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Abstract

This paper describes tecliniques tor outdoor scene analysis
using range data. The purpose of these techniques is to build a
3.0 representation of the environment of an mobile robot
equipped with a range sensor. Algorithms are presented for
scene segmentation. object detection, map building, and object
recognition.

We present results obtained in an outdoor navigation
environment in which a laser range finder is mounted on a
vehicle. These results have been successfully applied to the
problemof path planning through obstacles.

1. Introduction

Outdoor scene analysis is a major part of an autonomous
vehicle. It allows a vehicleto navigate safely through an unknown
environment, to build a internal model Of the environment, and to
identify landmarks. Several sources of data can be used to build
such a vision system: range finders, color cameras. senars. While
a reliable system would probably use all of these Sensors, our
work focused on the use of range data for outdoor vision. The
advantagesof using range data for an autonomous vehicle fall in
two categories: first, the measurements are less sensitive to
environmental conditions, such as lighting. thus alleviating
shadow or highlight problems. Second, a geometrical description
of the observed scene is more easily derived from range data.
This property is important in the area of autonomous vehicles in
which the output of vision programs must be converted into
usable space coordinates for navigation. For our work, we U2
the eriM laser range sensor which provides reasonable accuracy,
a field of view large enough for outdoor applications, and high
acquisition speed.

Following the descriptionor the eriM range sensor in the next
Section, we present preprocessing techniques for removing
sensor-dependent defaults. In Section 4, we present the 3-D
features extraction algorithms which are designed to produce
relevant features for outdoor vehicle navigation and oObject
recognition. 3D map reconstruction from range data is
described in Section 5 In Section 6, we present algorithms for
data fusion, that is, algorithms that use range data along With

other types of visual information such as color images. In
Section 7. we present one important application of range data
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analysis to robot vision, that is, object recognition using data
fusion betweenrange and color sensors.

2. Sensor Description

The range sensor we use for outdoor scene analysis has been
designed by the Environmental Research Institute of Michigan
and will be referred to as the EriM sensor. The basic principle of
the sensor is to determine the range frotn the sensor te the scene
point for each pixel by measuring the transmit time of a
modulated laser beam. The transmit time is derived by
measuring the phase difference between the reference and
reflectedsignalswhich correspondsto the range from the Sensor
to the target. A two-mirrors scanning mechanism directs the
beam onto the scene SO that an image of the scene is produced.
Inthe ERIM~A&V version, the field of view is60.40° ig the horizontal
plane and 30" in the vertical plane, from {5~ to 45" . The resulting
range image is a 64 x 256 8-bit image. The frame rate is currently
two images per second. The nominalrange noise is 0.4 feet at 50
feet.

Since only the phase shift is measured, the resulting values are
relative instead of absolute measurements. That is, two points
separated by a length equal to a complete phase shift have the
same range value. This critical length is called the ambiguity
intervaland is equalto 64 feet.

The sensor is also capable of producing reflectanceimages in
which the value of each pixel is the amount of light reflected by
the target. This informationhas not been used yet.

Figure 2-1 shows a sequence of seven griM images taken in a
park: two consecutive images are taken from positions separated
by approximately five meters.

3. Preprocessing

The ERIM data introduces a periodicity problem due to the
ambiguity interval. The periodicity is especially apparent in
images such as the one shown in Figure 3-1, in which distant
points have the same value as close points. This problem
reduces the range at which the scene can be processed to the
extent of the ambiguity interval, and may also create false
features, such as false edges which do not correspond to any
physical feature. Therefore, the first step in the Ermm image
processing B to remove the periodicity. The periodicity removal
algorithm has three steps:

1 Divide the image into connected components so that
two points whose range difference is greater than a
threshold are never connected (Figure 32). Two




Figure 2+ 1: A sequence of ERIM imaged

such points belong to two different ambiguity
intervals.

2. Remove the small regions which correspond to
noise.

3, Explore the graph of components starting at the
bottom of the image which IS within the first
ambiguity interval, During the exploration, an offset
s added to all the points of the currently visited
region. The offset is initially set to zero and IS
updated for each region by applying the following
rule:

offset(S) = 256 + min { offset(S') ,

S’ connecled to §)
The result of the correctionis shown in Figure 3.3

We have found that this algorithm works well within the two first
ambiguity intervals. Beyond that point, measurements are usually
too nosy to ensure reliableresults. No algorithmis guaranteed to
retnieve the actual range values since it is unknown whether two
regions are separated by only one or several ambiguity intervals.
The algorithm assumes that only one interval separates two

reqrons.
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Figure 3-1; Figure 3-2:

Uncorrectedimage Ambiguity intervals

Figure 3.3: Correctedimage

4. 3-D Features Extraction and Image
Interpretation
In this section. we describe the feature extraction techniques
Three levels are used in the feature extraction process First
three basic altributes are extracted from the range image. lump
edges, surface normals, and curvatures. These attributes are
then used lor extractinga set of three primitive features

¢ 3-p edges which correspond either to discontinuities
of depth such as the boundary of an obstacle, or to
discontinuities of surface normals such as the
boundary between a fiat region and a highly curved
region.

o Smooth reaions which are regions of low uniform
curvature. These regions may either be part of an

object, Or obstacle, or part of the ground.

e Roygh regions which are regions of high curvature
or textured regions.

Finally, these intermediate features are merged into a scene
interpretation suitable for vehicle navigation. The two main
primitivesof the output description are:

o Passable regions which can be safely explored by a
vehicle.

e Qbstacies which are either actual objects or rough
ground regions.

The output structure from this feature extraction process is a
connectivity graph of these features.
4.1. Surface Normals

The surface normals provide important pieces of information

about the shape Of the observed terrain. The best way of
computing the surface normals is to approximate the




neighborhood of each pixel by a plane. A straightforward

method woukd be to minimize for each pixel:

}: a,lI# 7= DI’ @

whers N is the size of the neighborhood, 7 is the surface unit
normal, D is the normal distance between the origin and the
plane, a, are weighting factors, and p, are the measured points.
Although simple, this procedure is time-consuming. Moreover, it
does not take into account the fact that the ERim scanner delivers
the radial distances instead of the Cartesian coordinates. The

alternative and preferred criterion is:
Vb l 2
L T - 2

IAN
4

where ¥ =77 D, u B the radial vector & pixel i) and d is the
distancefrom pixel /j to the origin.

The solution of (2) Bgiven by:

)]

¥

where A isthe 3X 3 matrix defined ty
- ot
M= E L

Since the vectors u depend only on the scanning parameters
of the sensor, the matrix M~ can be computed beforehand.
Actually, the vectors and matrices depend also on the orientation
of the sensor (pan and tilt angles). but their value can be updated
easily: if the sensor B rotated by a rotation R. then the radlal
vectors i and the resultingnormal ¥ are changed to R & ‘Zand R,

respectively.

In summary, the estimation of the surface normals proceeds as
foliows:

1. Ifthe orientation of the sensor has been changed
since the last image, update the vectors &

2 Correlate the inverse distances lld with @ with

weights ay.

3. Multiply the resulting vector image by M

4, Normalize the resulting vector to obtain the unit
surfacenormal,

Figure 41 shows a range image and the three components of
the surface normal estimated by using a § x § window.

4.2. Curvatures

4.2.1. Using Principal Curvatures

Several authors have shown that differentialgeometry, namely
the theory of principal curvatures. can be used to recover
properties of a surface observed by a range sensor [6, 5]. These
properties range from the extraction of roof edges to the

extraction of cylindricalsurfaces. However, these techniquesdo
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Figure 4-1:

Originalrange image and surface normals

not work well for outdoor imagery. The perequisites of these
techniques are that an accurate estimation of second order
differential attributes is possible and that the surfaces are
mathematically well defined. Outdoor imagery has a limited
accuracy, and the observed surfaces usually do not have a well-
defined mathematical representation since in a natural
environment, most surfaces, such as a grassy terrain and tree
foliage, are highly textured and irregular. Therefore, we limit
ourselves to the computation of curvatures for the purpose of
roughly segmenting the scene into separate regions, each of
which is a region of low and uniform maximum curvature.

4.2.2. Computing Curvatures

The computation of principal curvatures can be reducedto the
computation of first and second derivatives of the image (see
{2} for a complete definition). The standard way of computing
the curvature is to define the range image as a function
Z={1X.Y), where the W0 coordinates X and Y are assumed to be
uniformly distributed dong the image rows and columns. This
assumption is not true when using the ERiM sensor because of
the width of the field of view. The solution isto use the spherical
representation 3’ = di¢.8) where p'is a measured point on the
surface, d Bthe range given by the Erim sensor, and RA9.8) Bthe
radial vector of angles ¢ and 8. A surface is considered & a
parametric surface p’'= M,8). The curvatures can be computed
by using the firstand second derivatives of £ with respectto the
two angles:

d X
LY L ®
o o

The radial vectors id¢.0) ,and hence their derivatives, depend
only on the characteristics ot the sensor and s orientation.
These vectors car therefore be computed beforchand, thus
minimizing the amount of computation at run time. The
Curvatures cornputation IS thus reducod to the computation of
the first and second derivatives of the iniage «/ with respect to the
angles ¢ and 8. This computation is done by first applying a
Gaussian smoothing, and then computing the derivatives by
convolving with 3x3 masks. These masks are derived from a
second order approximation of 7= Re.8). The curvature




computation algorithm proceeds as follows.

1 Apply a Gaussian smoothing on the range image.

2, Compute the derivatives of the range image with
respect to the two sphericalangles by applying 3x 3
operators.

3. Derive the derivatives of the three Cartesian
coordinates by using equations (4).

4. Derive the curvatures by applying the fundamental
formsequations (see{2}).

Figure 4.2 shows a range image and the corresponding
maximum curvature image estimated by using the above
algorithm,

Figure 4.2: Originalrangeimage and curvature image

43. Edges

Edges are computed by detecting depth jumps. This isdove by
first detecting the zero-crossings of a difference of Gaussian
masks in the depth image. One ditficulty Bthat iftwo pixels are
far from the sensor. they may appear as neighbors in the image
wen though they may be far apart in space and hence do not
correspond lo edges. This problem is overcome by considering
only points of the image with sufficiently high curvature as
potential edge points. This algorithm detects mainly the jump
eoges corresponding to Ihe boundaries of vectical obstacies. A
more elaborate edge finder for detecting discontinuities of the
surface normals Is based on region segmentation.

4.4. Segmentation Algorithm

The segmentation algorithm proceeds by combining partial
segmentations obtained from attributes, such as edges, surface
normals and curvatures. into a consistent scene segmentation.
The advantage of this approach is that it takes into account all
the available information while dividing the whole segmentation
problem into smaller ones.

The initial segmentations are produced for each of the surface
normal components and curvatures by a three step region
growing algorithm:

1. Find clusters in the attribute space, Such as clusters
in me surface normals space.

2ldentity the regions corresponding to those clusters
inthe originalimage.

3. Use these regions as starting regions for a region

growing algorithm. The edges are used as region
boundaries in the region growing,

The segmentations ebtained from individual attributes are then
merged together. This merging step compares each region of
one segmentation to the corresponding region in the image of
the other segmentations. if the segmentations agree, the region
is reported, otherwise it IS split into connected regions consistent
with the other segmentations. Figure 4-3 shows the

segmentation of a short sequence of grim images. The regions
are labeled as smooth, i.e., accessibie portions of the terrain, and
obstacle, i.e., objectsinthe scene. The first principaldirection of
aregionis attachedto the region inthe display.
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Figure 4-3:

5.Surface Reconstruction and 3-D Map
Building

In the previous section we presented tecliniques for extracting
information for gmiM images. In this section. we present
techniques for storing this information as a local 3-D map ot the
environment. A map is a structure describing the geometry of
the environment from which one can derive information such as
the type of terrain & a given space location xy,z.



5.1. Snapshot Map

One important characteristic of a range image is that it permits
the production of a three-dimensional map of the current local
environment. Such a map, called a snapshot map, is derived
from only one image and can be viewed as the local state of the
environment. This map can in turn ge used to predict the
appearance of the scene from another viewpoint. and to plan a
safe path for a vehicle while taking into accountthe 3.0 shape of
the traversed terrain. The path planning is especially importantin
cross-country navigation where the "flat ground" assumption
does not usually hold.

Figure 5.1 shows an example of such a map and the
correspondingé&riM image. The map is displayed as a 3.0 mesh
of measured points with the surface normal at each point.
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Figure 5.1 : Snapshotmap derived from an erim image

5.2. Local Map
Al the techniques described so far proceed by independently

processing one image & a time. In an outdoor navigation
System, consecutive images are related to each other to develop

a local map. That is, the robot grabs an image every one to ten
meters as in the sequence shown in Figure 2- 1. Then each image
is registered with respect to the previous ones. In other words,
we merge the snapshot maps produced by each individualimage
into a local map describing the environment explored so far.
Such alocal map can be usedfor two main purposes:

e [ncremental description refinement; A single image
provides only partiat information about the identified
objects. For example, only the front part of the tree
is visible in figure 5-1, and, aS a result, no information
is available in the cone-shaped unknown region
behind it. Putting together Snapshot maps obtained
from several different viewpoints would refine the
objects' descriptions by reducing the size of the
unknownregions.

® [nciamensa) construclion of g calazagce map. One
application of outdoor vision Is the exploration
scenario. A vehicle equipped with sensors discovers
an unknown environment and stores informationin a
reference map usable during later missions.

Local map building is considered aS a matching process
between consecutive images:

1 Assume that frame 1 is part of the local map and
registeredin some global coordinate system.

2Extract features from frame 2. These features are
planar regions and edges approximated by
polygonal chains.

3. Match the features of images 1 and 2 by usinga tree
search procedure guided by the transformation
estimation. This procedure B similar to the ones
describedin{1) and [3}.

4. The matching provides an estimate of the
transformation between images 1 and 2, which in
tum provides an estimate of the position of image 2
with respect to the local map.

5 Include the Snapshot map derived from image 2 into
the local map. That involves the identification of
overlapping regions and the updating of objects’
descriptions,

We have done experiments 0N steps 1 through 4 using ERim
data. Figures 52 and 5-3 show two consecutive frames. The
matching of tho two images leadks to a transformation estimate
which is applied to the second snapshot map. Figure 5-4 shows
the two registered snapshot maps. Finally. overlapping regions
are identified. thus leading to the updateg map of figure 5-5. In
this example, the map updating has been local at the pixel level
and does not include the updating of the symbolic description

Matching the features is efficient since the number of features
is iaally small. and the transformation between images is
partially known beforehand. That is, bounds on the displacement
between tho consecutive frames are available.

Figure §-3: Secondimage
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Figure §-5: Local map

6. Data Fusion

Range data provides important clues On the geonetry of an
observed scene. However, it does not provide any information
about the physical properties of the scene objects,such as color
o reflectance. On the other hand, it is extremsly difficult to
extract spatial information from reflectance information.
Therefore. a fundamental feature of a powerful outdoor vision
system is the ability of reasoning on both range data and color
data. This feature is refered to as “data fusion”. Data fuson can
b first reduced to a registration process between range data
and other images. That is. one must be able to convert a spatial
jeature extracted from range data, such an edge 0Or a surface
patch, to a feature in the corresponding color images.
Conversely. one must be able to compute the spatialpositionof a
feature from the color image by computing the corresponding
feature in the range image. The registration B illustrated in
Figures 61 to 63 Figure 6-1 shows .a range image and the

corresponding segmentation into three surface patches, Figure
6-2 shows a color image of the same scene (only the blue band is
displayed), and Figure 6.3 shows the three surfaces patches
registeredwith the color image.

The registration algorithmworks intwo steps::

1 Compute the transformation between color images
and range images.

2 Use this transformation to transform features from
one imageto the other.

Figure 8- 1: Segmented rangeimage

The first step is a calibration step that is performed only once
for each set of images. A pair of range/color images is first
measured, then a set of points ;= (x,y.2) B selected in the
range image along with the correspondlng set of pixels (IIJ’)
The translormation 7, which includesthe tilt angle of the camera,
the position of the camera relative to the range scanner, and its
focallength. is computed by solving aleast-squarescriterion.

Once the camera/scanner transformation is computed, the 3-0
segmentations can be registered with the color image. This is
done by applying the transformationto each point (x.y.2) of each
surface patch in the Erim image, thus transforming each patch
into a set of scattered pixels (£J) in the color image. These pixels

Figure 8-2: Color image
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Figure 6.3: Registrationof surfaces and color image

into a polygonal mesh. Eac:: face of the mesh is then filled to
produce a compact connected region in the color image as in
Figure§-3.

7.0bject Recognition
Object recognition, that is the identification of specific objects
in the scene by matching extracted features and stored models,
is of central importance in the development of an autonomous
vehicle. For example, object recognition capabilities can be used
in a landmark-drivennavigation scenario. Our approach is to use
both range and color data for object recognition. This choice is
motivated by the fact that these two types of data are
complementary: range data provides information on the
geometry and the position of objects, while color data provides
information on the physical structure of the objects. Moreover,
the techniques presented in Section 6 make possible to relate
features extracted from both sources.
7.1. Scene Description
The current object recognition system takes the range image
segmentation as the primary information. The segmentation is
described by a graph of edges and surface patches
approximated by quadric patches. The surface patches are then
converted into regions in a color image using the techniques of
Section 6. The only color processing currently supported is the
" segmentation of each region in the color image using a color
classifier. The resulting range/color image description is a
description fite which contains the graph of 3.D edges and
surface patches along with the segmentation of each patch into
subpatches accordingto the color characteristics.
7.2. Object Description
An object to be recognized is stored as a set of conditions that
its Shape and color must satisfy to be presentin the scene. As a
simple example, a tree trunk should satisfy condilions such as:
cylindrical shape. connected to the ground, paralfelt vertical
edges, color in a given region of the color space. The reason why
we are using heuristic models instead of more accurate object
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models is that we are dealing with natural scenes instead of well-
defined man-made environments. Moreover. we are interestedat
this point in recognizing classes of objects rather than specific
instances.
7.3.0bject Recognition

The object recognition proceeds by evaluating the rules
describing the sought object on each object found in the scene.
This is done by extracting the relevant parameters, such as the
quadric parameters or the color type, from the description file
and evaluating the current condition. An instance of the sought
object is found ifan object in the scene satisfies the conditions.
Figure 6-3 shows the description of one region extracted from
the image of Figure 8-2. The region is identified as a tree since it
satisfiesthe four rulesdescribing that object (Section7.2).

The approach currently used in the object recognition system
is entirely bottom-up since the scene description is independent
of the object model and cannot be modified. A more involved
version will contain model-driven feature extraction algorithms.

8. Conclusion

The techniques presented in this paper have been
experimented in a realistic outdoor environment by mounting the
sensor on a mobile robot[4]. The scenes descriptions produced
by these techniques have been successfully used as an inputta a
path planning and obstacle avoidance module. In addition, we
have shown that data fusion between range and color data can
provide an higher level scene description. The results indicate
that active range data processing is suitable for the navigation
through an unknown environment. Future work includes the
combinationot range data with other sources of visual data, such
as reflectance, and the integration of the scene analysis
techniques in a general navigation system which includes
landmark recognition, obstacledetection, and map management.
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