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Abstract— Handovers are basic yet sophisticated motor tasks
performed seamlessly by humans. They are among the most
common activities in our daily lives and social environments.
This makes mastering the art of handovers critical for a
social and collaborative robot. In this work, we present an
experimental study that involved human-human handovers by
13 pairs, i.e., 26 participants. We record and explore multiple
features of handovers amongst humans aimed at inspiring
handovers amongst humans and robots. With this work, we
further create and publish a novel data set of 8672 handovers,
bringing together human motion and the forces involved. We
further analyze the effect of object weight and the role of visual
sensory input in human-human handovers, as well as possible
design implications for robots. As a proof of concept, the data
set was used for creating a human-inspired data-driven strategy
for robotic grip release in handovers, which was demonstrated
to result in better robot to human handovers.

I. INTRODUCTION

Robots have been used to increase productivity and carry
out risky jobs in industrial settings with success. Such
industrial robots are technically advanced and suited for work
in isolation on particular tasks. However, significant recent
advancements in robotic intelligence and technology have
made it possible to foresee robots cohabiting with humans
to help and collaborate. We envisage social robots having
a shared environment with humans performing a variety of
activities in the future. These activities include, but are not
limited to, assisting at home [1], collaborating in factories
[2], helping humans with restricted mobility and in old
age homes [3]. Indeed, effective human robot collaboration
(HRC) will also allow humans and robots to complement
each other’s abilities. In a real world environment filled
with uncertainties, the decision making skills of a human
counterpart can largely benefit a collaborative robot. This has
motivated many robotic platforms aimed at physical HRC
[4]. While doing collaborative work, robots must be able to
engage with people in a safe, natural, and convenient manner.
Thus, it is crucial that we create robots that can interact with
people physically. Handover is one such physically interac-
tive task which frequents our daily social lives. To achieve
effective human robot collaboration, fluent and natural robot
human handovers are essential. As a result, a social robot
needs to master the skill of handover.

According to many studies [5], [6], [7], humans prefer
robot behaviour that mimics humans. Humans also make
the ideal subjects for studying handovers due to their pro-
ficiency and adaptation skills. In this paper, we present an
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Fig. 1. A snippet of the human study exhibiting various aspects of a
handover and the recorded signals

experimental study of human handovers, which is used to
create an open source data set of handovers and to further
analyze various aspects of human handovers as shown in
Fig. 1. We also focused on studying the effect of increased
weight of transfer in handovers. We analyze handovers and
what happens when humans rely on just haptic feedback,
comparing the cases with no visual information to those
with visual and haptic feedback. The aim of this work is
to learn from human handovers to inspire natural, safe, and
efficient handovers between humans and robots. The main
contribution of this work is a novel multimodal data set
of 8672 human-human handovers with information from
multiple sensors including grip forces, interaction force and
human motion tracking. We also provide some qualitative
observations including the effects of increased weight of
transfer and visual sensory impairment on various aspects of
handovers aimed to enhance handover capabilities for robots.

II. BACKGROUND AND RELATED WORK

A task of handover is comprised of multiple phases
that humans collaborate to perform seamlessly. Verbal or
nonverbal communication is used to initiate a coordinated
spatio-temportal movement of a giver and a taker. In case of
a general handover, the giver determines a suitable location
to transfer the object in the inter-personal space shared with
the taker and starts moving the object towards that location
[8] [9]. The taker, too, prejudges the handover location based
on the giver’s motion with the object and starts approaching
the location with the preferred hand. As handover progresses,
both giver and taker adjust their arm speed based on visual
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sensory information. The coordinated movement finally ends
with a light impact on the object as the taker starts interacting
with the object, trying to form a grip on it. During this
interaction, the giver decreases the grip force on the object
while the taker’s grip force increases. Both giver and taker
also share the responsibility of sharing the object’s weight
and maintaining the object’s pose so that it does not fall
in the process. The handover ends when the giver releases
the object completely after determining a stable grasp on the
object by the taker. Thus, a robot should be competent across
multiple phases of a handover for fluent handovers.

Furthermore, there are more complex handover scenarios
to which humans swiftly adapt. Humans are not bothered by
different-weighted objects from their daily lives, for example,
handing over a knife and a hammer with fluency [9], [7],
[10]. There are also common scenarios when the weight of
the object to be transferred turns out to be different than
expected. One such scenario is the handover of a supposedly
empty box, which turned out to be full. Both human giver and
taker are capable of quickly adapting to changes caused due
to these uncertainties regarding the weight of the transferred
object. In some scenarios, a human giver does not look
actively at the object, or does not look at all, while giving
the object. In such a case, the giver relies on only the haptic
feedback to perform the handover, i.e., sensing the forces
in interaction. In these scenarios too, both giver and taker
are able to suitably adapt and perform a safe and efficient
handover. A social robot is likely to face these scenarios,
owing to the dynamic social environment. It is expected to
adapt and perform according to the given situation in order
to accommodate safe handovers, while avoiding failures.

The interest in human inspired handovers for robots has
led to multiple studies on handovers amongst humans [9].
Several human studies have been done to study human
motion to model the movement of a robotic arm close to
a human in handovers. Human hand motion was captured
in human handovers by an electromagnetic tracker and
markers placed on the hand in [11], and was further used to
evaluate robot reaching profiles for handovers. Human arm
motions were recorded via a camera in [12] to analyse and
propose a joint motion model for a robotic giver for human
like handovers. To understand verbal and non-verbal human
cues, and joint coordination involved in human handovers, a
human study was done in [7] in a kitchen environment with
multiple color and depth cameras for analysis.

To study forces in human handovers, [5] used a baton with
grip force sensors and a load force sensor for handovers
in a human study. The baton was vertically transferred in
handovers and a relationship between grip forces and load
forces was measured, which was used to develop a controller
for robotic grip forces given load forces. In [13], the effect
of reaching velocities and sensory manipulations was seen
on grip forces in human human handovers. In one of the
studied cases, the giver’s vision was manipulated by closing
the eyes during the handover. It was observed that sensory
manipulation had a strong effect on temporal aspects of the
handover. The effect of object weight on handover location

and duration was investigated by a human study in [14]. It
was shown that only the handover duration was impacted
by object weight. In [8], a relation between the taker arm
reaching speed and the giver’s grip forces was found in a
human study. The effect of restricting visual information on
giver was also studied to conclude that coordinated arm-
movement is impacted by lack of visual feedback.

Some publicly available data sets do exist for human
handover tasks. The [15] data set includes human motion
tracking via different sensors for participants in human
handovers passing multiple objects. They provide 3D upper
skeleton tracking via a Motion-Capture (MoCap) system and
a depth camera, as well as inertial data of the hands from
smartwatches. In [10], a human study was done to inspire
proper object orientations in robot to human handovers. The
corresponding data set includes MoCap tracking data of
the upper skeleton and object pose in handovers. Human
grasps were studied and labelled in [16], collecting over
5202 grasps. Their study showed that precision grasp is the
most preferred one. Also most givers in human handovers
preferred a precision grasp irrespective of object. In [17], an
image based data set focused on hand poses and grasps via
visual analysis of handovers is described, where the hand
poses are tracked by markers placed on each finger.

We observe that the task of handover has multiple aspects
and modalities spanning across spatio-temporal and force
domains. Many of these aspects have been researched, but
independently from each other. Publicly available data sets
also lack information about grip and interaction forces. In
this work, we present a comprehensive study that integrates
multiple aspects of handovers and a multimodal data set
containing handover forces with human motion tracking. In
a multimodal interaction like handover, it is important to
understand not only the effect of each modality, but also how
different modalities are interrelated. Moreover, some of these
modalities, like human-grip force, might not be available to a
robot in handovers. However, a multimodal dataset makes it
possible to train the robot on multiple modalities and to learn
mapping from one to another. The robot can then use only
those modalities that are accessible during online execution.

III. HUMAN HANDOVERS STUDY

Humans practice handovers countless times over several
years to perfect them. This motivated us to design an exper-
imental study focused at human handovers. We aimed to get
a unified perspective of the giver’s and taker’s motion, grip
forces applied by them, and the interaction forces involved
in human handovers. Our goal in this study is two-fold:

1) Recording and analysing natural human handovers.
2) Create a multi-sensor data set of human handovers.

A. Participants

For the study we recruited a total of 26 participants which
included 22 male and 4 female participants between the
ages of 14 and 28 (age 23.23 ± 2.55 years). Only one
male participant was left handed while others were right
handed. This lead to 13 participant pairs which comprised
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Fig. 2. 3D printed sensor embedded Baton

of one female-female pair, two female-male pairs and ten
male-male pairs. One of these male-male pairs was a right
handed-left handed pair. The participants had little to no
prior acquaintance with each other. They were recruited
by advertisement amongst the university students and were
rewarded with a 100 SEK gift-voucher.

B. Experimental Design

1) Baton: The experiment involved passing back and forth
a sensor embedded baton which was made by 3D printing.
The baton houses three 6D Force/Torque (F/T) sensors from
Onrobot [18] as shown in Fig. 2, where each F/T sensor
measures a 6D wrench, comprising 3 forces and 3 torques.
The F/T sensor in the center of baton is used to measure
the interaction wrench in the handover. The two sensors on
the sides are used to measure the grip forces by the giver
and the receiver. Additionally, 5 Motion Capture (MoCap)
markers were placed asymmetrically on the baton to track
its movement. The baton has a total weight of 0.8 kg and
measures 0.28x0.085x0.075 m. It also has two slots to add
external lead-weights, increasing the baton weight when
needed. The top of the two sensors for grip force were color
coded with blue and white parts. For simplicity, participant
1 was told to always pick up and receive the baton from the
blue side while participant 2 would do so from white side.

2) Experimental Setup: To record the movements of
participants, the experiment was conducted in a MoCap
room by Optitrack [19] and participants were required to
wear upper body MoCap suits. The participants performed
handovers standing across a table as shown in Fig. 3(a).
The experimental session started with participant 1, acting
as giver, picking up the baton from position A and handing
over the baton mid-air and horizontally to participant 2,
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Fig. 3. (a) Table (0.8 m wide) setup for human-human handovers (b)
Precision grasp on baton with lead weights added

the receiver, who would then place the baton at position
B. Further, participant 2 acting as giver, would pick up
the baton and hand it over to participant 1, who places it
back at position A, and the process would be repeated. To
preserve the naturalness of handovers, they were not given
any instruction regarding the speed and location of handover.
To reduce ergonomic load, positions A and B were marked
close to the dominant hand of participants. The layout in Fig.
3(a) corresponds to two right handed participants.

3) Experimental Settings: The handovers occurred in
three different settings, and the participants were required
to do two sets of 9 minutes for each of the three settings:
• Setting 1 (S1) - Normal: In this setting, the baton was

used for handover without any external weight. Neither
giver nor taker was visually impaired by closing the eyes.
The corresponding sets were named Set 1 and 2.

• Setting 2 (S2) - Heavier Baton: In this setting, two lead
weights of 0.5 kg were added to the slots of the baton,
leading to a total weight of 1.8 kg (Fig. 3(b)). This
enables us to analyze the effects of a significant increase
in weight on different aspects of handovers, particularly
the interaction forces. These sets are called Set 3 and 4.

• Setting 3 (S3) - Giver vision impairment: In this setting,
the giver was asked to close the eyes while handing over
the baton without added weights. The giver would pick
the baton normally, with eyes closed only during the giving
phase as the receiver took the baton. The giver would open
their eyes once the baton had been completely released.
This scenario is similar to a robotic giver lacking vision
input during handover and must rely solely on interaction
forces. This setting allows us to analyze the effects of
sensory impairment and the sets are called Set 5 and 6.

C. Procedure

1) Introduction and Instructions: Before each experimen-
tal session with a participant pair, they were given a brief
outline of what they were required to do in the experiment.
They were given verbal and written explanations of all steps,
signed an informed consent form regarding the experiment.
They were also assigned as Participants 1 and 2. To ensure
the naturalness of the handovers, they informed about the aim
of the study only at the end of the experiment. They were
suggested to get acquainted with each other and choose some
mutual topics of interest to talk about while doing the hand-
overs. This was an important step to reduce monotonicity in
the experiment, which could lead to unnatural behavior.

The participants were given sanitized MoCap suits of
their size to wear. After the MoCap markers were properly
placed on their suits, they were allowed to enter the MoCap
room and stand across the table. They were instructed to
use precision grasp for holding the baton, which was then
demonstrated as in Fig. 3(b), and to do some practice
handovers. A precision grasp has been chosen because it
involves only two opposing grasp surfaces, as opposed to
multiple oblique contact surfaces involved in other type of
grasps, making it easier and more accurate to measure forces
using a single sensor. This grasp type has also been used in



similar studies for grip forces [5], [8], [20] and it is shown
in [21], [16] that precision grips make up about 50% of all
grips used in tool-intensive activities at homes and industry.

2) Experimentation: For all pairs, the experimentation
started with Set 1 of handovers in normal setting. There
was no restriction on how many handovers the participants
need to do in the 9 minute allotted time for each set. The
participants would then have a break of 2 minutes where they
were allowed to sit in the chairs provided. The further order
of sets were randomized so that no sets of similar strategies
come after each other. After completing three sets of the
experiment, they were given a longer break of minimum 5
minutes and the experiment continued when they were ready
again. They were also allowed to take any breaks in between.

D. Data Collection

For each set of experimentation by a participant pair,
multiple sensory data were recorded by reading through
Robot Operating System (ROS) [22] as common interface.
The data from F/T sensors is read using publicly available
libraries for ROS at 333Hz This data contains 6D wrench for
the interaction and grip force sensors. The tracking data from
MoCap has the pose tracking of baton and upper body skele-
tal representation of the two participants which contains pose
tracking of 13 segments: Hip, Ab, Chest, Neck, Head, Left-
shoulder, Left-upper arm, Left-forearm, Left hand, Right-
shoulder, Right-upper arm, Right-forearm, Right hand. Each
segment frame of the skeleton is tracked with respect to the
world frame, which lies on the floor beneath the center of
the table. This data is broadcasted by MOTIVE software
from Optitrack [19] at a frequency of 120Hz and read by
a customized ROSnode. Furthermore, this ROSnode [23]
reads the original data from F/T sensors and republishes
synchronized F/T and MoCap tracking data with common
timestamps at 120Hz. For each body-segment, the tracking
data is published in form of ROS-pose messages which
contain 3D position and 4D quaternion rotation information.
Finally, the recorded data for each experimental set involved
the synchronized data from F/T sensors, the baton pose and
skeletal representation for participant 1 and 2 at 120 Hz.

IV. DATA SET

The continuous recordings of handovers for each pair was
post-processed to separate individual handovers.
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A. Data set Creation

In every handover, the giver lets go of the object as it is
transferred to the taker, who takes hold of it. As a result,
for each handover, the giver’s grip force decreases to zero,
whereas the taker’s grip force increases from zero, resulting
in an intersection of grip forces. In force-space, a handover
is shown in Fig. 4 with the intersection point of grip-forces
(F g) of giver and taker. The existence of this intersection
point for each handover was leveraged to separate every
handover in the recorded data. As can be seen in the Fig.
4, the handovers are centered about the intersection point at
t = 0 ms. The separated handovers are saved for a duration
of 3.333 seconds (400 timestamps at 120 Hz) before and after
the intersection point. For all handovers, this duration was
sufficient to capture the baton being picked up from the table
by the giver, the handover to the taker and baton being placed
again on the table. The larger duration was used to verify that
the baton was indeed transferred from the giver to taker as
can be seen in Fig. 5. It also enables analysis of multiple
aspects of human motion before and after the baton transfer.
For this data set, we saved the recorded data with common
timestamps i.e. the republished data. The data set is publicly
available at: https://github.com/paragkhanna1/
dataset. The data set contains a total of 8672 handovers,
distributed among the 3 experimental settings as follows:

• S1 - 2999 normal handovers.
• S2 - 2764 handovers with heavy baton.
• S3 - 2909 handovers with giver vision impairment.

B. Features

Table I summarizes all information saved for an individual
handover. It lists the signal names with which they are
available in the data set. As stated earlier, each signal is

TABLE I
SIGNALS OF ONE RECORDED HANDOVER

Signal Signal Signal
No. Name Components

1 Wrench interaction Force (x,y,z)
Torque(x,y,z)

2 Wrench giver∗ —"—
3 Wrench taker∗ —"—
4 baton pose Position(x,y,z)

Rotation(q0, q1, q2, q3)
5-17 giver-Skeleton 13 bodies-pose

18-30 taker-Skeleton 13 bodies-pose
* Grip force is given by -Force(z)

https://github.com/paragkhanna1/dataset
https://github.com/paragkhanna1/dataset


TABLE II
TRANSFER TIME

Pair ttf (Mean ± SD, ms) t-test significance

No. S1 S2 S3 S1-S2 S1-S3

1 414.6 ±127.0 481.4 ±114.5 540.3 ±160.8 X X
2 545.5 ±185.2 579.4 ±163.3 601.3 ±198.1 X X
3 398.5 ±136.4 484.7 ±154.8 583.0 ±198.5 X X
4 471.9 ±184.9 632.9 ±181.5 560.7 ±183.0 X X
5 502.2 ±169.4 610.9 ±148.4 542.5 ±166.6 X X
6 475.5 ±197.7 513.6 ±174.7 660.9 ±181.9 X X
7 577.1 ±168.0 622.6 ±180.9 693.8 ±176.2 X X
8 474.3 ±170.1 654.1 ±166.1 649.1 ±178.4 X X
9 414.9 ±165.5 431.4 ±127.8 412.2 ±127.9 X X

10 439.5 ±157.7 487.1 ±151.0 512.1 ±148.6 X X
11 490.3 ±181.7 514.2 ±148.3 561.4 ±189.3 X X
12 489.1 ±207.5 527.3 ±161.2 490.2 ±195.5 X X
13 581.8 ±173.4 739.9 ±214.4 714.3 ±235.4 X X

ttf values in bold show significance in one way ANOVA analyses, p<0.05

centered around the grip-force intersection point and has a
total duration of 6.675 seconds. The metadata includes the
height, arm-lengths, age, and handedness of the two subjects.

V. DATA ANALYSIS

A. Transfer time - ttf
Considering the haptic interaction in a handover, the time

taken to transfer the object has been defined as the time
from initial contact by the taker to final release by the giver
[5]. As shown in the Fig. 4, the taker’s contact (ttak con)
was determined when the taker-F g rose above a threshold
before the intersection point at t = 0 ms. Similarly, the
giver’s final release (tgiv rel) is determined when the giver-
F g falls below the threshold. This threshold was set to 0.4
N upon investigating the sensor noise in the recorded data.
The transfer time is then given by

ttf = tgiv rel − ttak con

Variation in the mean transfer time for each pair and among
the three settings is shown in Fig. 6. It can be distinctly seen
that both a rise in weight and a giver sensory impairment
result in an increase in mean ttf . For further analysis, we
needed to determine the significance of the effect on ttf
under different settings. The difference between the settings
is found significant with p < 0.0001 for a one-way ANOVA
analysis across the entire trial population with pair-number as
a random effect. For each participant-pair, we also performed
t-test between the recorded ttf for pair of settings (S1-
S2, S1-S3) and one way ANOVA analysis among the three
settings. A significance level of α = 0.05 was considered
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Fig. 6. Mean transfer time

TABLE III
GRIP RELEASE TIME

Pair tgr (Mean ± SD, ms) t-test significance

No. S1 S2 S3 S1-S2 S1-S3

1 400.1 ±114.3 475.5 ±105.7 509.6 ±153.0 X X
2 522.5 ±163.1 570.7 ±152.6 576.6 ±187.5 X X
3 388.6 ±123.6 469.3 ±140.9 555.2 ±196.3 X X
4 437.5 ±160.1 618.7 ±169.0 514.2 ±162.8 X X
5 473.4 ±154.6 591.7 ±133.9 485.4 ±147.2 X X
6 458.6 ±178.5 505.1 ±167.6 632.3 ±170.7 X X
7 559.5 ±155.4 609.6 ±169.6 660.4 ±167.2 X X
8 454.1 ±153.6 633.5 ±150.8 619.4 ±163.8 X X
9 397.5 ±145.9 427.2 ±121.8 392.5 ±121.2 X X

10 420.5 ±137.1 480.7 ±145.2 476.4 ±133.9 X X
11 449.3 ±155.5 498.8 ±141.3 520.1 ±175.6 X X
12 455.4 ±175.8 514.5 ±151.3 454.2 ±173.7 X X
13 553.6 ±153.3 702.9 ±192.8 646.3 ±213.0 X X

tgr values in bold show significance in one way ANOVA analyses, p<0.05

and the analysis is summarized in Table II which also shows
the mean ttf and standard deviation (SD). As per t-test
analysis, an increase in weight caused a significant increase
in ttf for 69.2% participants. With giver vision impairment,
a significant increase in ttf was seen for 76.9% participants.

B. Grip release time - tgr
The grip release time is the total time a giver takes to

release the object in handover, which we believe to be of
particular importance for the design of a robotic giver based
on human data. This time was calculated by observing the
total time in which the giver’s grip force (F g) decreased to
zero. The giver grip release was considered to start when
a first decrease in giver-F g was observed after the taker’s
contact, and it ended when the giver forces were reduced
below the minimal threshold (at tgiv rel).

Fig. 7 shows the variation in mean tgr for different
pairs across different experimental settings and Table III
summarizes the significance analysis. We observer that for
most pairs, tgr increases with heavier baton and giver vision
impairment. The results of a one-way ANOVA analysis
with pair number as random effect (p<0.001) show that the
difference is found significant across all participants. As per
t-test analysis, an increase in weight caused a significant
increase in ttf for about 92.3% participants. With giver
vision impairment, a significant increase in ttf was seen for
approximately 69.2% participants.

C. Interaction Forces - Pull force
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Fig. 7. Mean grip release time

In human-robot handovers, other than vision input, the
robot can rely on interaction forces to detect, adapt, and
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perform the give or take in handover. For the input of inter-
action forces, robots are often equipped with wrist sensors
or can also use end-effector torque estimation. Hence, we
believe the analysis of interaction forces to be important.
Multiple robot to human handovers experimentation studies
used pulling force to command grip release [8], [9].

Considering our experimental case of horizontal transfers,
the pulling force is in the direction of baton transfer. As a
result, when a giver hands over the baton, the pull force in
our baton is given by change in the Fz component of forces
measured by interaction sensor (Fig. 8). We analyzed the
maximum pull force seen in the handovers by considering the
maximum change observed in Fz during the transfer time.
Fig. 9 shows the average maximum-pull force normalized
to object weight across different settings. Across most par-
ticipant pairs, we found this ratio to be higher when giver
vision was impaired as compared to normal handovers. This
is supported by significance in one-way ANOVA analysis
with pair number as random effect (p<0.05). However, a
lower ratio is seen for heavier baton transfer. This led to
another analysis inspecting the absolute value of maximum
pulling force, whose average variation is shown in Fig. 10.
We observe that the average pull force is higher for heavy
baton transfer than the normal baton transfer (p<0.05).

D. Interaction Forces - Load-sharing

When humans carry an object, they feel the load (weight)
of the object. This load reduces as the object is being handed
over to the other person, as load-sharing between giver and
taker occurs. The handover ends in complete transfer of load
from giver to taker. In case of horizontal handovers, the felt
load corresponds to the vertical component of interaction
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forces (Fy) in Fig. 8. Load-sharing is considered by a robotic
giver in [20], [24], where the object was considered to be in a
sharing state when the measured vertical load (Fy) reduced
to a fraction of the initial load detected (F i

y) due to load-
sharing by human taker. For robot to human handovers in
[20], this fraction set to 0.5. However, the grip release was
commanded by a pull force threshold detection.

An interesting analysis is to study correspondence between
load-share shift/transfer to grip-force intersection. In the
baton transfer, the load-share shift occurs when measured
Fy changes its sign, i.e. in our case changes from negative
to positive, that is at time

tld shift = min(t : Fy(t) > 0, t ∈ [ttak con, tgiv rel])

The dominant grip force changes at the intersection for
grip forces at t = 0 ms for each handover in our data set.
Hence, it is sufficient to observe absolute tld shift values to
compare the load-share shift to the intersection point of grip
forces. A plot of mean tld shift observed is given in Fig. 11.
A positive mean is observed across all settings and it is found
that the values are significantly above zero (p<0.05 in t-test
analysis) for all pairs. Thus, the load-share shift occurs after
the grip forces’ intersection, across all experimental settings.
In other words, we validate that the dominant grip force
changes before humans actually feel the load-share shift.

E. Height of Transfer

In [14], the analysis of a human-human study showed
that transfer height does not depend on the object weight
in handovers. In our analysis, for all handovers, we consider
the baton transfer height as the measured Z coordinate of
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Fig. 11. Mean time of load-share shift
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baton at the intersection of grip forces, i.e. at t = 0 ms. For
proper analysis across different pairs, this was normalized
to the average chest height of giver and taker. The mean
variation in the normalized height across different settings
is shown by Fig. 12. A significant difference is seen in the
height of transfer when comparing the three via the results
of one-way ANOVA analysis with pair number as random
effect (p<0.001). Posthoc analysis show that the height of
transfer is higher for the Setting 3. We observe a higher mean
height of transfer with 69.23% participant-pairs in case with
giver vision impairment. We also corroborate that the weight
of the object had no significant effect on the height.

VI. DESIGN IMPLICATIONS

Based on our analysis, we propose some design implica-
tions for robots in human-robot handover scenarios.

1) Transfer Time: Our overall analysis shows that the
ttf is close to 500 ms which agrees well with the reported
average ttf for human handovers in literature [9]. Our study
further suggests that in human-robot handovers, a ttf of 500
ms shall be targeted. As a significant increase in weight
caused increase in ttf , a robot should expect and plan for
a longer ttf for heavier objects or if the weight increases
in the interaction. In cases when a giver is not looking, a
longer ttf suggests that both giver and taker adapt for sensory
restrictions of the giver. The robot should also adapt for a
longer ttf if the giver is not actively looking at the handover.

2) Grip Release time: A higher grip release time with a
heavier object for most participants is an interesting finding,
as this indicates humans adapt their grip release time ac-
cording to the object weight. In case of a similar, but heavy
object, this might imply that more caution is exercised by
humans to prevent handover failure or object fall. Thereby, in
a human-robot interaction scenario, a human inspired robotic
giver shall adapt its tgr for heavier objects. If a robot, during
the interaction, detects that the current object is significantly
heavier than other objects, it should increase its tgr for this
handover. This will be especially important for robot givers
relying on pre-planned grip force modulation [8]. Without
vision input, the giver relies only on haptic feedback for
grip release, which leads to a larger resistance by the giver
before releasing, indicated by a larger tgr. This leads to a
significantly larger pull force by the taker. Thus, a robotic
taker should expect more resistance in releasing the object

by a human giver who is not actively looking during the
handover. A robotic giver which increases its tgr should also
expect a corresponding increase in pulling force as well.

3) Interaction Forces: With the heavier baton, the in-
crease in pull fores corresponds to increased caution dis-
played by both giver and taker to enable successful transfer
of the heavier baton. Overall, we can say that a heavier object
would lead to higher pulling forces in the handover, but the
increase in pulling forces is not directly proportional to the
object weight. So, humans tend to pull more while taking a
heavier object but will not generally pull or expect to pull
above a certain force. A robotic giver or taker should also
expect increased resistance and pulling force with a high
increase in object weight.

It is important to note that a robot giver only has the input
of interaction forces and not the grip forces of a human taker.
Our analysis with Fy implies that it is safe for the robot
to assume the taker has applied sufficient grip force when
load-share shift occurs. If grip release is not yet triggered
based on any other strategy, the robot can start decreasing
the grip forces at the load-share shift. Such a strategy can
ensure more safety in robot to human handovers, especially
in cases of uncertainty like a sudden increase in the transfer
object’s weight that was not previously known to the human
taker. However, this robotic grip-release will be commanded
later than an ideal human giver’s grip-release. Thus, the robot
should adopt a higher grip-release time (tgr) to preserve the
naturalness by aiming for a total ttf of 500ms.

4) Transfer Height: As per our analysis, transfer height
increases for a human giver when they rely on just haptic
feedback and either do not or can not use the visual input.
Thus, a robot taker should adapt by planning for higher
transfer height when a human giver is not looking while
giving the object.

VII. LEARNING GRIP RELEASE

To perform a quantitative assessment of the data set, a
human-inspired data-driven strategy was proposed to com-
mand robotic grip release in robot to human handovers. The
creation of this strategy and further evaluation via human-
robot experimentation have been discussed in detail in [25].
During a handover, it is necessary for a robotic giver to
determine when to start the grip release as the human taker
forms its grip on the object. The external wrench due to
human interaction can be measured by a F/T sensor placed
at the robot wrist. The idea is to investigate the interaction
wrench (Wint) in human handovers and then predict the start
of giver grip release based on Wint.

1) Data-driven strategy: For each recorded handover,
Wint comprises of a time series of 6 F/T components which
vary significantly in the handover, as seen for forces in Fig.
8. As seen in Fig. 4, the giver’s grip forces starts to decline
before the intersection point (t = 0 ms). The learning task
is to predict the grip release start from the observed Wint

before t = 0 ms. Thereby, we sampled a time series of Wint

ending at a time-step te from each saved handover:

X(te) = {W t
int, t ∈ [te-100, te]}. (1)



This 100 step time series corresponds to 833 ms at 120Hz for
our recorded data, with te varying between 0 to -1803 ms.
Considering the average ttf of 500 ms [5], [9], the labels (l)
to the samples were assigned based on te, given by Equation
2. If the sample’s te lies after t = −250 ms, i.e, in the interval
(−250, 0] ms, the input time series of Wint corresponds to
a grip release start (l = 1). Otherwise, the sample does not
represents a grip release start (l = 0).

l(X(te)) =

{
1, if te > −250ms
0, if te <= −250ms

(2)

The labeled samples were then used to train a long short-
term memory (LSTM) based classifier. The trained LSTM
is then used for robot to human handovers where Wint is
measured. After the robot reaches the fixed final pose for
handover, the time series of Wint is continuously fed to the
classifier to command the grip-release. The LSTM classifier
assigns the labels 1 and 0 implying whether the input Wint

corresponded to a grip release start in human handovers.
2) Robot to Human handovers experimentation: The data-

driven strategy was compared against loadshare and pull
force based grip release strategies (Section 5.3, 5.4) in robot
to human handovers. An experimental study was designed
involving 20 participants taking objects from Baxter robot
[25]. The robot giver measured Wint via a wrist F/T sensor
and relied only on this sensory information to detect the
handover, commanding its grip release. It was shown that the
human-inspired strategy led to faster detection of handovers
with the training object, reducing the ttf . This data driven
strategy was also ranked most natural by 95% participants
and preferred over other strategies with high significance.

VIII. CONCLUSION AND FUTURE WORK

A human study involving 26 participants in 13 pairs
was done to explore multi-sensory information in human
handovers. In this study, a proper experimental setup was
devised to study the effect of a high increase in transfer
weight and the effect of a lack of visual sensory feedback
with a human giver. The data from study was processed to
segregate individual handovers, leading to a multi-sensory
large data set of human handovers. Further, we present a
detailed analysis of the effect of the experimental settings
on various aspects of human handovers. We also discuss
possible design implications for a robot aiming for handovers
between humans and robots. As a quantitative evaluation of
the dataset, we propose and evaluate a data driven strategy
for grip release of a robotic giver in robot to human handover.

In the future, we intend to investigate how we can make
better use of our human handover dataset in a quantitative
setting. We plan to further research on applying our work
to produce more realistic human-robot handovers and what
human-inspired metrics may be applied to assess their qual-
ity. It will also be interesting to study how human perceptions
of a natural handover change when a robot is involved.
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[2] S. Robla-Gómez, V. M. Becerra, J. R. Llata, E. González-Sarabia,
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