel extracts tma from the timeout queue.

3.3 Synchronization

3.3.1 Priority Ceiling Protocol
The Priority Ceiling Protocol (PCP) [101 provides two
main system calls, namely: Take, to ask for access to a
critical section, and Give, to release a critical section.
The protocol also defines two special queues: the block
queue ([BlockQueue]), which is a priority-ordered list of
threads blocked by the ceiling protocol, and the lock

124

queue ([LockQueue]), corresponding to a list of currently
locked critical sections ordered according to their priority
ceilings. The specification is given by a number of
formulas, describing Take (Take-winlock, T a k e l ,
Take-2), as well as Give (Give-owner; Give-1,
Give-winlock, Give-2, Give-3, Give-lock-queue,
Give-4, Give-5). Finally, as stated in Section 3.1, Take
and Give can also modify the scheduling of tasks. This
point is illustrated by Sched-take-2, which is the
scheduling version of Take-2.

An auxiliary constant, ZEvCeiling, and two boolean
functions, TakeOccurs and GiveOccurs, have been
defined, which are described hereafter:

TEvCeiling = [?'Take, &Take, ?Give, &Give, &winlock,
.l-winlock)

TakeOccurs (tha, cs.) = ([Flow] = fiake(csa) A th. = [Running]
A ceiling (CSa) 2 static-prio (tha))

Giveoccurs (tha, csa) = ([Flow]=TGive(c~~) A th,=[Running] A

[Owner]=th, A cs([Owner])=cs,)

ZEvCeiling is a set containing the ceiling events
(?Take, JTake, ?Give, JGive, Jwinlock, JTwinlock).
TakeOccurs expresses that a Take operation (?Take) on
a critical section cs, is permitted only if the ceiling of cs,
is higher than or equal to the static priority of the running
thread. Giveoccurs states that a critical section cs, cannot
be released (TGive) unless the running thread is the
owner of the lock ([Owner] = tha), and the current locked
critical section is cs, (CS ([Owner]) = CSa).

The operation Take is described by Take-winlock,
Take1 and Take-2:

Take-winlock
[TakeOccurs (tha, CSa) A [Owner] # 0

- Ne&em*EvCeiling [([Flow] = &winlock (tha) v
[Flow] = h i i n lock (tha)) A [Running] = tha]]

Take-1
Alwavs [TakeOccurs (tha, CS~) A ([Owner] = 0 v
- NeXfevemxEVCeiling [[Flow] = &winlock (tha) A [Running] = tha]) *
- Ne&ent*EVCdRng [[Flow] = &Take(csa) A [Running] = tha A

csa E [LockQueue] A [Owner] = th]]

Take-2
Alwavs [TakeOccurs (tha, CSa) A [Owner] # 0 A

- Ne&mfEVC""w [[Flow] = .hvinlock (tha) A [Running] = tha] a
Sometime [[Flow] = ?wait A [Running] = thJ --f
- Ne&ent [[Flow] = kontext-switch A prio ([Owner]) = prio (tha)
A th, E [BlockQueue] A

4cs , E [LockQueue]: thread (cst) = tha]]

Take-winlock states that whenever the running thread
th, initiates a Take operation on a critical section csa, and
the lock is not free ([Owner] f 0), by the occurrence of
the next ceiling event (Ne&entfEVCeiling), either th, has
gained the lock (Jwinlock), or it has not (&winlock).
Take-1 expresses that if the lock is free ([Owner] = 0) or

th, gains the lock (Jwinlock), at the next ceiling event th,
exits the Take operation (&Take) being the new owner of
the lock ([Owner] = tha), and also cs, is inserted in the
lock queue (csa E [LockQueue]). On the contrary,
Take-2 specifies that whenever the lock is not free and
th, does not gain the lock, th, is blocked (?wait). Hence,
by the end of the next context switch, the owner inherits
th,'s priority (prio ([Owner]) = prio (tha)), tha is inserted in
the block queue (th, E [BlockQueue]), and also it must be
true that tha was not running within a critical section
(4cst E [LockQueue]: thread (cst) = tha]).

The specification of Give is given by the next
formulas:

Give-owner
Alwavs [[Flow] = ?Give (CSa) A tha = [Running] *
[Owner] = t h a ~ cs ([Owner]) = CSa]

Give-I
Alwavs [Giveoccurs (tha, cs.) A [BlockQueue] = 0 3
- Ne&afEvcd'ing [[Flow] = &Give (=a) A [Running] = th, A

[Owner] = thread (highest ([LockQueue]))]]

Give-winlock
Alwavs [GiveOccurs (tha, csa) A [BlockQueue] # 0
A thb = highest ([BlockQueue]) *
[Flow] = hVinbCk(thb)) A [Running] = thJ]

Give-2
[Giveoccurs (tha, cs.) A [BlockQueue] # 0 A

fhb = highest ([BlockQueue]) A pri0 (fhb) = prio (tha) A

- Ne&,JEming [([Flow] = LwinlOCk(thb) v

- Ne&enrzEVCmlmw [[Flow] = &winlock (thb) A

[Running] = tha] a
Sometime [[Flow] = ?signal (thb) A [Running] = t h ~ +
- Ne&& [[Flow] = kontext-switch A

cs (thb) E [LockQueue] A [Owner] = t h b ~
thb L [BlockQueue] A [Running] = thb]]

Give-3
Alwavs [Giveoccurs (tha, CS.) A [BlockQueue] # 0 A thb =
highest ([BlockQueue]) A prio (thb) < prio (tha) A

- Ne&m3E"B'uw [[Flow] = &winlock (thb) A [Running] = t h ~ =$

Sometime [[Flow] = ?signal (thb) A [Running] = th J --f
- Ne&& [[Flow] = & Give(cs.) A [Running] = th. A

CS (fhb) E [LockQueue] A [Owner] = fhb A

fhb L [BlockQueue]]]

Give-loc k-queue
Alwavs [Giveoccurs (tha, CSa) A [BlockQueue] # 0 A

- Ne&m*EVCJsw [[Flow] = h.inlock] *
[LockQueue]-csa f 0 A [Running] = tha]

Give-4
Alwavs [Giveoccurs (the, CSa) A [BlockQueue] # 0 A

thb = highest ([BlockQueue]) A

- Ne&ent*EvCB"ng [[Flow] = d-winlock (thb) A [Running] = th, A

- Ne&emfEVCd""e [[Flow] = &Give(csa) A [Running] = tha A

[Owner] = tha A prio ([Owner]) = prio (thb)]]

PfiO (thb) = PflO (tha)] *

125

Give-5
Alwavs [Giveoccurs (tha, CSa) A [BlockQueue] # 0 A

thb = highest ([BlockQueue]) A

- Ne&m*Evc"u"B [[Flow] = kvinlock (thb) A [Running] = thaA

p i0 (thb) < pn0 (th.)] *
-
([Owner] = tha v

[[Flow] = JGive (cs.) A [Running] = th, A

([Owner] # th. A [Owner] =thread (highest ([LockQueue]))
A prio ([Owner]) = prio (thb)))ll

Give-owner states that every time the running thread
th, releases a critical section cs,, th, must be the owner of
the lock and cs, must be the current locked critical
section. Whenever the latter is true and the block queue
is empty (Give-I), the owner is equal to the ready thread
holding the critical section with the highest priority
ceiling ([Owner] = thread (highest ([LockQueue]))).
Conversely, if there are threads in the block queue, once
cs, is released, the highest priority blocked thread tries to
become the owner (Give-winlock). Give-2 specifies the
case where the running thread th, is blocking a thread thb
(i.e., th, had inherited thb's priority) and thb gains the
lock. In this case, thb is extracted from the block queue
(thb P [BlockQueue]), its critical section is inserted in the
lock queue (cs (thb) E [LockQueue]), and thb becomes the
newly running thread. However, if thb is being blocked
by another thread (and hence thb's priority is lower than
th,'s priority, as described by Give-3), th, keeps running.
Further on, consider the case where the highest priority
blocked thread thb does not gain the lock. This means
that, apart from cs,, there is at least one more critical
section in the lock queue, as described by
Give-lock-queue. If th, is blocking thb (Give4) , this
means that th,, did not gain the lock because of a nested
critical section being locked by th,. Hence, th, remains
the owner and enters the nested critical section inheriting
thb's priority. On the other hand, the priority of the
blocked thread thb might be lower than th,'s priority, i.e.,
thb is not being blocked by th, (Give-5). In this case, as
long as th, does not hold any nested locked critical
sections, the owner is substituted by the highest priority
thread currently executing inside a critical section
([Owner] = thread (highest ([LockQueue]))), which
inherits thb ' s priority.

Take-2, Give-2 and Give-3 also modify the
scheduling state, since they involve a number of
scheduling operations, as indicated by events ?signal,
?wait, and kcontext-switch. Consider Sched-take-2,
which is the scheduling version of Take-2:

Sched-take-2
Alwavs [TakeOccurs (tha, CS.) A

- Next.,dEVCdiW [[Flow] = .kinlock (th.) A [Running] = thd 3
Sometime [[Flow] = ?wait A [Running] = thah
th, = highest ([ReadyQueueI-th,)] +

[Running] = th,]]
[[Flow] = &context-switch A tha B [ReadyQueue] A

Sched-take-2 has the same antecedent as Take-2.
However, its consequent specify the state of scheduling
variables (e.g., ReadyQueue), instead of PCP variables.
3.3.2 Internal synchronization
Microkernels use three different kinds of locks for
internal synchronization, namely: mutex locks
(Mutext-lock), the scheduling lock (Sched-lock), and the
interrupt lock (Int-lock). A mutex lock is a binary
semaphore of general use, which can be open or closed.
It is used to prevent a region in the microkernel from
being entered by more than one thread at a time. The
scheduling lock is a special mutex that controls access to
the scheduling resource. When the scheduling lock is
closed, the running thread cannot be preempted. Even
though it provides mutual exclusion between threads, it
does not prevent interrupts from getting the CPU.
Finally, the interrupt lock avoids interrupts from
occurring, and is equivalent to disabling interrupts at the
processor level. Therefore, lnt-lock is the most stringent
lock mechanism, whereas Mutex-lock is the least one.
This relation can be represented in the following way:

Mutex-lock =I SchedJock 3 lnt-lock

Lock-I, Lock-2, and Lock-3 specify the least
stringent lock that the kernel must be using at the
occurrence of an event (if needed).

Lock-1
Alwavs [[Flow] =Rake v [Flow] =&Take v [Flow] =?Give v
[Flow] =&Give v [Flow] =Jwinlock v [Flow] =Lwinlock

Lock-2
Alwavs [[Flow] = kontea-switch v [Flow] = ?signal v
[Flow] = twait v [Flow] = ?yield v [Flow] = ?Relinquish v

[Flow] = &elinquish v [Flow] = TwaitFromDelay a

[Lock] .= Mutex-lock]

[Lock] G Sched-lock]

Lock-3
Alwavs [[Flow] = JTimeoutSet v [Flow] = JTimeoutCancel j

[Lock] G lnt-lock]

Lock-I specifies than whenever Take, Give (both
start and ending), Lwinlock, or Lwinlock events occur,
the kernel must be at least running under the mutex lock,
but it could also be running under the scheduling or
interrupt locks. Lock-2 encompasses those events whose
corresponding actions use some scheduling-related data,
as the priority of the running thread. Hence, the
scheduling events (kcontext-switch, ?signal, ?wait, and
?yield), and other events, such as ?Relinquish,
kRelinquish, and TwaitFromDelay, require preemption to
be disable. Finally, JTimeoutSet and JTimeoutCancel
(Lock-3) are triggered from the clock interrupt handler,
which accesses time-related queues (e.g., the
TimeoutQueue), so interrupts are required to be disabled
(specially the clock interrupt, which is the highest
priority interrupt).

126

4 Verification of the timer properties
To illustrate the verification and fault tolerance
capabilities offered by the specification, an instance of
the Chorus/ClassiX r3.1 microkernel [l l] has been
verified against the timer properties defined in
Section 3.2 (Timer-1 and Timer-2). The workload used
is a general periodic task, zA, whose pseudo-code is
shown in Figure 1.

1. task body Thread is
2. begin
3. Initialize 0 ;
4. set-timer (tm, tmS, T); !

i j ;: loop
wait-next-release 0 ;

i 7. Periodic-Code () ;
8. end loop;
19. end Thread; ~

Figure I . Periodic task

The task first initializes (line 3) and executes the
set-timer system call, which requests to the kernel to
set a periodic timer tm, with absolute start time tmS, and
period equal to T (line 4). Next, it enters a loop where the
task first suspends until its next release (line 6) and then
executes its periodic code (line 7). Each release of the task
is referred to as instance (Ii).

Suppose that a higher priority task, zB, preempts task
TA while it is executing set-timer, i.e., before the call
returns. Tasks zA and ZB have been run on Chorus2 along
with the timer formulas, and the messages issued during
their verification are shown in Figure 2.

At time t2, the kernel computes the first release time
of zA, namely, A, as the difference between tABS and the
current time t2. Unfortunately, task zA is preempted at time
t2, right after the kernel has computed A. As a result, once
TA resumes at t3, the kernel works out TA’s first release as
the current time t3 plus A. This means that ZA’S instances
are executed out of pace. This behavior leads to the
violation of Timer-I at time t3, as shown in lines 9 and 17,
which can be viewed as the detection of a kernel error.
Line 9 notifies that A (labeled as delta in Figure 2) has
been given an erroneous value, whereas line 17 (some
microseconds later) warns about timer tm, being inserted
in an incorrect timeout queue. The verification of the timer
properties in Chorus allows this behavior to be
successfully detected. Otherwise, if not taken into account,
such a behavior is prone to cause missed deadlines or
inexplicable delays in data transmission.

* set-timer and wait-next-release correspond to
timerset and timerThreadPoolWait in Chorus, resp.

1. Violation at [214893488 us]
2. -- [Formula = Timer-11
3. -- [tha = 111
4. -- [tma = 309618161

-- [abs = 21552 ticks] 5.
6. -- [period = 10 ticks]
7. -- [offset = 0 ticks]
8. -- [SysTicks = 214891
9. -- [delta==abs+offset- [SysTicks 1-1 I :

10. Violation at [214894028 us]
11. -- [Formula = Timer11
12. -- [tha = 111
13. -- [tma = 309618161
14. -- labs = 21552 ticks]
15. -- [period = 10 ticks]
16. -- [ticks = 621
17. -- [tma in [TimeoutQ(ticks)l==TRUEl:

Figure 2. Verification of the timer properties in Chorus

[70 == 621

[O == 11

(note that the diagram is not to scale)
As illustrated in this section, our approach provides

error detection in the time domain. It is worth noting
however that error recovery mechanisms could also be
implemented to let the kernel run in a graceful degraded
mode. From a performance point of view, the overhead
of verifying Timer-I on task TA was 2 3 2 ~ . Further
measurements are currently being carried out, but the
first results obtained show that the overhead is limited.

5 Conclusion
In this paper, we have provided a method for building
robust real-time microkemels based on formal
specifications. The specifications consist of an abstract
model of the kernel behavior that describes some of the
essential services offered by any real-time kernel,
namely, scheduling, time, synchronization, and clock
interrupt management. Kernel services and their
corresponding properties are specified in temporal logic.
The specification is split into a set of temporal logic
formulas that can be verified at runtime. The violation of
a formula entails the detection of an error, which can
further lead to error recovery actions so as to put the
kernel in a safety state. Actually, the specification and
the related model checker correspond to a functional and
timing wrapper of the kernel. A microkernel
encapsulated with such a wrapper leads to the notion of
robust real-time microkernel. A very positive aspect of
the method is also that such wrappers can be easily
customized and ported to various COTS microkernels.

127

The specification presented in this paper is being
extended and used for the verification and hardening of
microkernels, presently the Chorus/ClassiX microkernel
as a first target candidate. The efficient implementation
of wrappers based on formal specifications is also a
current subject of research. From our first experiments,
the overhead introduced by the verification of the
temporal logic formulas by the runtime model checker is
very limited. Moreover, this overhead can be taken into
account in the design of upper level real-time
applications, i.e., included in the real-time development
process. It is worth noting that we are also addressing
issues concerning the impact of wrappers in both hard
and soft real-time systems, where predictability and
performance are of primary importance. The assessment
of the robustness of the resulting microkernels
encapsulated with formal wrappers will be done using
fault injection techniques [121 and tools [131.

Finally, the method and the experimental fault
injection environment will be used to improve and assess
the robustness of other real-time kernels currently used in
industrial safety critical systems, in particular in the
avionics domain.

Acknowledgements. Manuel Rodriguez is supported
by Thomson-CSF (SODETEG). The work reported in
this paper was carried out in the framework of LIS3.
Thanks go to Scott Hazelhurst (Wits University, South
Africa) who provided useful insights on temporal logic in
the early phase of this work, during his stay at LAAS.
Comments from FranGois Scheerens (SODETEG) are
gratefully acknowledged.

References
S. Hazelhurst, J. Arlat, “Specifing and verifying fault-
tolerant hardware”, France-South Africa Cooperation,
LAAS report No99514,1999.
A. Bums, A. J. Wellings, “Safety Kemels: Specification
and Implementation”, High Integrity Systems, vol. 1, no. 3,

S. Edwards, L. Lavagno, E. A. Lee, A. Sangiovanni-
Vincentelli, “Design of Embedded Systems: Formal
Models, Validation, and Synthesis”, Proceedings of the
IEEE, vol. 85, no. 3, pp. 366-390,1997.
S. Fowler, A. J. Wellings, “Formal Analysis of a Real-
Time Kemel Specification”, 4th International Symposium
on Formal Tecniques in Real-Time and Fault Tolerant
Systems, 1996.

pp. 287-300, 1995.

J. Gorski, A. Wardzinski, “Formal Specification and
Verification of a Real-Time Kemel”, Proceedings of 6th
Euromicro Workshop on Real-Time Systems, pp.205-211,
1994.
J. M. Spivey, “Specifying a Real-Time Kemel”, IEEE
SofMare, vol. 5 , no. 7, pp. 21-28, September 1990.
F. Salles, M. Rodriguez, J.-C. Fabre, J. Arlat,
“MetaKemels and Fault Containment Wrappers”, 29th
IEEE International Symposium on Fault-Tolerant
Computing (FTcS-29), pp. 22-29, Madison, Wisconsin,
USA, 1999.
S. Hazelhurst, C.-J. H. Seger, “Symbolic Trajectory
Evaluation”, in Formal Hardware Verification: Methodr
and Systems in Comparison, State of the Art Survey
Lecture Notes in Computer Science 1287, T. Kropf, Ed.:
Springer-Verlag, pp. 3-79, 1997.
N. C. Audsley, A. Bums, R. I. Davis, K. W. Tindell, A. J.
Wellings, “Fixed Priority Pre-emptive Scheduling: An
Historical Perspective”, Real-Time Systems, vol. 8, no. 3.
pp. 173-198, 1995.

[lo] L. Sha, R. Rajkumar, J. P. Lehoczky, “Priority Inheritance
Protocols: An Approach to Real-Time Synchronization”,
IEEE Transactions on Computers, vol. 39, no. 9, pp. 1175-
1 185, 1990.

[1 11 Chorus, “ChorudClassiX r3 - Technical Overview”,
Technical Report CSm-96-119.8, Chorus Systems, 1996.

[121 J.-C. Fabre, F. Salles, M. Rodriguez, J. Arlat, “Assessment
of COTS Microkemels by Fault Injection”, 7th IFIP
International Working Conference on Dependable
Computing for Critical Applications (DCCA‘99) - Can we
rely on computers?, San Jose, Califomia, USA, 1999.

[I31 M. Rodriguez, F. Salles, J.-C. Fabre, J. Arlat,
“MAFALDA: Microkemel Assessment by Fault Injection
and Design Aid”, 3rd European Dependable Computing
Conference (EDCC-3), Prague, Czech Republic, 1999.

Located at LAAS, the Laboratory for Dependability
Engineering (LIS) was a Cooperative Laboratory Fetween five
industrial companies (Aerospatiale Matra Airbus, Electricitt de
France, Matra Marconi Space-France, Technicatome,
Thomson-CSF) and LAAS-CNRS.

128

