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Abstract 
This paper describes tecliniques tor outdoor scene analysis 

using range data. The purpose of these techniques is to build a 
3.0 representation of the environment of an mobile robot 
equipped with a range sensor. Algorithms are presented for 
scene segmentation. object detection, map building, and object 
recognition. 

We present results obtained in M outdoor navigation 
environment in which a laser range finder is mounted on a 
vehicle. These results have been successfully applied to the 
problem of path planning through obstacles. 

1 .  Introduction 
Outdoor scene analysis is a major Dart of an autonomous 

vehicle. It allows a vehicle to navigate safely through an unknown 
environment, to build a internal model Of me environment, and to 
identify landmarks. Several sources of data can be used to build 
such a vision system: range finders, color cameras. sonars. While 
a reliable system would probably use all of these Sensors, our 
work focused on the use of range data for outdoor vision. The 
advantages of using range data for an autonomous vehicle fall in 
two categories: first, the measurements are less sensitive to 
environmental conditions, such BS lighting. thus alleviating 
shadow or highlight problems. Second, a geometrical description 
of the observed scene is more easily derived from range data. 
This property is important in the area of autonomous vehicles in 
which the output of vision programs must be converted into 
usable space coordinates for navigation. For our work, we use 
the ERIM laser range sensor which proviaes reasonable accuracy, 
a field of view large enough for outdoor applications, and high 
acquisition speed. 
Following the description 01 the €RIM range sensor in the next 

Section, we present preprocessing techniques for removing 
sensor.dependent defaults. In Section 4, we present the 3-D 
features extraction algorithms which are designed to produce 
relevant features for outdoor vehicle navigation and object 
recognition. S D  map reconstruction from range data is 
described in Section 5. In Section 6, we present algorithms for 
data fusion, that is, algorithms that use range data along With 
other t ~ ~ s  of visual information such as color images. In 
Section 7. we present one important application of range data 
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analysis to robot vision, that is, object recognition using data 
W o n  between range and color sensors. 

2. Sensor Description 
The range sensor we use for outdoor scene analysis has been 

designed by the Environmental Research Institute of Michigan 
and will be referred to as the ERIM sensor. The basic principle of 
the sensor is to determine the range froin the sensor to the scene 
point for each pixel by measuring the transmit time of a 
modulated laser beam. The transmit time is derived by 
measuring the phase difference between the reference and 
reflected signals which corresponds to the range from the Sensor 
to the target. A two-mirrors scanning mechanism directs the 
beam onto the scene so that an image of the scene is produced. 
In the ERIM-A~V version, the field of view is;4O0 ‘2 the horizontal 
plane and 30 in the vertical plane, from 15 to 45 . The resulting 
range image is a 64 x 256 &bil image. The frame rate is currently 
two images per second. The nominal range noise is 0.4 feet at 50 
feet. 

Since only the phase shift is measured, the resulting values are 
relative instead of absolute measurements. That is, two points 
separated by a length equal to a complete phase shift have the 
same range value. This critical length is called the ambiguity 
interval and is equal to 64 feet. 

The sensor is also capable of producing reflectance images in 
which the value of each pixel is the amount of,light reflected by 
the target. This information has not been used yet. 

Figure 2-1 shows a sequence of seven ERIM images taken in a 
park: two consecutive images are taken from positions separated 
by approximately five meters. 

3. Preprocessing 
The €RIM data introduces a periodicity problem due to the 

ambiguity interval. The periodicity is especially apparent in 
images such as the one shown in Figure 3-1, in which distant 
points haw the same value as close points. This problem 
reduces the range at which the scene can be processed to the 
extent of the ambiguity interval, and may also create false 
features, such as false edges which do not correspond to any 
physical feature. Therefore, the firsl step in the €RIM image 
processing is to remove the periodicity. The periodicity removal 
algorithm has three steps: 

1. Divide the image into connected components so that 
two points whose m g e  difference is greater than a 
threshold are never connected (Figure 32). Two 



Figure 3-1: Figure 3-2: 
Uncorrected image Ambiguity intervals 

Figure 3-3: Corrected image 

Figure 2- 1 : A sequence of €RIM hagti  

such points betong to two different ambiguity 
intervals. 

2.Aemove the small regions which correspond to 
noise. 

&Explore the graph of components starting at the 
bottom of the image which is d h i n  the first 
ambiguity intewal. During the exploration, an offset 
is added to all the points of the currently visited 
mgion. The offset is initially set to zero and is 
updated for each region by applying the following 
rule: 

offset(S) - 256 + min { offset(S') , 
s' connected to S) 

The result of the correction is shown in Figure 3.3. 

4.3-0 Features Extraction and Image 
Interpret at ion 

In this section. we describe the feature extraction techniques 
Three levels are used in the feature extraction process First 
three basic altributes are extractd from the range image. lump 
edges, surface normals, and curvatures. These attributes are 
then used lor extracting a set of three primitive features 

&Q which correspond either to discontinuities 
of depth such 8s the boundary of an obstacle, or to 
discontinuities of surface normals such as the 
boundary between a fiat region and a highly curved 
region. 

osmooth reoiong which are regions of low uniform 
curvature. These regions may either be part of an 
object, or obstacle, or part of the ground. 

Rouah reaio- which are regions of high curvature 
or textured regions. 

Finally, these intermediate features are merged into a scene 
interpretation suitable for vehicle navigation. The two main 
primitives of the output description are: 

0 which can be safely explored by a 
vehicle. 

QbstackJ which are either actual objects or rough 
ground regions. 

We have found that this algorithm works well within the two first 
ambiyuily intervals. Beyoild that polill, measurements are usually 

connectivity graph of these features. too nosy to ensure reliable results. No algorithm is guaranteed to 
retneve the actual range values since it is unknown whether two 4.1. Surface Normals 
regions are separated by only one or several ambiguity intervals. The surface normals provide important pieces of information 
The algorithm assumes that only one interval separates two about the shape of the o b s e d  tarrain. The best way of 
reglons. computing the surface normals b to approximate the 

The wtput structure from this feature extraction process is a 

1427 
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neighborhood d each pixel by a plane. 
method would be to minimize for each pixel: 

A straightfornard 

(1) 
I K N  

the radial distances instead of the Cartesian coordinates. The 
alternative and preferred criterion is: 

where ?= i? I), u'. is the radial vector at pixel iJ, and dv is the 
'1 distance from pixel I j to the origin. 

The solution of (2) is given by: 

where At is the 3 x 3 matriidefined t y  

Since the vectors q, ciepmd only on the scanning parameters 
of the sensor, the matrix M-' can be computed beforehand. 
Actually, the vectors and matrices depend also on the orientation 
of the sensor (pan and tilt angles). but their value can be updated 
easily: i f  the sensor is rotated by a rotation R. thenze rad;'" 
vectors $and the resulting normal Vare changed to R Y and R I? 
respectively. 

In summary, the estimation of the surface normals voceeds as 
f o l l w :  

1. If the orientation of the sensor has beeh changed 
since the last image, update the vectors 

2. Correlate the inverse distances l i d u  with $ with 

3. ~ui t ip iy  the resulting vector image by M-'. 

weights a#. 

4.Nomalhe the rwulting m o r  to obtain the unit 
surface nonnal. 

Figure 41 shows a range image and the three components of 
the surface normal estimated by using a 5 x 5 window. 

4.2. Curvatures 

4.2.1. U8ing Principal Curvaturor 
Several authon have shown that differential geometry, namely 

the theory of principal curvatures. can be used to rocover 
properties of a surface observed by a range 38nsor [6,5]. These 
properties range from the extraction of roof edges to the 

Figur~ 4.1: Original range image and surface normals 

not work well for outdoor imagery. The perequisites of these 
techniques are that an accurate estimation of second order 
differential attributes is possible and that the surfaces are 
mathematically well defined. Outdoor imagery has a limited 
accuracy, and the observed surfaces usually do not have a well- 
defined mathematical representation since in a natural 
environment, m a t  surfaces, such as a grassy terrain and tree 
foliage, are highly textured and irregular. Therefore, we limit 
ourselves to the computation of curvatures for the purpose of 
roughly segmenting the scene into separate regions, each of 
which is a region of low and uniform maximum curvature. 

4.2.2. Computlng Curvatures 
The computation of principal curvatures can be reduced to the 

computation of first and second derivatives of the image (see 
I21 for a complete definition). The standard way of computing 
the curvature is to define the range image as a function 
Z=/(X. Y), where the two coordinates X and Y are assumed to be 
uniformly distributed dong the image rows and columns. This 
assumption is not true when using the ERIY sensor because of 
the width of the field of view. The solution is to use the spherical 
representation p" ap.8) where $is a measured point on the 
surface, d is the range given by the €RIM sensor, and 3~~9) is the 
radial vector of angles cp and 8.  A surface is considered as a 
parametric surface p" 99.8). The cuwatures can be computed 
by using the first and second derivatives of F with respect to the 
two angles: 

(4) 

The radial vectors r(tq1.0) , and hence their derivatives, depend 
only on the characteristics 01 the sensor and Its orientation. 
These vectors cap therefore be corr.puted belorchand. thus 
minimizing the amount of computation at run time. The 
Curvatures cornputation is thus reduccd to the computation of 
the first and second derivatives of the iniage (/with respect to the 
angles o, and 8. This computation is done by first applying a 
Gaussian smoothing, and then computing the derivatives by 
convoking with 3x3 masks. These masks are derived from a 

extraction of cylindrical surfaces. However, these techniques do second order approximation of p" 9 q . 8 ) .  The curvatuie 
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computation algorithm proceeds as follows. 

1. Apply a Gaussian moolhing on the m!Je image. 

2.Compute the derivatives of the range image with 
respect to the two spherical angles by applying 3 x 3 
operators. 

3. Derive the derivatives of the three Cartesian 
coordinates by using equations (4). 

4. Derive the curvatures by applying the fundamental 
forms equations (see [2)). 

Figure 4.2 shows a range image and the corresponding 
maximum curvature image estimated by using the above 
algonthm. 

Figuro 4.2: Original range image and curvature image 

4.3. Edges 
Edges are conrpuid by dclectiny depth lumps. This is done by 

first detecting the zero-crossings 01 a ditlerence of Gaussian 
masks in the depth image. One dilficulty is that if two pixels are 
la from the sensor. they may appear as neighbors in the image 
wen though they may be far ap3rt in space and hence do not 
correspoiid lo edges. This problem is overcome by considering 
only points of the image with sufficiently high curvature BS 
potential edge points. This algorithm detects mainly the jump 
a g e s  corresponding to Ihe boundaries of vertical obstacles. A 
m e  elaborate edge finder for detecting discontinuities of the 
surface normals is based on region segmentation. 
4.4. Segmentation Algorithm 
The segmentation algorithm proceeds by combining partial 

segmentations obtained from attributes, such as edges, surface 
norm& and curvatures. into a consistent scene segmentation. 
The advantage of this approach is that it takes into account all 
the available information while dividing the whob segmentation 
problem into smaller ones. 

The initial segmentations are produced for each of the surface 
nom1 components and curvatures by a three step region 
growing algorithm: 

1. Find clusters in the attribute space, such as dusters 
in me surface normals space. 

2 Identify the regions corresponding to those dusten 
in the original image. 

&Use these regions as starting regions for a region 
growing algorithm. The edges are used a8 region 
boundaries in the region growing, 

The segmentations obtained from individual attributes are then 
merged together. This merging step compares each region of 
one segmentation to the corresponding region in the image of 
the other segmentations. If the segmentations agree, the region 
is reported, otherwise it is split into connected regions consistent 
with the other segmentations. Figure 4-3 shows the 
segmentation of a short sequence of ERIM images. The regions 
are labeled as smooth, Le., accessibk portions of the terrain, and 
obstacle, i.e., objects in the scene. The first principal direction of 
a region is attached to the region in the display. 

Figure 4-3: Segmented s6quence 

5. Surface  Reconstruction and 3-D Map 
Building 

In the previous section we presented tecliniques for extracting 
information for  RIM images. In this section. we present 
techniques for storing this information as a local 3.D map of the 
environment. A map is a structure describing the geometry of 
the environment from which one can derive information such 
the type of terrain at a given space location x y ~ .  
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4 5.1. Snapshot Map 
One important characteristic of a range image is that il permits 

the production of a three-dimensional map of the current local 
environment. Such a map, called a snapshot map, is derived 
from only one image and can be viewed as the local state of the 
environment. This map can in turn lje used to predict the 
appearance of the scene from another viewpoint. and to plan a 
safe path for a vehicle while taking into account the 3-0 shape of 
the traversed terrain. The path planning is especially important in 
cross-country navigation where the "flat ground" assumption 
does not usually hold. 

Figure 5-1 shows an example of such a map and the 
corresponding ERIM image. The map is displayed as a 3-0 mesh 
of measured points with the surface normal at each point. 

I 

Figuro 5- 1 : Snapshot map derivsd from an erim image 

5.2. Local Map 
41 the techniques describsd w far proceed by independentfy 

Processing one image at a time. In an outdoor navigation 
-ern, consecutive images are related to each other to develop 
a local map. That is, the robot grabs an image every one to ten 
meters as in the sequence shown in Figure 2- 1. Then each image 
is registered with respect to the previous ones. In other words, 
we merge the snapshot maps produced by each individual image 
into a local map describing the environment explored so far. 
Such a local map can be used for two main purposes: 

lncremenial WcricJiorion refinement A single image 
provides only partial information about the identified 
objects. For example, only the front part of the tree 
is visible in figure 5- 1, and, as a result, no information 
is available in the cone-shaped unknown region 
behind it. Putting twether Snapshot maps obtained 
from several different viewpoints would refine the 
objects' descriptions by reducing the Size of the 
unknown regions. 

Local map building b considered as a matching process 
between consecutive images: 

1. Assume that frame 1 is part of the local map and 
registered in some global coordinate system. 

2 Extract features from frame 2. These features are 
planar regions and edges approximated by 
polygonal chains. 

3. Match the features of images 1 and 2 by using a tree 
search procedure guided by the transformation 
estimation. This procedure is similar to the ones 
described in [l] and [3]. 

4. The matching provides an estimate of the 
transformation between images 1 and 2, which in 
turn provides an estimate of the position of image 2 
with respect to the local map. 

5. lmlude the Snapshot map derived from image 2 into 
the local map. That involves the identification of 
overlapping regions and the updating of objects' 
descriptions. 

We have done experiments on steps 1 through 4 using ERIY 
data. Figures 5 2  and 5.3 show two consecutive frames. The 
matching of tho two images leads to a transformation estimate 

which is applied to the second snapshot map. Figure 5.4 sho& 
the two regtslered snapshot maps. Finally. overlapping regions 
are identified. thus leading to the uprlaI@ map of figure 5-5. In 
this example, the map updating has been local at the pixel level 
and does not include the updahng of the symbolic descriptton 

Matching the features is efficient since the number of features 
is usually small. and the transformation between images is 
partially known beforehand. That is, bounds on the displacement 
between two consecutive frames we available. 

Figure 5-2: First image 

Figure 5-3: Second image 

bcrementpl i Q( p referena PIPP; One 
application of outdoor vision Is the exploration 
scenario. A vehicle equipped with sensors discovers 
M unknown environment and stores information in a 
reference map usable during later missions. 
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corresponding segmentation into three surface patches, Figure 
6-2 shows a color image of the same scene (only the blue bind is 
displayed), and Figure 6.3 shows the three surfaces patches 
registered wlth the color image. 
The registration algorithm works in two steps. 

1. Compute the transformation between color images 

2. Use this transformation to transform features from 
and range images. 

one image to the other. 

-4 
Figure 5-4: Registered snapshot 

Figure 6- 1 : Segmented range image 

Figure 5-5: Local map 

6. Data Fusion 
Range data provides important clues on the geometry of an 

cbswved scene. However, it does not provide MY information 
about the physical properties of the scene objects, such LU color 
or reflectance. On the other hand, it is extremely diffiiuit to 
urn spatial information from reflectance information. 
Therefore. a fundamental .feature of a powerful outdoor vision 
$stem is the ability of reasoning on both range data and color 
&ti This feature is rtfered to as “data fusion”. Data fusion can 
k finl reduced to a registration proces between range data 
mi other images. That is. one must be able to convert a spatial 
hture extracted from range data, such an edge or a surface 
pkh, to a feature in the corresponding color images. 
Conversely. one must be able to compute the spatial position of a 
Wun from the color image by computing the corresponding 
leature in the range image. The registration is illustrated in 
Fgurcs 61  to 63 Figure 6-1 shorn .a range image and the 

The first step is a calibration step that is performed only once 
for each set of images. A pair of range/color images is first 
measured, then a set of points /’,=(.rrl,.z) is selected in the 
range image along with the corresponding set of pixels (/$). 
The translormation 7, which includes the tilt angle of the camera, 
the position of the camera relative to the range scanner, and Its 
focal length. is computed by solving a least-squares criterion. 

Once the camerdscanner transformation is computed, the 30 
segmentations can be registered with the color image. This is 
done by applying the transformation to each point ( x J , ~ )  of each 
surface patch in the Erim image, thus transforming each patch 
into a set of scattered pixels (14 in the color image. These pixels 

Figure 6-2: Color image 
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Fk‘oion 1 
Ovmiric : 

lJlcllln.lrrs : (0 02 0 01 0.00 1 
Glob:il irormal (flW .O.l -0.1C) 
Lotrq ill9. (0.2 -0.7 0% ) 
Olyp’ I:llipsoidal cylinclcr Color : tree 

ECl*?i : 
lypc : It;inp.jump. and iiltcrrwt 
connrciivity : m i o n  0 

Figure 6-3: Registration of surfaca and color image 

into a polygonal mesh. Eac:: face of the mesh is then filled to 
produce a compact connected region in the color image as in 
Figure 6-3. 

7 .  Object Recognition 
Object recognition, that is the identification of specific objects 

in the scene by matching extracted features and stored models, 
is of central importance in the development of an autonomous 
vehicle. For example, object recognition capabilities can be used 
in a landmark-driven navigation scenario. Our approach is to Use 
both range and color data for object recognition. This choice is 
motivated by the fact that these two types of data are 
complementary: range data provides information on the 
geometry and the position of objects, while color data provides 
information on the physical structure of the objects. Moreover, 
the techniques presented in Section 6 make possible to relate 
features extracted from both sources. 
7.1. Scene Description 

The current object recognition system takes the range image 
segmentation as the primary information. The segmentation is 
described by a graph of edges and surface patches 
approximated by quadric patches. The surface patches are then 
converted into regions in a color image using the techniques of 
Section 6. The only color processing currently supported is the 

’ -mentation of each region in the color image using a color 
classifier. The resulting rangelcolor image description is a 
description lire which contains the graph of 3.D edges and 
surface patches dong with the segmentation of each patch into 
subpatches according to the color characteristics. 

7.2. Object Description 
An object to be recognized is stored as a set of conditions that 

its Shape and color must satisfy to be present in the scene. As a 
simple example, a tree trunk should satisfy condilions such as: 
cylindrical shape. connected to the ground, parallell vertical 
edges, color in a given region of the color space. The reason why 
we are using heuristic models instead of more accurate object 
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models is that we are dealing with natural scenes instead of well- 
defined man.made environments. Moreover. we are interested at 

this point in recognizing classes of objects rather than specific 
instances. 
7.3. Object Recognition 

The object recognition proceeds by evaluating the ruks 
describing the sought object on each object found in the scene. 
This is done by extracting the relevant parameters, such as the 
quadric parameters or the color type, from the description file 
and evaluating the current condition. An instance of the sought 
object is found if an object in the scene satisfies the conditions. 
Figure 6-3 shows the description of one region extracted from 
the image of Figure 6-2. The region is identified as a tree since il 
satisfies the four rules describing that object (Section 7.2). 

The approach currently used in the object recognition system 
is entirely bottom-up since the scene description is independent 
of the object model and cannot be modified. A more involved 
version will contain model-driven feature extraction algorithms. 

8. Conclusion 
The techniques presented in this paper have been 

experimented in a realistic outdoor environment by mounting the 
sensor on a mobile robot [4]. The scenes descriptions produced 
by these techniques have been successfully used as an input tQ a 
path planning and obstacle avoidance module. In addition, we 
have shown that data fusion between range and color data can 
provide an higher level scene description. The results indicate 
that active range data processing is suitable for the navigation 
through an unknown environment. Future work includes the 
combination ot range data with other sources of visual data, such 
as reflectance, and the integration of the scene analysis 
techniques in a general navigation system which includes 
landmark recognition, obstacle detection, and map management. 
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