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Abstract

Fault-tolerant replicated applications are typically assumed
to be deterministic, in order to ensure reproducible, consis-
tent behavior and state across a distributed system. Real ap-
plications often contain nondeterministic features that can-
not be eliminated. Through the novel application of pro-
gram analysis to distributed CORBA applications, we de-
compose an application into its constituent structures, and
discover the kinds of nondeterminism present within the ap-
plication. We target the instances of nondeterminism that
can be compensated for automatically, and highlight to the
application programmer those instances of nondeterminism
that need to be manually rectified. We demonstrate our ap-
proach by compensating for specific forms of nondetermin-
ism and by quantifying the associated performance over-
heads. The resulting code growth is typically limited to one
extra line for every instance of nondeterminism, and the
runtime overhead is minimal, compared to a fault-tolerant
application with no compensation for nondeterminism.

1. Introduction

Replication is a common technique used to provide fault-
tolerance to distributed applications. With replication, mul-
tiple copies, or replicas, of the application’s components are
provided so that even if one replica crashes, other repli-
cas can continue to provide service. Clearly, for replica-
tion to work, the replicas need to be identical, both in state
and in behavior. When an application is replicated for fault-
tolerance, the most important criterion is to keep the repli-
cas consistent in state, even as they receive invocations, pro-
cess invocations, and return responses. This requires deliv-
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ering the same set of operations, in the same order, to all of
the replicas assuming, of course, that the application isde-
terministic.

From a fault-tolerance viewpoint, an object is said to be
deterministic if all of its replicas (either on the same pro-
cessor or on different processors), when starting from the
same initial state and executing the same set of operations
in the same order, reach the same final state. It is this re-
producible behavior of the object that lends itself well to
reliability. If an object did not exhibit such reproducible be-
havior, one could no longer maintain the consistency of the
states of its replicas.

Many distributed applications are written using middle-
ware such as CORBA. For CORBA applications, fault-
tolerant determinism can be achieved by forbidding the ap-
plication’s use of any mechanism that is likely to produce
different results on different processors. This includes a
long list of items, such as local timers, local I/O, hidden
channels of communication (such as non-CORBA commu-
nication), multithreading,���. Simple CORBA applications
can clearly satisfy the notion of determinism from a fault-
tolerance perspective. For more realistic applications, espe-
cially critical systems that deal with real-world (and inher-
ently nondeterministic) entities, it is often not possible to
prohibit the various forms of nondeterminism.

The recent Fault-Tolerant CORBA [18] (FT-CORBA)
standard describes standardized fault-tolerant mechanisms
and interfaces to be included in any CORBA implemen-
tation. Unfortunately, the FT-CORBA standard fails to ad-
dress the non-trivial challenges of providing fault-tolerance
to real-world, nondeterministic CORBA applications. In
fact, the specification is explicit in stating its lack of sup-
port for nondeterministic applications:

”If sources of nondeterminism exist, they must
be filtered out. Multi-threading in the application
or the ORB may be restricted, or transactional
abort/rollback mechanisms may be used.”



In addition, the heterogeneity of today’s platforms forces
FT-CORBA to mandate that all of the replicas of a CORBA
object must be hosted on the same processor, operating sys-
tem (version) and hardware. Otherwise, unforeseen nonde-
terministic effects can arise from any differences in the un-
derlying platform that can cause replicas to diverge in state
and/or behavior.

Some approaches to handling nondeterministic applica-
tions recommend the use of specific forms of replication
(such as passive or semi-active replication); however, as we
show later in this paper (Section 2.1), every replication style
is vulnerable to the problems of nondeterminism. Yet other
approaches recommend the use of a virtual-machine-like
layer that is interposed between the operating system and
the application; the layer overrides, and compensates for,
nondeterministic system calls and returns identical results
to all of the replicas of the application. It is our belief that
the knowledge of the application’s structure and functional-
ity can provide for a better way to identify, and to handle,
nondeterminism. Thus, using a technique that compensates
for every form of nondeterminism, regardless of whether it
is present in the application, might be overkill.

For CORBA-based systems, one of the authors of this
paper had pioneered an earlier approach for compensating
for multithreading in CORBA applications through the use
of a special interceptor-based operation scheduler [17] that
“watches” and schedules incoming invocations carefully,
preserving replica consistency for multithreaded ORBs and
applications. The transparency of this approach has the ad-
vantage that it allows for ease of use in deploying the sys-
tem; the disadvantage is that the approach fails to exploit
any application-specific information that could make it eas-
ier and more effective to compensate for nondeterminism.

The lessons that we learned with this previous trans-
parent approach to nondeterminism have motivated the im-
proved, and interdisciplinary, approach that we describe in
this paper, where we apply static program analysis to dis-
tributed fault-tolerance. It is our current conviction that, for
issues such as nondeterminism, (i) source code-level infor-
mation is essential and useful, (ii) the application program-
mer/deployer should have the ability to choose how to com-
pensate for the nondeterminism based on the resulting over-
head, and (iii) involving the application programmer is an
important step needed to educate programmers in develop-
ing distributed fault-tolerant applications.

The contributions of this paper include the details of the
design and implementation of our novel program analysis-
based approach to identify, and compensate for, nondeter-
minism in distributed CORBA applications. Our approach
inserts code into the application to handle each instance
of identified nondeterminism. There can exist multiple, di-
verse sources of nondeterminism: system calls, multithread-
ing, asynchronous signalsetc.; in this paper, to illustrate our

technique, we target two specific sources of nondetermin-
ism of the system-call kind, namely, local timers and ran-
dom numbers.

We selected thegettimeofday() system call as an
example of nondeterminism is because it is used in timer
operations, timeouts and various other applications. In fact,
the CORBA Time Service is often implemented using this
call and is, therefore, nondeterministic. Thus, our approach
to correcting time-based nondeterminism could be applied
to providing a deterministic version of the CORBA Time
Service. We picked random numbers as another instance of
system-call nondeterminism to establish that our technique
is independent of the specific system call.

In this paper, we also describe the runtime infrastruc-
ture that, together with the results of our compile-time anal-
ysis, provides for a way to cope with, and compensate
for, application-level nondeterminism, without compromis-
ing replica consistency. In addition, we quantify the over-
heads of our approach for both active and passive replica-
tion styles, for different degrees of replication. While we
target CORBA applications in this paper, our approach to
handling nondeterminism in distributed replicated applica-
tions is independent of CORBA, and can be equally applied
to non-CORBA applications.

The details of the MEAD infrastructure, which handles
node-crash faults, message-loss faults and process-crash
faults, are described elsewhere in the literature [12]. This
paper, however, focuses primarily on how nondeterminis-
tic CORBA applications can be handled, given the exis-
tence of an underlying fault-tolerance infrastructure, such as
MEAD, to handle all of the fault-tolerance issues (reliable
ordered message delivery, checkpointing, fault-detection
and fault-recovery) other than nondeterminism.

2. Background

Over the past thirty years, programming paradigms and
techniques have developed significantly [23]. The first pro-
grams were entered into a shared computer system using
punch cards; these programs were typically written using
the sequential programming approach. Sequential program-
ming control-flow provided all of the information needed at
compile-time in order to determine the path of execution,
and did not introduce any runtime nondeterminism. How-
ever, sequential programming was severely limiting to the
programmer in terms of the applications that could be writ-
ten; with time and the associated hardware advances, pro-
gramming paradigms evolved to event-based and thread-
based programming that allowed for far more versatility.

Event-based programming allows the execution of an en-
tire program to be completely dependent on external stim-
uli, while thread-based programming allows two or more
concurrent tasks to run the same application code at the
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Figure 1. Different replication styles: (a) active replication and (b) passive replication.

same time. Clearly, both event-based and thread-based pro-
gramming introduce the possibility of nondeterminism be-
cause we are no longer able to predict the control flow of
such programs, especially in the face of asynchronous in-
terrupts. Note that CORBA is an event-based and thread-
based programming paradigm and is, therefore, susceptible
to nondeterminism.

There clearly is a need for a compiler-level mechanism to
deal with nondeterminism. In the absence of such a mecha-
nism, the typical solution to compensating for nondetermin-
ism would effectively undo the advances in programming
languages by transforming (by forcibly serializing) thread-
based programs to result in sequential programs. Further-
more, this transformation approach has its drawbacks: the
resulting overheads are often not trivial and the transforma-
tions might not always be possible. Thus, handling nonde-
terminism by reverting to sequential programming might be
infeasible (if the specific form of nondeterminism can not
be serialized away) and expensive (if the associated over-
heads are high).

Our alternative approach of using a compiler-based
mechanism to handle nondeterminism is attractive in not
requiring modifications to the programming style, and
in potentially not incurring high overheads and in be-
ing able to handle various forms of nondeterminism.

2.1. Replication Styles

Nondeterministic behavior is an inevitable and challeng-
ing problem in the development of fault-tolerant systems,
regardless of the replication style employed. Figure 1(a)
shows active or state-machine replication [22], where every
replica performs every operation. Figure 1(b) shows pas-
sive replication [10], where only one replica, the primary,
performs every operation, and periodically synchronizes its
state with its backups; one of the backups takes over if the
primary fails.

For active replication, determinism is crucial to main-
taining the consistency of the states of the replicas of the ob-
ject. Passive replication is often perceived to be the solution
for nondeterministic applications. There is some truth in this
because, with passive replication, invocations are processed
only by the primary, with the primary’s state being captured
and then used to assign the states of the backup replicas. If
the primary fails while processing an invocation, any par-
tial execution is discarded, and the invocation is processed
afresh by the new primary. Because the state updates hap-
pen only at one of the replicas, namely, at the primary, the
results of any nondeterministic behavior of the replicated
object can be completely contained, without compromising
the replica consistency of the object.

However, there do exist situations where passive repli-
cation does not compensate for non-determinism. This
can happen when the nondeterministic behavior of a pas-
sively replicated object is not contained because its
behavior “leaks” to other replicated objects in the sys-
tem. Consider a multi-tiered (or nested) application where
a client invokes the primary server replica, which then in-
vokes some other server based on some nondeterminis-
tic decision (e.g., for load balancing, the primary randomly
chooses one ofn servers to process a request). If the pri-
mary fails after issuing the invocation, there is no guar-
antee that the new primary will select the same server as
the old primary; thus, the system could now be in an in-
consistent state because the old and the new primary repli-
cas have communicated with different servers, both of
whose states might be updated differently.

Unless we can ensure that the old and new primaries do
not affect external components differently for the same op-
eration, passive replication does not always resolve nonde-
terminism. For passive replication to work around nondeter-
ministic behavior, there should be no persistent effect (i.e.,
no lingering “leakage”) due to the nondeterministic, partial
execution of an invocation due to the failure of the primary.



Semi-active and semi-passive replication styles are no
cure for nondeterminism, either. Should a fault occur in the
primary before the nondeterministic information is relayed
to the backups, several issues can arise. The backups will
need to roll-back to the previous deterministic checkpoint.
Additionally, if any nondeterministic information was prop-
agated just before the primary failed, then, the nodes that re-
ceived this information will also need to be rolled back. Ad-
ditionally, semi-active or semi-passive replication can be re-
garded as a form of serialization because the backups must
wait to receive the execution path of the primary, and any
nondeterminism that resulted from it, before they can pro-
ceed. Furthermore, to avoid the “lag”, the primary must wait
for the backups to complete this update, thereby slowing
down the overall execution of the replicated process.

3. Design Objectives

Rewriting the middleware, or implementing a virtual ma-
chine, to order execution and ensure consistency between
replicas is not the objective of our work. We opt instead to
exploit program analysis to develop a solution to the prob-
lem of nondeterminism. We wish to permit programmers
to continue to create applications that are nondeterminis-
tic; we aim to support different solutions that either elimi-
nate the nondeterminism, or leave it in the code but quantify
the overhead of compensating for it, without loss of consis-
tency. In this manner, programmers can employ any pro-
gramming paradigm of their choice, but are made to un-
derstand/appreciate the side-effects of any nondeterminism
that they might introduce.

We have developed an approach that allows nondeter-
minism to exist within application code, but uses program
analysis to isolate the possible places where nondetermin-
ism can affect the system state or behavior. Then, we per-
form relatively simple code transformations to ensure con-
sistent results (as perceived at the client side) across all
of the server replicas. This is different from forcing each
replica to be deterministic so that each creates the correct
result in the same way.

We identify nondeterminism at compile-time by using
program analysis techniques on the application’s source
code. We compensate for nondeterminism also through pro-
gram analysis, but by employing separate compile-time
and run-time components. Our approach is deliberately not
transparent to the programmer so as to allow him/her the
opportunity to eliminate the nondeterminism from the ap-
plication, and not transparent to the deployer so as to allow
him/her to tune the amount of nondeterminism to eliminate,
based on the associated overheads.

The difference between our approach and related work
is that we offer the programmer the option of how to deal
with the nondeterminism based on the latency overheads as

well as code growth. In this paper, as a proof of concept, we
have chosen to address one form of nondeterminism (those
arising from system calls) to target and demonstrate how
our approach/technique solves the problem. Our ongoing
research (outside the scope of this paper) focuses on ex-
tending our approach to other, more complicated forms of
nondeterminism as well.

4. Assumptions and Limitations

Our approach, while providing significant advantages, re-
quires some assumptions in order for it to be practically im-
plementable and to produce results. We list some of these
assumptions, and the limitations of our approach that fol-
low from these assumptions.

While program analysis allows application programmers
to continue to use the majority of programming techniques
and styles that they are accustomed to, some practices cur-
rently prove to be difficult for our program analysis to han-
dle. Inheritance (a feature supported by many programming
languages), especially multiple inheritance, endows objects
with multiple levels of attributes, each constituting a po-
tential source of nondeterminism. If the application em-
ployed inheritance, we would need a significant amount
of compile-time and run-time information to keep track of
each object and its inherited attributes and to determine how
nondeterminism can matriculate through the hierarchy. Al-
though it is possible for us to do this, it can result in signifi-
cant overheads, and is outside the scope of this paper. Poly-
morphism is similar to inheritance because the exact func-
tion that is called or the event that is initiated depends en-
tirely on the type of the object; however, the overhead for us
to handle polymorphism might not be as large because type
information is typically known at compile time.

Identifying and eliminating all sources of nondeter-
minism is a challenging problem, especially for dis-
tributed applications. While we feel that our approach
is generic enough and has the ability to provide solu-
tions to many sources of nondeterminism, we have chosen
to focus on one specific type of nondeterminism (those aris-
ing from system calls, such asgettimeofday()) in
this paper in order to justify our approach and to demon-
strate its benefits. Other types of nondeterminism, such
as multithreading, asynchronous signals����, form the fo-
cus of our ongoing research, and are outside the scope
of this paper because they require relatively more com-
plex nondeterminism-compensation mechanisms.

In addition, we make the following assumptions:

� The CORBA application is replicated with replicas
running on different processors in a distributed, asyn-
chronous system. No assumption is made about the rel-
ative speeds of the processors.



� We assume that we have access to application source
code, and that we are allowed to modify the client and
server source-code , as well as the IDL interfaces of all
objects. This assumption could pose a problem in the
case of proprietary software or for systems where mul-
tiple versions of code might co-exist.

� We assume that every other layer in the architecture
(including the ORB and the operating system) is deter-
ministic and that only the application exhibits nonde-
terminism. We recognize that this assumption is not re-
alistic in the long run – however, this paper is a proof
of concept of our approach to handling nondetermin-
ism, although only at the application level. We intend
to apply our technique recursively to ORB and infras-
tructure source code to handle nondeterminism com-
prehensively.

� Processes/processors fail independently of each other.
� Our current fault model encompasses node-crash,

process-crash and message-loss faults.

The capabilities of the underlying MEAD infrastructure
are transparent, including, for instance, the reliable message
delivery, ordering and replication mechanisms.

5. Approach

Current and previous research practices in eliminating non-
determinism do not analyze the interactions between the
different parts of the client and server application code.
With our approach, the client-side and server-side code are
jointly analyzed, and modified, as a single unit. Data-flow
and control-flow analyses allow us to determine the instruc-
tions that execute in the server and that produce a nonde-
terministic result which can be either returned to the client
or used in future updates to the server state. The results of
this nondeterministic execution need to be propagated back
to the client, which can then store the specific results in a
special structure that represents the nondeterministic state
of the server. Thus, if one of the server replicas fails, a new
replica can have the nondeterministic portion of its state ini-
tialized/overwritten through the “cached” nondeterministic
snapshot (of the previous failed server’s nondeterministic
state) stored at the client.

5.1. Program Analysis
5.1.1. Preparation for Program Analysis. To make pro-
gram analysis possible, we first need to convert the input
source code into an intermediate format. The CORBA test
applications that we used were written in C++, which re-
quired us to use EDG [1] to convert the C++ code to C, and
then to use SUIF2 [3] compiler to convert the resulting C
code into an intermediate representation amenable to pro-
gram analysis. As show in Figure 2, our analyzer makes

multiple passes through each intermediate file, and high-
lights the sources of nondeterminism in the code. For in-
stance, a pass that discovers a nondeterministic call will an-
notate the return value of that call and then track the vari-
able holding the return value as a potential source of non-
determinism. A subsequent pass will attempt to establish
whether this variable, or any other data that it affects, is used
in an invocation to a server; in that case, there exists the pos-
sibility of nondeterminism propagating to another node in
the distributed system. For each source file, our analyzer
creates a dependency file that captures the nondeterminis-
tic behavior of that source code. Since our current imple-
mentation only targets the application’s source code, we do
not need to modify either the ORB or the operating sys-
tem. The list of steps that are performed in the preparation
stage are as follows:

� Source-code conversion from C++ to C: We do this
for several reasons. Conversion to C allows for much
easier analysis because it eliminates the complexities
(e.g., object-oriented issues) that C++ introduces. Ad-
ditionally, we are able to take advantage of current
compiler tools that expedite the transformation of C
code into a workable, efficient intermediate form (an-
notated parse tree).

� Data-flow pass: At least one pass is needed over the
tree to determine and fully recognize all of the vari-
ables and their characteristics. “Def-use” chains are
significantly important in this part of the analysis; de-
termining where a variable is defined, used and rede-
fined is invaluable for ascertaining when and where
nondeterminism can occur. We do not perform pointer-
aliasing analysis because this is complicated and be-
yond the scope of this paper. We note, however, that
there exist advanced compiler techniques that we in-
tend to exploit in the future to resolve some of these
issues.

� Nondeterminism-analysis passes: We designed our ap-
proach to be modular. For each type of nondetermin-
ism, we perform a separate pass through the code.
While some passes could potentially overlap in the
analyses that they perform, this is relatively inconse-
quential because it is performed at compile-time. The
additional overhead at compile-time is far outweighed
by the decreased complexity and ability to control spe-
cific modifications and analysis.

As mentioned before, in this paper, we target the
type of nondeterminism introduced by functions such
asgettimeofday() or random(). This pass de-
termines where in the code such functions are called;
we also identify and store the variables assigned to the
return values of these nondeterministic functions. Be-
yond the prior simple data-flow pass, we now need
to perform further analysis on which variables are as-
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signed to others, in order to ascertain the transference
and proliferation of data. This information is needed to
determine how nondeterminism spreads to other parts
of the application code.

� Control-flow passes: From the previous passes over
the tree, we know where nondeterminism exists, and
how it can propagate through the code. However, an
application take multiple paths as it executes; thus,
we now need to evaluate all of the possible execu-
tion paths. Control-flow information, combined with
the previously gathered information, brings together
all that we need for completing the preparation phase.
For instance, if a variable� is assigned nondeterminis-
tic information, and� is then assigned to another vari-
able� somewhere else in the code, it is possible that
� can subsequently become nondeterministic, after the
assignment. In this pass, we determine if such an order
of assignments between variables exists along a partic-
ular execution path.

5.1.2. Correlation Analysis For Nondeterminism. The
next stage of program analysis involves multiple passes over
each dependency file to determine the interaction between
the different components of the application. As shown in
Figure 2, all of the dependency files are input into our Cross
File Nondeterminism Analyzer (CFNA), where the major-
ity of our compile-time compensation is accomplished. One
challenge here was to maintain linking information that
might be used in different libraries to form a chain of how
information is passed within the application.

For each specific instance of nondeterminism, the CFNA
inserts data structures to hold the nondeterministic infor-
mation; for example, the CFNA creates astruct to hold

the return value ofgettimeofday(). This struct is
then prepended to each message that outputs/propagates
the nondeterminism. Additionally, the recipient of the mes-
sage, whether it is a client or a server, must also store the
nondeterministic information locally, thereby creating the
struct also at the receiving side. Because we can find
the source and the destination of the nondeterminism, we
can determine where the CFNA should automatically insert
the compensation code-snippet into the application source-
code, namely, just after the system call that is nondetermin-
istic. For example, ifgettimeofday() is called on each
invocation of a replicated time-server, if there exists clock-
skew across the nodes hosting the replicas, then, it is im-
portant that to compensate for the times; in this case, the
compensation code-snippet performs the clock-skew offset.
Once the CFNA has modified all of the source files appro-
priately, the modified application is compiled to produce a
version with compensation for nondeterminism.

5.2. Runtime Compensation for Nondeterminism

The run-time part of our approach is responsible for piggy-
backing the extracted, run-time nondeterministic informa-
tion onto messages exchanged between the client and the
server in the application. In Figure 3, we show a CORBA
client communicating with a three-way actively replicated
CORBA server. The MEAD infrastructure forms the fault-
tolerant layer that enables reliable ordered delivery of the
application’s messages.

In Figure 3(a), the client sends a request to the replicated
server and receives three distinct replies. Assume that the
server executes a nondeterministic function before respond-
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ing to the client. Each active server replica processes the
request, and prepends the nondeterministic results, along
with a unique server identifierSID, to the response that
it returns to the client. Each server replica stores its non-
deterministic information locally, until the next invocation,
as shown in Figure 3(b). In the figure, the client picks the
first received response from the replicated server (in this
case, from replica��) and stores the prepended informa-
tion. In Figure 3(c), in the client’s subsequent request to

the replicated server, the client prepends the nondetermin-
istic information extracted from the previous reply. In Fig-
ure 3(d), each server replica receives the request and com-
pares its identifier to that transmitted with the prepended
header. If there is a match (as in replica��), then, the in-
vocation proceeds normally. However, where there is a mis-
match (�� and��), the server replicas run the compensa-
tion code after processing the invocation. For example, in
the case ofgettimeofday(), the compensation would



1CORBA: : Long Time impl : : ge t cyc les ()
2 throw ( CORBA: : SystemException )�
3 t ime t time now = time ( 0 ) ;
4 struct tm � t ime p = gmtime(&time now ) ;
5 t ime p��tm hour += ( 24 + this��t ime zone st ) ;
6 t ime p��tm hour %= 24 ;
7 long cycles =
8 ( ( ( t ime p��tm hour � this��past tod . hour )�3600 ) +
9 ( t ime p��tm min � this��past tod . minute�60 ) +
10 ( t ime p��tm sec� this��past tod . second )�18000000 ) ;
11 return cycles ;
12 �

Figure 4. getcycles() function containing
nondeterminism.

1 TimeTransfer : :NonDetStruct
2 Time impl : : ge t cyc les nondet cor r (
3 const TimeTransfer : :NonDetStruct & ndpass )
4 throw ( CORBA: : SystemException )�
5 t ime t time now = time ( 0 ) ;
6 struct tm � t ime p = gmtime(&time now ) ;
7 TimeTransfer : :NonDetStruct tod ;
8 tod . s id = this��sid ;
9 tod . time = time p ;
10 i f ( this��sid != nd pass . s id )�
11 int sec d i f f =
12 ( ( nd pass .hour � this��past tod . hour )�3600 ) +
13 ( nd pass . minute� this��past tod . minute�60 ) +
14 nd pass . second�this��past tod . second ) ;
15 tod . cycles =
16 ( ( ( ( ( tod .hour � this��past tod . hour )�3600 ) +
17 ( tod . minute� this��past tod . minute�60 ) +
18 ( tod . second�this��past tod . second )� sec d i f f ) )
19 �18000000 ) ;
20 this��past tod = time p ;
21 return tod ;
22 � else �
23 tod . cycles =
24 ( ( ( tod . hour� this��past tod . hour )�3600 ) +
25 ( tod . minute� this��past tod . minute�60 ) +
26 ( tod . second�this��past tod . second )�18000000 ) ;
27 return tod ;
28 �
29 �

Figure 5. getcycles() function with compen-
sation for nondeterminism. The code could
be optimized so compensation is only one
line. The nondeterminism is also stored from
the previous invocation.

involve a local CFNA-generated code-snippet (see Figure 4
and Figure 5), typically just a single line of code, executing
to compute the offset between the prepended nondetermin-
istic information and the locally computed one. Each server
replica then replies with its result for the invocation, along
with the nondeterministic information that it generated lo-
cally. Each replica’s local “cache” of nondeterministic in-
formation is also updated. This back-and-forth propagation
and compensation of nondeterminism occurs on every invo-
cation from the client to the replicated server.

5.3. Optimizations

For every instruction that influences the server state in such
a way that it might not be possible for the different repli-
cas to reproduce the same result, the associated data vari-
ables and values must be sent back to the client. Doing this

1 int a = random ( ) ;
2 int b = a + 5 ;
3 b = b � b ;
4 c = b � 3 . 14 ;
5 /� Checkpoint is in ser t ed a f t e r assignment of ‘ ‘ c ’ ’ ,
6 because ‘ ‘ c ’ ’ captures any prior nondeterminism
7 due to the random ( ) func t ion ca l l . � /

Figure 6. Inserting checkpoints appropriately.

for every system call would incur very high overheads. In-
stead, we can adopt a checkpoint strategy. For instance, if
we know that variablea stored a random number that was
used in calculations through several lines of code, but was
then never used afterwards, we could insert a checkpoint af-
ter the last use ofa, as shown in the snippet in Figure 6.

We only need to send backb and its value to the client
sincea is never used again;c fully encapsulates the non-
determinism due toa. This does not entirely eliminate over-
heads; inserting checkpoints based on usage scope of a vari-
able can impact overheads, especially if variables are used
for only a few lines of code. This is likely since the average
length of a basic block is typically only three to four instruc-
tions [2], and it is also possible for one instruction to span
an entire function or even the entire program. Clearly, global
variables represent such a worst-case scenario. Therefore, a
different checkpointing approach needs to be adopted be-
cause we are building a distributed fault-tolerant system,
and allowing programmer interaction. During its implemen-
tation, we can ask the programmer to set the level of fault
tolerance, including such information as the maximum tol-
erable downtime (recovery time),i.e., the longest time be-
tween a replica’s failure and a new replica being made op-
erational. Once this specific information is known, we can
take advantage of it to provide for a smarter checkpoint-
ing strategy. The use of worst-case execution time analy-
sis [13] plays a major role in our checkpointing scheme.
Assuming that communication costs are fixed, we analyze
both client and server code to compute the worst-case ex-
ecution time between different points in the code. Based
on this knowledge, we know the execution time from any
point in the execution path to any other. We can decompose
this path into segments, corresponding to the maximum re-
covery time specified by the programmer, and then insert
checkpoints at the end of each segment. To further elim-
inate nondeterminism due to heterogeneous hardware plat-
forms, we can specify time in cycles, rather than in seconds.
Specifying time in seconds does not work in distributed sys-
tems where clock speeds differ across machines (the execu-
tion time of different replicas will then depend on the speed
of their respective processors). We favor using the number
of cycles for a task’s execution because this value is likely
to be identical even on heterogeneous hardware. This tech-
nique is processor independent. However, the actual worst-
case execution time will depend on the clock speed of each
processor. Therefore, in a heterogeneous system, we would
recommend running the checkpointing analysis on each ma-



chine that is different from the others. Those machines that
have the same configuration can maintain the same check-
points.

MEAD’s fault-tolerance infrastructure provides for a re-
covery mechanism through checkpoints on the server-side.
If a replica fails, the new replica initializes itself to the most
recent checkpoint, and then awaits nondeterministic infor-
mation from the client. The new replica updates its local
variables and compensates for nondeterminism. Once state
is completely restored, the replica can begin normal opera-
tion.

6. Empirical Evaluation

In order to evaluate our approach, we ran several sets of
experiments to target various metrics to measure the over-
head and scalability of our approach for different replica-
tion styles.

Test-bed. We used a test-bed of seven Intel x86 machines.
Each machine is a dual processor Pentium III running at
900MHZ with 512MB RAM running RedHat Linux 9.0.
We employed the Spread (v3.17.01) group communication
protocol to provide the reliable ordered delivery guarantees
required for consistent replication by MEAD.

Test application. Our CORBA test application was built us-
ing ACE and TAO (ACE version 5.2.8 and TAO version
1.2.8). The server calculates how much work, in terms of
the number of cycles, that has elapsed since the last invo-
cation. In a normal application, such aget cycles()
method would perform agettimeofday() and subtract
that time from the previous time of invocation. The result of
get cycles() is obtained by multiplying the time differ-
ence by the speed of the processor, in order to return along
type holding the result, as shown in the first code snippet.

The second snippet of code demonstrates our approach’s
transformation of the source code. The input parameters
have been modified to include the nondeterministic time-of-
daystruct from the client. The return value has changed
from along to astruct to hold the result, as well as the
value of time used in the calculation. Anif-then state-
ment is added to the code after thegettimeofday()
call. The current server replica’s identifier, SID, is compared
to the input parameter SID. If they match, then, the program
executes normally. If there is a mismatch, then, the high-
lighted snippet that computes the offset between the nonde-
terministic input value and the current value of time is ex-
ecuted, with its results being used in theget cycles()
calculations.

Our approach incurs two distinct types of runtime over-
head (i) increased computation, because of additional work
done at each server replica on each nondeterministic invoca-
tion, and (ii) increased bandwidth, because of the prepended
nondeterminism headers passed with every GIOP request
and reply message.
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Figure 7. Top - Round-trip times of configura-
tions 1, 2 and 3 with only one replica server.
Bottom - Round-trip times for configurations
2 and 3 only.

Performance Metrics. While we could target the evaluation
of our compile-time framework (through metrics such as
code growth), the runtime evaluation is of most interest in a
distributed fault-tolerant system. For the sake of complete-
ness, in our simple example, the increase in footprint size
is minimal, less than one percent. The correction code adds
but one additional line of code, and a struct to store the non-
determinism and return it to the client.

Measurement of runtime overhead. To portray an accurate
picture of our overheads, we evaluated the following three
configurations:

� Configuration 1: Client with unreplicated server
� Configuration 2: Client with replicated server with no

compensation for nondeterminism
� Configuration 3: Client with replicated server with

compensation for nondeterminism

Overhead of replication and compensating for nondeter-
minism. Figure 7 displays the round-trip times of configu-
rations 1, 2 and 3 with only one server replica.
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Figure 8. Top - Round-trip times of configura-
tions 2 and 3 with two server replicas for both
active and warm passive replication styles.
Bottom - Average percentage overhead for
both replication styles.

The bottom graph in Figure 7 provides a closer look
at configurations 2 and 3. The average round-trip time for
configuration 1 is 310�s. Using replication increases the
round-trip time to 994�s (i.e., an additional 684�s) for con-
figuration 2. Compensating for nondeterminism increases
the round-trip time to 996�s (i.e., an additional 2�s) for
configuration 3. The overhead of compensating for non-
determinism is minimal with only one replica because the
correction snippet never needs to execute when the same
replica (the sole replica in the system, in this case) is al-
ways used. The additional overhead averages 0.2% more
than without compensating for nondeterminism.

Overhead of compensating for nondeterminism with respect
to replication styles. Figure 8 displays the round-trip times
of configurations 2 and 3 with two server replicas for both
active and warm passive replication. The average round-trip
time for configuration 3 is only 15�s more than that for
configuration 2 under active replication. However, compen-
sating for nondeterminism under warm passive replication
adds, on average, an additional 89�s to configuration 2.
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Figure 9. Round-trip times of configuration 3
for both replication styles, with 1-5 replicas.

The overhead of compensating for nondeterminism un-
der active replication is, on average, 1.6%. The overhead is
a little higher, 8.3%, under warm passive replication. This
increase is predominantly due to additional message pass-
ing when checkpoints are processed in warm passive repli-
cation. The recovery snippet adds additional overhead for
active replication with two replicas because the correction
snippet always runs at one of the replicas. Figure 8 also
shows the average percentage overhead over time for both
active and passive replication styles.

Overhead of compensating for nondeterminism for increas-
ing degree of replication. Figure 9 displays the round-trip
times of configuration 3 for both replication style with 1-5
replica servers.

The average overhead of warm passive	
� active repli-
cation fluctuates between 20% and 16.2% for two through
four replicas. When adding a fifth replica, active replication
performs worse than passive replication.

Warm passive replication has higher round-trip times
compared to active replication. The overhead of checkpoint-
ing in warm passive replication drives down its performance
compared to active replication. If the cost of compensating
for nondeterminism was exponential or anything but con-
stant, we would see the active replication times increase dra-
matically as we added replicas. This is not the case, how-
ever, and demonstrates that our approach scales well with
the number of replicas.

6.1. Additional Test Example - Random Numbers

We chose to perform experimental evaluation on one other
form (but similar) of nondeterminism: random numbers. A
random number generator is significantly representative of
the class of nondeterminism that originates from system
calls that return unpredictable values. Simply starting the
generators at the same seed will not work due to order of
execution problems that crop up with multithreading. If a



replicated server uses the results of a random number gen-
erator in returning a response to a client’s request, then, then
each replica’s reply will be different. Several different algo-
rithms (e.g., encryption schemes, prime number evaluators)
use random number generators in this code. We target this
form of nondeterminism to demonstrate that our approach
works for more than justgettimeofday().

Prior solutions would require coordination among the
replicas to transfer the nondeterministic information,i.e.,
the random number, used in the processing. One replica
would have to compute the random number and then trans-
fer it to the remaining replicas. Only when all replicas re-
ceive the information could the processing resume. This
lock-step operation significantly increases the overhead as
stated before.

For our experiments, we generated a random number that
we used to offset characters in a string1. Each client and
server has a starting random number to perform the first
communication. When the client first makes a requests to
the servers, it encrypts the information, a string, by multi-
plying each character by this random number. The server is
able to decrypt it because it has the same random number.
The server then performs a calculation, either addition or
subtraction (so that we can maintain consistent overhead),
based on the decrypted value. The result is returned along
with a newly generated random number that can be used in
the following round of communication.

Using program analysis, we are able to easily determine
where the application generates random numbers, and how
the nondeterminism spreads as the application executes. We
insert code at the client and server side to compensate for
nondeterminism. For every invocation, the client prepends
the random number returned from the previous invocation
as well as the ID of the server. Each server, when receiv-
ing an invocation, removes the server ID and checks it with
its own. If the two are the same, then, processing continues.
Otherwise, the server must decrypt the new random num-
ber with the old one, and use that instead.

The results are similar to thegettimeofday() exper-
iments. The average round-trip time for one client with one
unreplicated server was 406�s. With replication, an average
round-trip time grows to 1105�s. Adding compensation for
nondeterminism increases the round-trip time by a further 3
�s. This is due to the additional overhead of verifying the
server ID. Since the same server is always used, the ran-
dom number never needs to be decrypted. Thus, the over-
head of compensating for nondeterminism is about 0.27%.
This is representative of passive replication because only
one replica is being used.

Active replication scales very similar to the
gettimeofday() test example. With two replicas,
the round-trip time increases by a further 203�s (lead-

1 While we recognize that this is a rather naive encryption algorithm,
the point of this exercise is to illustrate nondeterminism in the pres-
ence of random numbers.

ing to a total round-trip time of 1311�s. This is rise is
slightly less that 18%. Three replicas register a slight de-
crease in round-trip time of 1290�s, four replicas ex-
hibit a round-trip time of 1294�s and finally five replicas
have a round-trip time of 1275�s. These results show that
our solution scales well and does not incur too much over-
head.

7. Future Directions

Currently our approach focuses only on single sources
of nondeterminism,i.e., our solutions will work if the
nondeterminism is not multi-dimensional. For exam-
ple, if an application is multi-threaded and also calls
gettimeofday() at different places throughout the pro-
gram path, then, our current solution would need to be
enhanced to deal with multiple sources of nondetermin-
ism simultaneously. We believe that we can employ the
same approach, except that we would need to propa-
gate our nondeterminism-encapsulating structures across
tiers. Other future directions involve the creation of a stan-
dard nondeterminism metric. We currently measure the
overhead of our approach through performance met-
rics such as code growth, memory usage, power consump-
tion, or speed degradation. However, there is no metric for
measuring just how much nondeterminism has been elimi-
nated from an application. This metric could be very useful
for large-scale applications to judge how much nondeter-
minism exists within them.

8. Related Work

Considerable research efforts have been expended in de-
signing and implementing practical systems that employ
strategies to enforce replica determinism, or to circumvent
specific sources of nondeterminism. Some of the issues sur-
rounding replica consistency and multithreading have been
addressed for fault-tolerant systems that are not based on
CORBA.

Gaifman[15] targets the nondeterminism that arises in
concurrent programs due to external environment interac-
tion. This technique supports only passive replication style
because the backups lag behind the primary in order to
ensure consistency. The technique is transparent, at run-
time, to the user, but the application is actually modified
by the transformation method that handles the nondetermin-
ism. The source code is actually analyzed in order to iden-
tify nondeterminism, albeit only for nondeterminism due to
multithreading.

TCP tapping [19] is used to capture and forward nonde-
terministic execution information to replicas. Passive repli-
cation is only supported due to the fact that the replicas must
gain information from the primary after all the work is done.
The approach is transparent to the application and program-
mer, but involves setting up routing tables to snoop on the
client-to-server TCP stream, with the aim of extracting any



nondeterminism output by the primary. Once the backup re-
ceives information about the primary’s nondeterminism, it
can choose either to overwrite its state with that of the pri-
mary’s or await a checkpoint update from the primary.

The Multithreaded Deterministic Scheduling Algorithm
[16] aims to handle nondeterministic multithreading by pro-
viding for two levels of queues, internal and external, that
together enforce consistency. The external queue contains a
sequence of ordered messages received via multicast, while
each internal queue is targeted at thread dispatching, with an
internal queue for each process that spawns threads. The ap-
proach is transparent and offers a unique way of solving the
nondeterminism that stems from multithreading.

Frolund and Guerraoui propose a theory of replication,
X-Ability [14], based predominantly on the execution his-
tory resulting from the previous invocation histories. The
approach is not necessarily transparent to the programmer
because the proposed correctness criterion must be followed
to ensure consistency. The advantage of this approach is that
it is independent of the replication style being used.

In [25], two approaches for maintaining replica consis-
tency are presented. The first approach is primarily based
on Ada 95, while the second approach deals with a piece-
wise deterministic computational model. The key observa-
tion is that it is feasible to handle nondeterminism by having
a primary replica that actually executes all nondeterminis-
tic events, with the results being propagated to the backups.
Furthermore, this propagation does not need to occur at ev-
ery nondeterministic event, but can be logged and sent to
the backups at an observable, deterministic event.

The Delta-4 project employs passive [11] or semi-active
replication [4] to overcome the problems associated with
nondeterministic replicas. However, as we point out in Sec-
tion 2.1, no replication style fully solves the problems asso-
ciated with the replication of multi-tiered nondeterministic
applications.

For systems that must meet real-time requirements in
addition to exhibiting fault-tolerance, the replicated data
must be both consistent and timely. The fault-tolerant real-
time MARS system [20, 21] requires deterministic behavior
in highly responsive automotive applications which exhibit
nondeterminism due to time-triggered event activation and
preemptive scheduling. Replica determinism is enforced us-
ing a combination of timed messages and a communication
protocol for agreement on external events.

In [24], a technique is employed to track and record
the nondeterminism due to asynchronous events and multi-
threading. While the nondeterminism is not eliminated, the
nondeterministic executions are recorded so that they can be
replayed to restore replica consistency in the event of roll-
back.

In the SCEPTRE 2 real-time system [7], nondetermin-
istic behavior of the replicas also arises from preemptive
scheduling. The developers of SCEPTRE 2 acknowledge
the limitations of both active and passive replication of
nondeterministic “capsules” for the purposes of ensuring

replica consistency. Semi-active replication is used, with de-
terministic behavior enforced through the transmission of
messages from a coordination entity to the multiple backup
replicas for every nondeterministic decision taken by a des-
ignated primary replica. The messages force the backup
replicas to override their own decisions.

The Transparent Fault Tolerance (TFT) system [8] en-
forces deterministic computation on replicas at the level
of the operating system interface. TFT handles nondeter-
ministic system calls by interposing a soft- ware layer be-
tween the application and the operating system. The object
code of the application binaries is edited to insert code that
redirects all nondeterministic system calls to a layer that
returns identical results at all replicas of an object. Bres-
soud and Schneider’s approach, Hypervisor-Based Fault-
Tolerance [9], creates a virtual simulator in order to ensure
that all nondeterministic data is consistent across all repli-
cas. This is accomplished by using a simulator to run all
environmental instructions, and then forcing all of the repli-
cas to obtain the same result. This approach assumes that
the virtual layer does not itself introduce any nondetermin-
ism. Additionally, all of the replicas are simultaneously op-
erational and required to maintain the same state.

A more recent effort [6] to address nondeterministic mul-
tithreading comprises a preemptive deterministic scheduler
for an actively replicated multithreaded server. A shared
state is assumed between all threads of the same replica.
The approach uses mutexes between threads and the exe-
cution is split into several rounds. Because the mutexes are
known at each round, the authors state that a determinis-
tic schedule can be created. This is a unique approach with
the added benefit of not requiring any communication be-
tween replicas.

Most of the previous work aims to be transparent so that
the programmer and end-user are never aware of how the
nondeterminism is handled. While transparency has its ben-
efits, insights that can be gained from the application itself
are not fully utilized to provide a more effective strategy.

9. Conclusion

Through program analysis, we identify the sources of non-
determinism, determine how they propagate through an ap-
plication, and calculate the effects that they have on state.
Armed with this information, we then create correction code
that is inserted into the application source code. Our run-
time support infrastructure uses this code, along with stor-
ing and transferring nondeterministic information, in or-
der to maintain consistency across server replicas. Our ap-
proach is deliberately not transparent to the programmer, to
the user, or to the application code. As a result, we are able
to fine-tune which and how nondeterminism is compensated
for, and offer trade-offs to the user and programmer. Our ap-
proach does not impose significant code growth or run-time
overhead regardless of the number of replicas or replica-
tions styles.
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