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Abstract— In this paper, we propose an Invariant Extended
Kalman Filter (IEKF) based Visual-Inertial Odometry (VIO)
using multiple features in man-made environments. Conven-
tional EKF-based VIO usually suffers from system incon-
sistency and angular drift that naturally occurs in feature-
based methods. However, in man-made environments, notable
structural regularities, such as lines and vanishing points,
offer valuable cues for localization. To exploit these structural
features effectively and maintain system consistency, we design
a right invariant filter-based VIO scheme incorporating point,
line, and vanishing point features. We demonstrate that the
conventional additive error definition for point features can also
preserve system consistency like the invariant error definition
by proving a mathematically equivalent measurement model.
And a similar conclusion is established for line features.
Additionally, we conduct an invariant filter-based observability
analysis proving that vanishing point measurement maintains
unobservable directions naturally. Both simulation and real-
world tests are conducted to validate our methods’ pose
accuracy and consistency. The experimental results validate the
competitive performance of our method, highlighting its ability
to deliver accurate and consistent pose estimation in man-made
environments.

I. INTRODUCTION

Accurate pose estimation is a fundamental issue for robot
localization, and a range of approaches have been developed
in the previous literature which investigates different sensor
fusion methods like GNSS [1], [2], [3], [4] and LiDAR
[5], [6]. As an attractive candidate, Visual-Inertial Odometry
(VIO) has been widely studied for its high accuracy, low
cost, and lightweight. Moreover, Extended Kalman Filter
(EKF) based VIOs like Multi-State Constraint Kalman Filter
(MSCKF) [7] have been favored by many researchers for its
great advantage in high computational efficiency.

Conventional MCSKF utilizes point features to constrain
the state. However, it may produce a large pose drift in
a textureless environment or illumination changing scenes
due to the limited number of features in the scene [8]. As
an alternative solution, line features may provide additional
structural information in challenging environments [9]. Fur-
thermore, vanishing points (VP) in man-made scenarios can
make line feature fully observable [10]. Therefore, these
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structural features can be fully leveraged in VIO to obtain a
more accurate pose estimation [11], [12], [13].

Standard EKF frameworks, regardless of whether they use
points or lines, have been proven to be inconsistent due
to spurious information along the unobservable direction
[12]. To address this issue, various algorithms have been
proposed. In recent years, the Invariant EKF (IEKF) has
been successfully applied in robotic localization, particularly
in filter-based VIO [14], [15], [16], [17]. The IEKF model
defines an alternative nonlinear error for estimated poses and
landmarks, automatically ensuring the appropriate dimension
of the unobservable subspace [18]. However, in the case
of MSCKF, landmarks are not included in the state. This
leads to two different error definitions for landmarks: the
nonlinear error definition following IEKF and the additive
error definition following the conventional MSCKF. The
relationship between these two definitions and their impact
on filter consistency is our motivation to investigate.

Our main contributions are summarized as follows:
• We present a right invariant filter-based VIO leveraging

points, lines, and vanishing points, which improves both
the pose consistency and accuracy.

• In the filter design, we prove an equivalent measure-
ment model for point features, demonstrating that these
features do not change the filter consistency even in the
conventional error representation when they are decou-
pled from the state vector. And a similar conclusion can
be given for line features.

• An observability analysis is given to demonstrate that
our method maintains the system’s unobservable sub-
space naturally and enhances the observability of line
features.

II. RELATED WORKS

A. IEKF Applications for VIO

IEKF [19] is proposed to address the filter inconsistency
problem, which has been widely researched in a range of
literature [18], [20], [21], [22], [23], [24], [25]. The IEKF
model has been further applied to MSCKF [12], [14], [26]
and UKF [15]. Previous works [14], [27] have coupled the
landmark uncertainty with the camera pose, while other
works adopt the simple addictive error [26]. Though both
strategies can maintain the consistency, the relationship be-
tween two kinds of error definition has not been investigated.

B. Point-Line-VIO

A couple of works have combined point and line features.
Among optimization-based methods, [9] jointly minimizes
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the IMU pre-integration constraints together with the point
and line re-projection errors. [28] further modifies the LSD
[29] algorithm to have a better real-time performance based
on [9]. By utilizing the structural regularity, Lee et al.
introduce parallel lines’ constraints into point-line-based VIO
and present a novel structural line triangulation method
making full use of the prior information [13]. Among filter-
based methods, the issue of point-line VIO inconsistency is
addressed and improved by observability-constrained tech-
niques [30] and the IEKF framework [12]. [31] extends a new
line parameterization for processing the line observations in a
rolling shutter camera setting. Zheng et al. present Trifo-VIO
which incorporates point and line feature measurements and
formulate loop closure as EKF updates [32]. [33] investigates
two line triangulation methods and reveals three degenerate
motions which cause triangulation failures.

C. Vanishing Point aided SLAM/VIO

In man-made environments, geometric information like
vanishing points can also boost the robustness of VIO and
Simultaneous Localization and Mapping (SLAM) [34], [35],
[36], [37]. Zhang et al. provide a solution to the loop closure
problem leveraging vanishing points in line-based SLAM
[38]. [39] proposes an efficient line classification method for
detecting vanishing points and keeps the vanishing points
in the VIO state for a long tracking. Xu et al. design a
point-line-based VIO system where vanishing points are used
to recognize and classify structural lines [40]. In [10], the
vanishing point cost function is added into the optimization-
based VIO without the constraints like the Manhattan world
assumption [41]. However, these works have not focused on
consistency about vanishing point measurements.

III. PRELIMINARY KNOWLEDGE
A. IEKF Model

In the visual-inertial navigation system, the defined state
is given by:

X = (R,v,p,bg,ba,pf ) (1)

where pf is the landmark. Unlike the conventional error
in standard EKF, the right invariant filter employs a new
uncertainty representation:

X =(exp(ξθ)R̂, exp(ξθ)v̂ + Jl(ξθ)ξv, exp(ξθ)p̂+ Jl(ξθ)ξp,

b̂g + ξbg , b̂a + ξba , exp(ξθ)p̂f + Jl(ξθ)ξpf
)

(2)
where Jl is the left Jacobian for SO3 Lie group, and
ξ =

[
ξTθ ξTv ξTp ξTbg ξTba ξTpf

]T
is the state error

vector. Note that apart from robot velocity and position, the
landmark’s uncertainty is also coupled with the rotation state.
This nonlinear error allows the system to obtain a better
performance on consistency.

B. Line Representation

There exist many representation models for a 3D line, and
two representations are focused on in our paper. One is the
conventional Plucker coordinate L =

[
nT dT

]T ∈ R6,
where n ∈ R3 is the normal vector of the plane determined

Fig. 1. Overview of PLV-IEKF system.

by the line and the coordinate origin, and d ∈ R3 is the
line direction vector [9]. However, this representation has
redundant parameters since the degrees of freedom for a line
should be four, so the minimal representation o =

[
ψT ϕ

]T
is more suitable in line optimization:

ψ = log(U),U =

[
n

∥n∥
d

∥d∥
⌊n⌋d
∥⌊n⌋d∥

]
ϕ = arcsin(

||d||√
||L||2

),W =

[
cos(ϕ) −sin(ϕ)
sin(ϕ) cos(ϕ)

] (3)

where ⌊·⌋ denotes the skew symmetric matrix.

IV. FILTER DESCRIPTION

In the following sections, we denote the estimated state as
x̂, and the error state as x̃. We build our system based on
IEKF framework, as shown in Fig. 1. Specifically, we define
the system state as:

X = (XI ,XC1 , ...,XCn) (4)

XI = (GI R,
GvI ,

GpI ,bg,ba) (5)

XC = (GCR,
GpC) (6)

where n is the sliding window length. XI and XC represents
the IMU state and camera pose respectively, G

I R is the
rotation from the IMU frame to the global frame, GvI and
GpI are the global velocity and position of IMU, respec-
tively. bg and ba are the gyroscope and acceleromter biases,
respectively. Note that we do not incorporate landmarks in
XI , which is different from the conventional IEKF model in
(1). In other words, landmarks are decoupled from the state.

A. IMU Kinematic Model

The IMU continuous kinematic model is given by:

G
I Ṙ = G

I R⌊Iωωω − bg − ng⌋
Gv̇I = G

I R(Ia− ba − na +
Ig),GṗI = GvI

ḃg = nωg, ḃa = nωa

(7)

where Iωωω and Ia are the angular velocity and linear accelera-
tion velocity, respectively. nwg and nwa are Gaussian noises.



Fig. 2. Illustration of point, line, and vanishing point residual. Three
features are all projected to the normalized plane, and the black dots
represent the measurements.

After linearization, the following propagation equation is
obtained:

˙̃XI = FX̃I +GnI (8)

where nI =
[
nT
g nT

wg nT
a nT

wa

]T
is the process noise.

F is the continuous state transition matrix and G is the input
noise Jacobian.

B. Point Measurement Model

When the position of the point feature is initialized, the
normalized coordinate z of the feature point Gpf is obtained:

z = π(Cpf ) =
1

Czf

[
Cxf
Cyf

]
= h(X,Gpf ) (9)

where π is the projection function. The corresponding error
vector of X is denoted as ξ =

[
ξTI ξTC1 ... ξTCn

]T ∈
R15+6n. Therefore, the linearized measurement model can
be obtained as below:

z̃ = HXX̃+Hf
Gp̃f (10)

where Jacobians Hx and Hf are given by (25) in Appendix.
Genrally, Gp̃f follows an invariant error definition like (2):

Gpf = exp(ξiθ)
Gp̂f + Jl(ξ

i
θ)

Gp̃f (11)

where ξiθ is the orientation error for XCi
, and Ci is the

camera pose that captures the landmark first. However, a
proposition is given to reveal the equivalent relationship
between the right invariant form and the conventional error
form, i.e. Gp̃f = Gpf − Gp̂f .

Proposition 1. Given the same estimated landmark, the
measurement model for points is equivalent for the invariant
error and additive error.

Proof: See Appendix.
Remark: The equivalent measurement model indicates

the same consistency property. However, the additive error
definition is more convenient to implement.

C. Line Measurement Model

As shown in Fig. 2, IL represents the projection of a
straight line L on the normalized image plane, so the error
term is defined as the distance between the endpoints on the
line in an image and the estimated 2D line:

z̃L =

[
zL,1

zL,2

]
=

 pT
s l√

l21+l22
pT

e l√
l21+l22

 (12)

where l =
[
l1 l2 l3

]T
is the re-projected line on the nor-

malized plane, ps = [us vs 1]T and pe = [ue ve 1]T

are the endpoint measurements of the line on the normalized
plane.

The line error for the orthonormal representation is clas-
sified into globally-defined error and locally-defined error as
below:

G : U = exp(δψ)Û,W = exp(δϕ)Ŵ

L : U = Ûexp(δψ),W = Ŵexp(δϕ)
(13)

Thus, a conclusion on these two error forms can be given:
Proposition 2. Given the same estimated line, the

measurement models for lines are equivalent for the globally-
defined error and locally-defined error.

Proof: The proof is similar to that of Proposition 1.
Remark: Conventional line-based VIO usually chooses

the locally-defined error [9] while IEKF-based VIO [12]
may choose the global one. Since the line feature is not
incorporated in the state variables, both errors are acceptable
in the algorithm implementation.

Therefore, the linearized measurement model following a
globally-defined error is given by:

z̃L = HXX̃C +HLõ

HX = JL
G
CR

T
[
(⌊Gn⌋ − ⌊GpC⌋⌊Gd⌋) ⌊Gd⌋

]
HL = −JL

G
CR

T
[(
⌊Gn⌋ − ⌊GpC⌋⌊Gd⌋

)
Hϕ

]
JL =

 us

l1,2
− l1zL,1

l31,2

vs
l1,2

− l2zL,1

l31,2

1
l1,2

ue

l1,2
− l1zL,2

l31,2

ve
l1,2

− l2zL,2

l31,2

1
l1,2


Hϕ =

||Gd||
||Gn||

Gn+
||Gn||
||Gd||

⌊GpC⌋Gd

(14)

where JL is the Jacobian of line projection, l1,2 =
√
l21 + l22.

D. Vanishing Point Measurement Model

In the man-made environment, lines can be classified into
structural lines with VP measurements and non-structural
lines [10]. For a structural line, when its corresponding
vanishing point is calculated, a VP measurement residual
is obtained:

rv = pv −
1

d3

[
d1
d2

]
(15)

where rv and pv represent the vanishing point residual
and the vanishing point observation, respectively. Cd =[
d1 d2 d3

]T
is the line direction vector in the camera

frame, which is orthogonal to the normal vector Cn which is



used as the line measurement. In this sense, VP measurement
is complementary to line measurement and fully exploits the
line geometric information. The Jacobian with respect to the
vanishing point is computed as follows:

HX = JL
G
CR

T
[
⌊Gd⌋ 03

]
Hv = JL

G
CR

T
[
−⌊Gd⌋ ||Gn||

||Gd||
Gd

] (16)

where the Jacobian items are similar to those in (14).

V. FEATURE INITIALIZATION

A. Line & VP Detection

When a new frame comes, line segments are detected by
the LSD detector. For each line, the descriptor LBD is calcu-
lated for line tracking. Some outlier rejection strategies are
employed such as the limited distance between the endpoints
of matched lines and the limited angle difference between
the line directions. As for VP detection, we use the efficient
and robust two-line based VP detection algorithm [42], and
the observed lines with the detected VPs will be considered
as the structural lines and used in the aforementioned line
measurement model and VP measurement model.

B. Line & VP Estimation

The strategy of line estimation is similar to that of point
estimation in MSCKF. When a non-structural line is no
longer tracked by the current camera frame, it will be
triangulated by the dual Plucker matrix method [9]. Then
we optimize it by the following cost function:

min
∑
i∈Ln

||rL(oj , li)||2 (17)

where Ln are the sets of non-structural line measurements
in the sliding window, li is the i-th line measurement. After
the structural line is triangulated, we add a VP cost item for
a better estimation:

min
∑
i∈Ls

(||rL(oj , li)||2 + ||rv(oj ,pv,i)||2) (18)

where Ls are the sets of structural line measurement, pv,i is
the i-th vanishing point measurement.

VI. OBSERVABILITY ANALYSIS

In this section, we perform the observability analysis of
our proposed method based on the EKF model which has the
same observability property as MSCKF. The observability
matrix for EKF in the period [tm, tn] is defined as follows:

On ≜


Hm

Hm+1Φm

...
HnΦn−1 · · ·Φm

 (19)

where Hk is the measurement Jacobian, Φk is the state
transition matrix from tk to tk+1. Since previous literature
has demonstrated that point-line based IEKF can improve
the consistency without artificial remedies [12], we focus on
the observability of the vanishing point. At time step tk, the

state vector is considered to contain only one line feature
with the line and VP measurement. The observability matrix
at tk can be written as:

Ok =

[
Olk

Ovk

]
(20)

The null space for Olk has been derived in [12], indicating
that the unobservable subspace does not degenerate. And the
second part can be derived as:

Ovk = Jp
G
Ik
RT

[
Γ1 Γ2

]
Γ1 =

[
⌊Gd⌋ 03×6 ⌊Gd⌋Φ14 03

]
Γ2 =

[
−⌊Gd⌋ ||Gn||

||Gd||
Gd

] (21)

There are at least eleven directions lying in the unobservable
subspace with the null space matrix:

Nv =



I3 03 03 03×1 03×1

03 I3 03 03×1 03×1

03 03 I3 03×1 03×1

03 03 03 03×1 03×1

03 03 03 03×1 03×1

I3 03 03
Gd 03×1

0 0 0 0 ||Gd||


(22)

It is observed that the left nine columns of Nv are indepen-
dent of the estimated state. Therefore, the IEKF model with
line features can remain in the ideal unobservable subspace
naturally. Meanwhile, there exist at least two unobservable
directions for Olk:

OlkNlk = Olk

[
015×2

Nok

]
= 0 (23)

where Nlk is the null space matrix of Olk , and Nok rep-
resents the null space regarding the line parameter. It can
be verified that OvkNlk ̸= 0 which means the line is fully
observable with VP measurements.

VII. EVALUATION

To validate the effectiveness of our proposed approach, we
conduct the simulation and real-world test. In the real-world
test, we compare our algorithm with some state-of-the-art
VIO algorithms. Our experiments are conducted on a laptop
with Intel(R) Core(TM) i7-10710U CPU@1.10Ghz and 16G
RAM.

A. Simulation

In the simulation test, we assume that a car equipped with
a 100Hz IMU and a 10Hz camera loops ten times along a
circle with a radius of 6m. A total of 200 points and 140 lines
are scattered around the real trajectory, as shown in Fig. 3(a).
The points are generated along the inside cylinder wall with
a radius of 5 meters and outside cylinder walls with a radius
of 7 meters. And the lines are generated along a square wall
with a length of 14 meters. The camera captures landmarks in
the field of view of the camera within a range of 20 meters.
We generate sensor measurements with noise according to
the trajectory and landmarks. The initial noise matrix is set
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Fig. 3. Simulation trajectory and Monte Carlo results for 30 runs. (a): True trajectory (red), point landmarks (blue) and line landmarks (green); (b):
Average NEES; (c): Average RMSE.

Fig. 4. Tracked points (green), lines (blue), and vanishing points (red) in
MH 03 medium sequence.

as diag(0.0082I3, 0.00042I3, 0.012I3, 0.0032I3), and all the
feature measurement noise is set as 1 pixel.

Four algorithms are compared in the simulation: standard
point based MSCKF (MSCKF), standard point based IEKF,
point-line-VP based MSCKF (PLV-MSCKF), and point-line-
VP based IEKF (PLV-IEKF). The sliding window size is set
as 20 and we only use the landmarks that are captured more
than 5 times by the camera for robust estimation. The pose
accuracy indicator Root Mean Squared Error (RMSE) and
the consistency indicator Averaged Normalized Estimation
Error Squared (ANEES) are reported in Fig. 3(b) and (c).
It is evident that NEES of IEKF and PLV-IEKF is closer to
the ideal NEES (one) than that of MSCKF family, indicating
better consistency. Meanwhile, PLV-IEKF achieves a better
pose estimation than IEKF with additional line and VP
measurements.

B. Real-world Test

To validate the effect of our proposed method, we conduct
a real-world experiment on EuRoC Dataset [43], which
exhibits varying levels of motion blur and textureless re-
gions [33]. V2 03 difficult sequence is not chosen due to
a number of missing camera frames which affect the feature
tracking. We compare our algorithm with other state-of-the-
art algorithms such as MSCKF [44], IEKF [27], VINS-
Mono [45] and PL-VINS [28]. PLV-MSCKF and point-line
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)
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Ours
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Fig. 5. X-Y plot of estimated trajectories on the MH 03 medium sequence.

based invariant IEKF (PL-IEKF) are also implemented for a
detailed comparison. For all of the algorithms, we extract no
less than 100 point features and 30 line features for robust
estimation and disable loop detection for a fair comparison.
The sliding window size for these filter-based VIO is set as
20. An example of tracked features in MH 03 medium is
shown in Fig. 4. RMSE results are reported in Table I, and
the trajectory sample is shown in Fig. 5. It is evident that
in most cases using lines and vanishing points can achieve a
better pose accuracy, and PLV-IEKF has a better performance
than PLV-MSCKF because of better consistency.

It is also observed in Table I that PLV-IEKF performs
better in Machine Hall (MH) sequences than PL-IEKF since
there exist more structural features in the environment, where
vanishing point measurements can improve the line estima-
tion, even in challenging sequences like MH 04 difficult se-
quence with illumination changing and textureless scenarios.

Table II shows the backend processing time on
MH 01 easy sequence for different algorithms, among which
the proposed PLV-IEKF requires slightly more time than
other filter-based point-based and point-line-based methods,
but much less time than VINS-Mono and PL-VINS. It
demonstrates that PL-IEKF can achieve competitive and



TABLE I
POSITION RMSE(M) ON THE EUROC DATASET.

Sequence
Algorithm

MSCKF PLV-MSCKF IEKF PL-IEKF VINS-Mono PL-VINS PLV-IEKF

MH 01 easy 0.265 0.229 0.257 0.216 0.154 0.182 0.174

MH 02 easy 0.295 0.237 0.250 0.229 0.232 0.208 0.206

MH 03 medium 0.443 0.413 0.298 0.222 0.269 0.267 0.184

MH 04 difficult 0.605 0.346 0.403 0.460 0.439 0.409 0.333

MH 05 difficult 0.404 0.285 0.294 0.325 0.300 0.328 0.240

V1 01 easy 0.105 0.070 0.098 0.079 0.082 0.087 0.073

V1 02 medium 0.144 0.160 0.140 0.164 0.111 0.171 0.182

V1 03 difficult 0.376 0.308 0.331 0.272 0.250 0.148 0.249

V2 01 easy 0.349 0.154 0.242 0.187 0.165 0.126 0.141

V2 02 medium 0.253 0.240 0.245 0.268 0.209 0.152 0.224

* Bold and underline represent best and second best in each sequence, respectively.

TABLE II
BACKEND PROCESSING TIME PER FRAME ON THE MH 01 EASY SEQUENCE.

Algorithm MSCKF PLV-MSCKF IEKF PL-IEKF VINS-Mono PL-VINS PLV-IEKF

Time cost (ms) 5.21 5.578 5.33 5.43 37.9 60.06 5.65

higher time efficiency compared with optimization-based
methods.

VIII. CONCLUSIONS

In this paper, we propose an invariant Visual-Inertial
Odometry (VIO) leveraging points, lines, and vanishing
point features in man-made environments. Three feature
measurement models are obtained in our framework, and
two equivalent measurement models of points and lines are
proven in our filter design. The observability matrix regard-
ing vanishing points is derived to demonstrate that the EKF
model with line features can guarantee the ideal unobservable
subspace. Simulation tests and real-world experiments val-
idate our algorithm’s consistency and competitive accuracy
compared with other state-of-the-art algorithms. In the future,
we will refine the line and VP estimation to achieve an
accurate and efficient mapping.

APPENDIX

A. Proof of Proposition 1

To prove Proposition 1, we assume that only one point-
type landmark in the current sliding window is observed by
n camera poses. When the landmark error is additive, the
Jacobian for VIO state is given by:

Hx = Jπ


03×15 H11 03×6 ... 03×6

03×15 03×6 H22 ... 03×6

... ... ... ... ...
03×15 03×6 ... ... Hnn


Hii =

[
G
Ci
RT ⌊Gpf×⌋ −G

Ci
RT

]
, i = 1, 2, ..., n

(24)

where Jπ =
[
Jp1 Jp2 · · · Jpn

]
, Jpi is the Jacobian Jp

for the i-th camera pose. On the other hand, the Jacobian

regarding an invariant form is calculated as follows:

H′
x = Jπ


03×15 H′

11 03×6 ... 03×6

03×15 H′
21 H′

22 ... 03×6

... ... ... ... ...
03×15 H′

n1 ... ... H′
nn


H′

11 =
[
03 −G

C1
RT

]
H′

i1 =
[
−G

Ci
RT ⌊Gpf×⌋ 03

]
,H′

ii = Hii, i = 2, 3, 4..., n
(25)

Note that the Jacobians with respect to the landmark for both
forms are the same:

Hf = Jπ

[
G
C1

R G
C2

R ... G
Cn

R
]T

(26)

which shares the same left null space matrix A. We calculate
the difference between the final Jacobians:

ATHx −ATH′
x

=
[
03n×15 ATHf⌊Gpf×⌋ 03n×(6n−3)

]
=0

(27)

Therefore the final Jacobians are equivalent, so is the final
projected measurement noise no = ATn.
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