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Abs t rac t  

To provide COSMOS, a dynamic model baaed manipulator 
control system, with an improved dynamic model, a PUMA 560 
arm waa  diaaaaembled; the inertial propertiea of the individual 
links were  meaaured; and an ezplicit model incorporating all  ofthe 
non-zero meaaured parametera waa deriued.  The ezplicit model of 
the PUMA arm has been obtained with a derivation procedure 
comprised of aeveral heuristic rulea  for simplification. A aim- 
plijied model, abbreviated  from  the full ezplicit model with a 1% 
aignijicance criterion,  can be evaluated  with 305 calculationa, one 
fifth the number  required  by the recuraive Newton-Euler method. 
The  procedure used to derive the model i a  laid out; the meaaured 
inertial parametera  are  preaented, and the model ia included in an 
appendiz. 

1. In t roduct ion  

The  Implementation of dynamic  control  systems  for  manip- 
ulators  has  been  hampered  because  the  models  are difficult to 
derive and  computationally expensive, and because the needed 
parameters of the  manipulator  are  generally  unavailable.  Recur- 
sive methods  for  computing  the  dynamic  forces  have  been  avail- 
able  for  several  years  [Luh, Walker and  Paul 1980a;  Hollerbach 
19801. Several  authors  have  proposed and  simulated  the use of 
RNE  in  control  systems [Luh, Walker and  Paul 1980b; Kim and 
Shin 19851; and [Valavanis, Leahy and Sardsi 19851 have  used the 
RNE  to  control  a  PUMA - 600 arm.  The  RNE  algorithm  has  also 
found use in the  computation of forward  dynamics  for  simulation 
[Walker and Orin 1982; Koozekanani  et al. 19831, and  nominal 
trajectory  control [VukobratoviE and  Kirfanski 19841. The  RNE 
meets the  need for calculation of dynamic  forces in  these applica- 
tions,  but  does  not offer several  advantages  available  provided by 
an explicit  model.  The  explicit  model allows of the calculation 
decomposition  based on a  significance  criterion  or other  criteria, 
and provides  a  more  direct  solution for dynamic  simulation. 

The  tremendous size of an explicit  dynamic  model is the 
greatest barrier to its realization.  Correspondingly,  a  consider- 
able  portion of the effort spent investigating  dynamic  models  for 
control has been  directed  toward efficient formulation  and  auto- 
matic  generation of the  manipulator  equations of motion. Pro- 
grams  for  automatic  generation of manipulator  dynamics  are re- 
ported in [Likgeois et  al. 1976; Megahed and  Renaud 1982;  Ce- 
sareo,  F. Nicolb and S. Nicosia  1984 ; Murray and Neuman 1984; 
Renaud 1984; Aldon  and Likgeois  1984; Aldon  et  al. 19851. The 
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size of the models  generated by these  programs  varies widely; and 
there is little  consensus on the question of whether the explicit 
models  can be  made  sufficiently  compact to  be used  for  control. 
Aldon and Likgeois  [1984] present  an algorithm for obtaining ef- 
ficient dynamic  models; but none-the-less  recomend the use of 
recursive  algorithms  for  real  time  control,  claiming that  the com- 
plete  results  are too complicated for real-time  control of robots. 

As we show,  explicit  dynamic  models of manipulators that 
are  more  computationally efficient than  the  alternative recursive 
algorithms  can be  obtained.  The  computational cost of the RNE 
algorithm,  the full explicit  PUMA  model,  and the explicit PWMA 
model  abbreviated  with  a 1% significance  criterion  are  presented 
in  Table 1. The  method  presented  here  for  factoring  the  dynamic 
equations  has  yielded  a  dynamic model of the PUMA 560 arm 

Table 1. Calculations  Required to  Compute  the 
Forces of Motion by 3 Methods. 

Method  Calculations 

Recursive  Newton-Euler 

Explicit  PUMA  Model 
Evaluation of t,he Abbreviated 

1165 Explicit  PUMA  Model 
Evaluation of the Full 

1560 

305 

that requires 1165 calculations  (739  multiplications  and 426 ad- 
ditions), 25%  fewer than  the 1560 calculations  required by the  6 
dof RNE.  With  the  application of a  1% sensitivity  criterion, the 
explicit  model  can  be  evaluated  with one fifth the  count of cal- 
culations  required by  t.he recursive  algorithm.  Furthermore,  this 
formulation of the explicit  model is not  optimally  compact;  fac- 
torizations that were discovered  and  employed  during the model 
derivation  have  been  expanded  out to present  explicit  expressions 
for each  component of the dynamic  model.  Renaud  and  Burdick 
both  report  automatic generation of 6 dof manipulator  models 
that are  more  compact than  that presented  here  [Renaud 1984; 
Burdick 19851. Their  models  incorporate  nested  factorizations, 
which  were not  used  here. 

The  count of 1165  calculations  for the full PUMA  model is 
the  total required to evaluate the model  presented  in  the  appendix 
and  equation  (1)  below.  This  total  and  other  totals  presented  do 
not  include the calculations  required to evaluate  the  sines  and 
cosines. 

2. Derivation of the Dynamic  Model 

The  dynamic  model  used  for  this  analysis follows from [Lie- 
geois et d. 19761 . It is: 
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where A(q) is the n X n kinetic  energy  matrix; 
B(q) is the n x n(n-1)/2  matrix of Coriolis  torques; 
C(q) is the n x n matrix of centrifugal  torques; 
g(q) is the  n-vector of gravity  torques; 
q is the  n-vector of accelerations; 
r is the generalized  joint force vector. 

The  symbols [ q q ]  and [q” ]  are  notation for  the n(-l)/Z-vector of 
velocity products  and  the  n-vector of squared  velocities. [aq] and 
[ q 2 ]  are given  by: 

The  procedure  used  to  derive  the  dynamic model entails  four 
steps: 

1. Symbolic  Generation of the  kinetic  energy  matrix and 
gravity  vector  elements by performing the  summations of 
either Lagrange’s or the  Gibbs-Alembert  formulation. 

2.  Simplification of the kinetic  energy  matrix  elements  by 
combining  inertia  constants that multiply  common 
variable  expressions. 

3. Expression of the Coriolis and centrifugal  matrix  elements 
in  terms of partial derivatives of kinetic  energy  matrix 
elements;  and  reduction of these  expressions  with  four 
relations that hold on these partial derivatives. 

4. Formation of the needed partial derivatives,  expansion of 
the  Coriolis and centrifugal  matrix  elements  in  terms 
of the derivatives, and simplification by combining 
inertia  constants as in 2. 

The first step was carried out with a LISP  program,  named 
EMDEG, which symbolically  generates the dynamic  model of an 
articulated  mechanism.  EMDEG  employs Kane’s dynamic for- 
mulation  [Kane 19681, and  produced  a result  comparable  in  form 
and size to  that of ARM [Murry and Neuman  1984).  Three sirn- 
plifying  assumptions were made  for  this  analysis:  the  rigid  body 
assumption;  link 6 has  been  assumed to be  symmetric, that is 
I,% = Zyy; and only the mass  moments of inertia  are  considered, 
that is I,,, Zyy and Z z z .  The  original output of EMDEG, includ- 
ing  Coriolis and centrifugal terms, required 15,000 multiplications 
and 3,500 additions.  This  step  might  also  have  been  performed 
with the  momentum theorem  method  used  in  [lzaguirre and  Paul 
19851. 

In the second step of this  procedure,  the  kinetic  energy ma- 
trix elements  are  simplified by combining  inertia  constants that 
multiply  common  variable  expressions.  This is the  greatest  source 
of computational efficiency. Looking to  the dynamic  model of a 3 
dof manipulator  presented  in [Murry and Neuman 19841, we see 
that  the kinetic  energy  matrix  element a11 is given  by: 

a11 = J322 c o s 2 ( &  + 83) + J a Y y  sin2(82 + 83) + JzZr + &m3 

+2 kf3za”  cos(82)cos(82 + d 3 )  + uzm3 cos2(e2) 
+2 Mzza3  cos”(82 + 03) + a$m3  c0s2(82 + 83) 
$2 a2a3m3 eos(Bz)<oos(82 + 6‘3) + JpYy sin”(62) 
+Jz=, cos2(82) + 2 dzdsms + 2 Mz2a2 cos2(&) 
+a;mz  cos2(&) + d i m s  + dZm2 + J2zz + Jizz + Jizz 

(2)  

Calculations  required: 37 multiplications,  18  additions. 

By combining  inertial  constants  with  common  variable  terms and 
expanding sin2(82) into (1 - c o s 2 ( & ) )  , equation (2)  can  be re- 
duced to: 

a l l  = 11 + 12 coa2(82) + 13 cos(82)co8(82 + 63) 
+z4 cos2(e2 + 03)  (3) 

Calculations  required: 3 multiplications, 3 additions. 

where ZI.= d i m 3  + dZm3 + 2 d2d3m3 + dgm2 + J3yy + J3== 
+J2== + Jzyv + Jlzr + Jizz; etc. 

Creating Z1 through 1 4 ,  which  are  constants of the mecha- 
nism,  leads  to a reduction  from  35 to 3 multiplications  and  from 
18 to 3 additions.  Computing  the  constant Z1 involves 18  calcu- 
lations.  Since  the  simple  parameters  required  for  the  calculation 
of 11 are the  input  to  the  RNE,  the RNE will  effectively carry  out 
the calculation of Z1 on every pass,  producing  considerable m- 
necessary  computation.  Thirty  four  lumped  constants  are  needed 
by the full PUMA  model, 8 fewer than  the count of 42 simple  pa- 
rameters  required to describe the  arm. 

In the  third  step  the elements of the Coriolis matrix,  Qij, 
and of the centrifugal matrix, ci,, are  written in terms of the 
Christoffel  symbols of the first kind [Corben  and Stehle 1950; 
Likgeois et  al. 1976]* giving: 

b . .  - 2 
* J  - (4) 

- ,p’,jj 
‘ J  - (5) 

where (qk * it) is the j t h  velocity product  in  the [q4] vector,  and 

is the Christoffel  symbol. 
The  number of unique  non-zero  Christoffel  symbols  required 

by the  PUMA  model  can  be  reduced  from 126 to 39 with four 
equations  that hold on the  derivatives of the kinetic  energy  matrix 
elements.  The first two equations  are  general;  the last two are 
specific to  the  PUMA 560. The  equations  are: 

The  reduction of Equation (7) arises  from the  symmetry of 
the kinetic  energy  matrix.  Equation (8)  obtains because the ki- 
netic energy imparted by the  velocity of a  joint is independent of 
the  configuration of the  prior  joints.  Equation (9) results  from 
the  symmetry of the  sixth  and  terminal link of the PUMA  arm. 
And  equation (10) holds  because  the  second a d  third axes of 
the  PUMA  arm  are  parallel. Of the reduction  from 126 to 39 
unique  Christoffel  symbols, 61 eliminations  are  obtained  with the 
general  equations,  14  more  with (9) and  a  further 12 with (10). 

Step four  requires  differentiating the mass matrix elements 
with  respect to  the configuration  variables.  The  means to  carry 
out  differentiation  auto,natically  have  been  available  for  some 

* The  French  authors  seem to assume the use of Cristoffel 
symbols, while the American authors seem unaware of 
them.  Corben  and  Stehle,  in  the 1950 edition of their 
text, derive the results  required  here;  but the  derivation 
is largely  omitted  from  their 1960 edition. 



time [Liegeois et al. 1976; MIT Mathlab  Group 19831. Only the 
derivatives  required  after  the  simplification of step 3 need to be 
formed. Of the 126 derivatives  possible  when n=6, 46 are required 
by the model of the PUMA arm. After the needed  derivatives 
are  formed  and expandrd into t,he Christoffel  symbols,  inertial 
constpats  that multiply  common  variable  expressions are again 
combined. 

Our  method of model derivation is able to simplify to  man- 
agable  form the complex  sum-of-product  expressions that are pro- 
duced by synlbolically  carrying  out the  summations of Lagrange’s 
equations.  Simplification is in  general a non-deterministic  task 
that grows  very rapidly  with the  number of terms  in  an  equa- 
tion; but the  procedure  presented is deterministic,  with a cost 
that grows most  rapidly as p2, where p is the  number of sum-of- 
product  expressions  in the largest  individual  kinetic  energy  ma- 
tzix  element.  Our  procedure  has  the  virtue of producing  explicit 
expressions €or each  component of t,he dynamic model: a result 
that is very  useful  for  design  analysis and  that allows straight 
forward  simplification  by  application of a  sensitivity  criterion. 

Steps 2 t.hrough 4 of the above  procedure were carried  out 
by hand, requiring five weeks of rather tedious labor. To discover 
errors,  the  explicit  solution was numerically checked against the 
RNE  algorithm,  extended  to give B and C matrix  elements in- 
dividually  in a manner  similar to  that of Walker and Orin.  Over 
a  range of configurations, the explicit  solution of the PUMA dy- 
namics  agrees  exactly  with the RNE  calculation. It  is instructive 
to observe that  the  RNE algorithm was coded  in  5  hours, 2% of 
the  time  required to develop the full explicit  model. 

3. Several Advantages Obtained from Decomposition of 
the Explicit Model 

The  explicit  solution of PUMA  dynamics shows two struc- 
tural  properties that can  be  used  to advantage:  a  tremendous 
range  between the largest  and the smallest  contributing  terms 
within  most  equations, and  the  depend solely upon configuration 
of the A,  13 and C matrix  elements. Using the  measured  PUMA 
parameters  an  abbreviated  dynamic model has been  formed.  This 
model  is derived  from the full PUMA model by eliminating all 
terms  that  are less than 1% as  great  as the greatest  term  within 
the same  equation, or less than 0.1% as great as the largest  con- 
stant  term applicable to  the same joint. All of the elements of the 
A, 13 and G matrices  are  retained: the significance  test is applied 
on an  equation by equation  basis.  The  reduction  in  required cal- 
culations  achieved  via the significance  test is roughly  a  factor of 
four, as shown  in  Table 1 above. 

Observing that  the A, B and C matrix  elements  depend only 
on configuration, it is possible to decompose the calculation  into 
configuration  dependent and velocity or acceleration  dependent 
components.  Because  configuration  changes  more slowly than 
velocity or acceleration, the configuration  dependent  components 
may be  computed  at  a slower rate  [Khatib 1985; Izaguirre and 
Paul 19551. Shown  in  Table 2 is the evaluation rate of the PUMA 
560 dynamics that  can  be achieved  with 100,000 floating  point 
operations per second, the  approximate  speed of a PDP-11. In 
the first case the entire  model is recomputed  in  each  pass;  in the 
second case the A,  B and G matrix elements  are  computed  only 
once  for every four  iterations of the multiplication by velocity and 
acceleration  vectors.  This  partitioning of the  dynamic  calculation 
reduces the pace of computing  the  configuration  dependent  terms 
by one third; but increases the pace of computing  the velocity and 
acceleration  dependent  terms by a factor of two and one half. 
The  advantage of this  decomposition  applies  equally well to  the 

calculation of forward  dynamics  for  simulation,  where  tesselation 
is the  step size rather  than servo  interval  and the cost is run time 
rather  than  bounded  computing power. 
Table 2. pUB/lA 560 Dynamic  Model  Evaluation Rate 

Attainable  with 1OOk FLOPS. 

Method Rate of Rate of Evaluation 

Dependent Term of Torque 
of Configuration Computation 

Evaluation of the Full 
Model Each Iteration 78 ha 

Evaluation of the  Configuration 

78 hr 

four Evaluations of the Velocity 
Dependent T e r n  once during every 

and  Acceleration  Dependent T e r n  
50 hz 200 ha 

A h a 1  decomposition to  be considered is that for  multipro- 
cessing,  an  issue likely to become  more important.  The recur- 
sive  formulations are well suited  to  pipeline  computation,  but 
poorly  suited to multiprocessor  computation. For the recursive 
algorithms,  the  number of calculations that can  be  performed by 
cooperating  processors is small  in  relation to  the volume of com- 
munication that is required. Using an explicit model the blocks 
of parallel  computation  can  be  made  much  larger,  and  the  ratio 
of computation  to communication  correspondingly  higher.  The 
decomposition into configuration  dependent  and  velocity or ac- 
celeration  dependent  components is particularly  suitable  for  mul- 
tiprocessing  and has  been  implemented  at the  Stanford  Artificial 
Intelligence  Laboratory [Khatib 19851. 

4. The Utility of an Explicit Model for Dynamic 
Simulation 

Walker and Orin have  demonstrated  the use of the RNE at- 
gorithm  in the calculation of forward  dynamics  for  simulation. 
By taking  advantage of the  symmetry of the kinetic  energy  ma- 
trix  they  have  reduced the model order that must be considered 
in  successive  applications of the  RNE  [Walker  and  Orin 19821. 
The  RNE  algorithm  has also been  used to compute  dynamics 
for  simulation  in fields outside of robotics  [Benati  et al. 1980; 
Koozekanani  et al. 19831. Presented in table 3 are  the  number 
of calculations  required to compute  the  elements of the kinetic 
energy  matrix  using Walker and Orin’s method, using the full 
PUMA  model,  using the simplified model reported  in  [Izaguirre 
and  Paul 19851, and  using the  abbreviated (1% significance crite- 
rion)  model.  The  analytic  models all show a  tremendous  advan- 
tage over the  RNE  algorithm. 

Table 3. Calculations .Re uired to determine  the  Kinetic 
Energy  Matrix  l%ements  for  a  PUhlA 560 Arm. 

Method Calculations 

Walker and Orin 

Izaguirre  and Paul 

278 Full Explicit  Model 

2 737 

Simplified  Model 58 

Abbreviated  Explicit Model 25 

- 

5. Measurement of the PUMA 560 Dynamic Parameters 

The link parameters  required  to  calculate  the  elements of 
A,  B ,  C and g in  equation  (1)  are  mass,  location of the center 
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of gravity  and  the  terms of the  inertia dyadic.  The  wrist,  link 
three  and link two of a PUMA 560 arm were detached  in  order 
to measure  these  parameters.  The  mass of each  component was 
determined  with  a  beam  balance;  the  center of gravity was located 
by balancing  each  link on a  knife  edge,  once  orthogonal to each 
axis; and  the diagonal  terms of the  inertia  dyadic were measured 
with  a  two wire suspension. 

The  motor  and drive  mechanism at each  joint  contributes  to 
the  inertia  about  that  joint  an  amount equal to  the  inertia of the 
rotating pieces  magnified by the gear ratio  squared.  The  drives 
and  reduction gears were not  removed  from the links, so the  total 
motor  and  drive  contribution  at each  joint was determined by an 
identification method.  This  contribution is considered  separately 
from the I,, term of the link itself because the  motor  and drive 
inertia  seen  through  the  reduction  gear  does  not  contribute  to  the 
inertial  forces  at  the  other  joints  in  the  arm.  The  motors were 
left installed  in  links two and  three when the  inertia of these  links 
were measured, so the effect of their  mass  as  the  supporting  links 
move is correctly  considered.  The gyroscopic forces  imparted by 
the  rotating  motor  armatures is neglected  in the model, but  the 
data presented  below  include  armature  inertia  and gear ratios, so 
these  forces  can be determined. 

The  parameters of the wrist  links were not directly  measured. 
The wrist itself was not disassembled.  But the needed  parameters 
were estimated  using  measurements of the wrist  mass and  the 
external  dimensions of the individual links. To obtain  the  inertial 
terms,  the wrist  links were modeled as thin shells. 

Measurement of Rotational  Inertia 

The  two  wire  suspension  shown  in  Figure 1 was used to mea- 
sure  the I,,, Iyy and I,, parameters of links  two and  three *. 
With  this  arrangement  a  rotational  pendulum is created  about 
an  axis  parallel to  and halfway  between the suspension wires. 
The link’s center of gravity  must lie on this axis. The two  wire 
suspension method of measuring the  rotational  inertia requires 
knowledge of parameters  that are easily  measured: the mass 

9 

“ 9  

Figure 1. The two wire suspension  used  for  Rotational 
Inertia  Measurement. 

of the  link,  the location of the center of gravity, the  distance from 
the wire attachment  points to the axis of rotation,  the  length of 
the wires, and  the  period of rotational  oscillation. The  inertia 
about each  axis is measured by configuring the link to swing 
about  that axis.  Rotational  oscillation is started by twisting and 
releasing the link. If one is careful  when  releasing the link, it 
is possible to  start fundamental  mode  oscillation  without visi- 
bly  exciting  any of the  other modes. The relationship  between 
measured  properties  and  rotational  inertia is: 

* This  method was suggested by Prof.  David Powell. 

I =  - Mg * r2 
w2 * 1 

where I is the  inertia  about  the axis of rotation; 
Mg is the weight of the link; 
r is the  distance from  each  suspension 

wire to  the axis of rotation; 
w is the oscillation  frequency in 

radians  per  second; 
1 is the  length of the  supporting wires. 

Measurement of the Motor  and  Drive  Inertia 

A parameter identification  method was used to  learn  the 
total  rotational  inertia  at  each  joint.  This  inertia  includes t,he 
effective  motor and  drive  inertia  and  the  contribution  due  to  the 
mass of the  arm. To make  this  measurement  our  control  sys- 
tem was configured to command  a  motor  torque  proportional  to 
displacement,  effecting  a  torsional  spring. By measuring the  pe- 
riod of oscillation of the  resultant  mass-spring  system,  the  total 
rotational  inertia  about  each  joint was determined. By subtract- 
ing the  arm  contributions,  determined from  direct  measurements, 
from the measured total  inertia,  the  motor  and  drive  inertial  con- 
tributions were found. 

Measurement  Tolerance 

A  tolerance  for  each  direct  measurement was established as 
the measurement was taken.  The  tolerance  values  are  derived 
from the precision or smallest  graduation of the measuring in- 
strument  used, or  from the  repeatability of the measurement it- 
self. The  tolerances  are  reported  where the  data  are  presented. 
The tolerance  values  assigned to  calculated  parameters were de- 
termined by RMS combination of the tolerance  assigned to each 
direct  measurement  contributing to  the calculation.  The  inertia 
dyadic  and  center of gravity  parameters of link 3 were measured 
with the wrist attached;  the values  reported  for  link 3 alone  have 
been  obtained by subtracting  the  contribution of the wrist  from 
the  total of link 3 plus  wrist.  Tolerance  values  are  reported  with 
the values  for  link 3 plus  wrist,  as  these  are  the  original  measure- 
ments. 

6. The Measured PUMA 660 Parameters 

The  mass of links 2 through 6 of the  PUMA  arm  are  reported 
in  Table 4; the mass of link 1 in  not  included  because that link was 
not  removed  from the base.  Separately  measured  mass  and  inertia 
terms  are  not  required  for  link  one  because that link rotates only 
about  its own 2 axis . 

Table 4. Link Masses (kilograms; kO.01 + 1%) 

Link Mass 

Link 2 
Link 3 
Link 4* 
Link 5* 
Link 6* 

17.40 
4.80 
0.82 
0.34 
0.09 

Link 3 with  Complete LVrist 6.04 
Detached Wrist 2.24 

* Values derived  from  external  dimensions; f 2 5 % .  

The  positions of the centers of gravity  are  reported in Table 5. 
The  dimensions rz!  ry and rz refer to the  x,  y  and z coordinates 

513 



of the  center of gravity  in  the  coordinate  frame  attached t o  the 
link. The  coordinate  frames  used  are  assigned by a modified 
Denavit-Hartenbrrg  method  [Craig 85j. In this  variant of the 
Denavit-Hartenberg  method,  frame i is attached  to link i, and 
axis 2i lies along the axis of rotation of joint i. The  coordinate 
frame attachments are shown in  Figure 2; they  are  located as 
follows: 

Link 1: 

Link 2: 

Link 3: 

Link 4: 

Link 5: 

Link 6: 

Wrist : 

Z axis  along the axis of rotation, +Z up; +Y1 11 
+Z2. 

Z axis  along the axis of rotation , +Z away  from 
the base; X-Y plane  in the  center of the link, with 
+X toward link 3. 

23 1 1  22;  X-Y plane is in the center of l i d  3; +Y is 
away from the wrist. 

The  origin is at  the intersection of the axes of joints 
4 5 and 6; +24 is along the axis of rotation  and 
direct.ed away from link 2; +Y4 1 1  +Z3 when  joint 
4 is in the zero position. 

The  origin  coincides  with that of frame 4; +Z5 is di- 
rected away  from the  base; +Y5 is directed  toward 
link 2 when joint 5 is in  the zero  position. 

The  origin  coincides  with that of frame 4; when 
joints 5 and 6 are  in the zero  position  frame 6 is 
aligned  with  frame 4. 

The  dimensions  are  reported in frame 4. 

Figure 2. The  PUMA 560 in  the Zero Position  with  Attached 
Coordinate  Frames  Shown. 

The  inertia  dyadic  and effect,ive motor  and drive  inertia 
terms  are  reported  in  Table 6. For each  link,  the  coordinate  frame 
for the  inertia  dyadic  terms is placed at  the center of gravity, 
parallel to  the  attached frame  used  in  Table 5. The  tolerances 
assigned to  these  measurements  are  shown  in  parenthesis. No 
to!+~rance is assoriatrd with  the value of I,, for link  one because 
this value was not dlrectly  measured; it was computed  backwards 
from the  measured total  joint  inertia. It is not important  to 
distinguish Izzl from t,he ml x ry1' term or from the motor and 
drive  inertia  at  joint  one  because  these  contributions  are  neither 
configuration  dependent nor appear  in any  term  other than  011. 

The  total !ink 1 inertia  measured by the identification  method is 
the sum of Izzl and in table 6 .  

Table 5 .  Centers of Gravity.  (meters 3=0.003) 

0.006 

Link 3 -0.070 

Link 3 
With Wrist -0.143 

0.014 

0.014 5 1  Link 4* -0.019 

Link 5* 

Link 6* 0.032 

Wrist 0 -0.064 

* Values derived  from  external  dimensions; &25%. 

The effective torsional  spring  method of inertia  measurement 
was applied  at  each  joint.  The  motor and drive  inertia, Imotor, 
were found  by subtracting  the  inertial  contribution  due to the 
arm  dynamics,  known from direct  measurements,  from  the  total 
inert,ia measured.  The  uncertainty in the  total  inertia measure- 
ment is somewhat  higher at joint  one  because of the larger  friction 
at  that  joint. It was necessary to  add positive  velocity  feedback 
(damping  factor -0.1) to cause  joint one to oscillate  for  several 
cycles. 

Table 6. Diagonal  Terms of the  Inertia  Dyadics  and 
Effective Motor Inertia. 

* Iucrtia Diadic term derived  from external dimenJions; *SO%. 

The gear ratios,  maximum  motor  torque, and break away 
torque for each  joint of the  PUMA is reported  in  Table 7. The 
maximum  motor  torque and break away torque  values  have  been 
taken  from data collected  during  our motor calibration  process. 
The  current  amplifiers of the Unimate  controller  are  driven by 
12 bit D/A converters, so the nominal  torque  resolution  can be 
7btained by dividing the  reported  maximum  joint  torque by 2048. 

Table 7.  Motor  and Drive Parametem 

I Joint ti Joint 5 Joint 4 Joint 3 Joint 2 Joint I 

Gear Ratio i 62.61 76.01 71.91 76.73 53.69 107.36 

MLIaxirnum  Torque 
( r i m )  21.3 20.1 24.2 89.4 186.4 97.6 

, Break Away Torque 
1 (N-m) 1.2 1.0 1.3 2.6 5.5 6.3 

7. Conclusiom 

Explicit  dynamic  models of complex ulenipulaton  are attain- 
able. The PUMA 560 arm is as complex as any 6 dof arm  with a 
spherical  wrist,  yet  a  deterministic  simplification  procedure  has 
produced an explicit  model that is more  economical than  the 
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RNE  algorithm.  With  the  application of a stringent  significance 
criterion,  the  computational  cost of the explicit  model is reduced 
to one fifth that of the recursive  alternative.  The  availability of 
measured  dynamic  parameters  provides  improved  accuracy  in the 
calculated  forces of motion and simplifies  model  generation by al- 
lowing one to omit  zero  value  parameters. As automatic  model 
generation  becomes  available  and  manufacturers  become  aware of 
the need  for  dynamic parameters, we expect to see increasing use 
of explicit  models and measured  parameters  in  the  calculation of 
dynamics  for  control. 
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APPENDIX 
The f i l l  Expressions for the Forces of Motion of 

a Puma 660 Arm 

In the following tables  the expressions  for the elements of 
the A , B  and C matrices and  the g vector are  presented.  These 
expressions  are  made in terms of constants  which  have  units of 
inertia or torque,  and  trigonometric terms  that  are functions of 
the joint angles. We have  abbreviated  the  trigonometric  func- 
tions by writing 5 2  to mean sin(q2) and C5 to mean cos(q5). 
When  a  trigonometric  operation is applied to  the  sum of several 
angles we write (723 to mean cos(q2 + q 3 )  and S223 to mean 
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sin(q2 + q2 + 93). And  when  a  product of several trigoDometric 
operations  on  the  same  joint  variable  appears we write GG2 to 
mean cos(q2) * cos(q2) and GS4 to mean cos(q4) * sin(q4).  These 
final abbreviations, GS4 etc. , are  considered to be  factorizations; 
and the  cost of computing  these  terms is included  in the  totals 
reported  above. 

The  position of zero joint  angles  and  coordinate  frame at- 
tachments  to  the PUMA arm  are  shown  in  Figure 2 above.  The 
modified  Denavit-Hartenberg  parameters,  assigned  according to 
the  method  presented  in  [Craig 851, are  listed  in  Table A I .  

1 2  = 
I3 = 

Is  = 

I ,  = 

I7 = 
Table A l .  Modified  Denavit - Hartenberg  Parameters 

i d; ai- 1 8; Qi-1 

(degrees) (meters) (meters) 

1 

.2435 0 92 -90 2 

0 0 ¶1 0 *'Ti ,4318 

90 P0 i- -. 

The  equations of the PUMA model  constants  are  presented 
in  Table A2; these  const,ants  appear  in  the  dynamic  equations 
of Tables A4 through A7. Z,,;and mi refer to  the second mo- 
ment of link i about  the z axis of frame i and  the mass of link 
i respectively.  The  terms a; and di  are the  Denavit-Barterberg 
parameters.  Terms of the form rzi are the offsets to the center 
of gravity of link i in  the ith coordinate  frame. In Table A3 the 
values of the model  constants  are listed. The  terms I,,,; are the 
motor and drive train  contribution  to  inertia  at  joint i. 

The  equations  for  the  elements of the kinetic  energy  matrix, 
A(q), are  presented  in  Table A4. A(p) is symmetric, so only 
equations  for  elements on and  above the  matrix  diagonal  are  pre- 
sented. 

The  equations  for  the  elements of the Coriolis  matrix, B(q) ,  
are  presented  in  Table A5. The  Coriolis  terms  have  been left in 
the form of a  three dimensional  array,  with  a  convention for the 
indices that matches that of the Cristoffel  symbols.  Element 
multiples q k  and ql to give a  contribution  to  the  torque  at  joint i .  
The Coriolis matrix  may  also be written  as  a 6 x 15 array,  where 
the 15 columns  correspond  to  the 15 possible  combinations of 
joint  velocities.  The  equations  for  the  elements of the centrifugal 
matrix, C(q) ,  are  presented  in  Table A6. And the  equations  for 
the  terms of the gravity  vector, g(p), are  presented  in  Table A7. 

A load can be  represented  in  this model  by attaching  it  to 
the g f h  link. In the model the 6'h link is assumed to have  a 
center of gravity on the axis of rotation,  and  to have Zzze = &e; 
these rest,rictions extend to a  load  represented by changing the 
6'h link parameters. A more  general,  though  computationclly 
more  expensive,  method of incorporating  a  load  in  the  dynamic 
calculation is presented  in  [Izaguirre  and  Paul 19851. 

Table A2. Expressions  for  the  Constants  Appearing in the 
Equations of Forces of Motion. 

Part I. Inertial  Constants 
I1 = IZz l  + ml * rYl2 + mz * d2' + (m4 + m5 + m,) * 

+mz * rzz2 + (ms + m4 + m5 + m6) * (d2 + dS)' 
+IZZZ + Iyys + 2 * m2 * d2 * rz2 + m2 * rYz2 + mS * rrlz 
+2 * ms * (d2 + d3) * rzS + I,,, + Iyy5 + Irz6 ; 

Part 11. Gravitional  Constants 
81 = - g * ( ( m ~ + m 4 + m 5 + m ~ ) * a z + m 2 * r z 2 ) ;  

gz = g * ( m . s * r y 3 - ( m 4 + m 5 + m 6 ) * d 4 - m 4 * r , 4 ) ;  

g3 = g * m2 * ry2 ; 
84 = - g * ( m 4 + m 5 + r n 6 ) * a s ;  

g.5 = -g * m.5 * rZ6 ; 

Table AS. Computed Values for the Constants  Appearing 

(Inertial constants have units of kilogram  meters-squared) 
in the  Equations of Forces of Motion. 

1.43 f 0.05 
1.38 f 0.05 
3.72~10-I f 0.31~10-~ 
2.98xlO-' f 0 . 2 9 ~ 1 0 - ~  
2 . 3 8 ~ l O - ~ f   1 . 2 0 ~ 1 0 - ~  

- 1 . 4 2 ~ 1 0 - ~  f 0 . 7 0 ~ 1 0 ~ ~  

1 . 2 5 ~ 1 0 - ~  f 0 . 3 0 ~ 1 0 - ~  
6.42xlO-' f 3 . 0 0 ~ 1 0 - ~  
3 . 0 0 ~ 1 0 - ~  f 1 4 . 0 ~ 1 0 - ~  

- I . O O X ~ O - ~  f 6 . 0 0 ~ 1 0 - ~  
~ . O O X I O - J  + 2.00~10-5 

-3.79~10-'  f 0 . 9 0 ~ 1 0 - ~  

(Gravitational constants have units of newton meters) 
gl = -37.2 f 00.5 gz = -8.44 f 0.20 
gs = 1.02 f 0.50 g* = 2.49~10-'  f 0.25XIO-' 
gs = -2.82~10-'  f 0.56X10-2 
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+I16 * (C223 * C5 - 5’223 * C4 * 5’5) + 121 * SC23 * CC4 
+I20 * ( ( I  + CC4) * SC23 * SS5 - (1 - 2 * SS23) * C4 * SC5) 
+ I 2 2  * ((1 - 2 * 5’5’23) * C5 - 2 * SC23 * C4 * S5)) 
+Ilo * (1 - 2 * ss23)  + (1 - 2 ss2) ; 

N -2.76 * SC2 + 7.44XlO-’ * C223 + 0.60 * SC23 
- 2 . 1 3 ~ 1 0 - ~  * (1 - 2 * SS23) . 

bl13 = 2 {I5 * C2 * C23 + I7 * SC23 - I12  * C2 * 523 
+Ils*(2*sc23*c5+(1-2*ss23)*c4*s5) 
+I16 * C2 * (C23 * C5 - S23 * C4 * 5’5) + 121 * SC23 * CC4 
+I20 * ( (  1 + CC4) * 5c23 * 555 - (1 - 2 * 5523) * C4 * 5c5) 
+ I 2 2  ( (  1 - 2 * 5523) * C5 - 2 * 5c23 * C4 * 55)} 
+I10 * (1 - 2 * SS23) ; 

X 7 . 4 4 ~ 1 0 ~ ’  * C2 * C23 + 0.60 * SC23 
+ 2 . 2 0 ~ 1 0 - ~  * C2 * S23 - 2 . 1 3 ~ 1 0 - ~  * (1 - 2 * SS23) . 

bl l r  = 2*{-115*sc23*54*s5-116*c2*c23*s4*s5 
+I18 * C4 * S5 - 120 * (SS23 * SS5 * SC4 - SC23 * 54 * SC5) 
-122  * CC23 * S4 * S5 - I21  * SS23 * SC4} ; 

x - 2 . 5 0 ~ 1 0 - ~  * SC23 * S4 * S5 + 8 . 6 0 ~ 1 0 - ~  * C4 * 55 
- 2.48xlO-’ * C2 * C23 * S4 * S5 . 

6115 = 2 * { I 2 0  * (SC5 * (CC4 * (1 - CC23) - CC23) 
-SC23 * C4 * (1 - 2 * SS5)) - 115 (SS23 * S5 - SC23* 6‘4 * C5) 
-116*C2*(S23*S5-C23*C4*C5)+118*S4*C5 
+ I 2 2  * (CC23 * C4 * C5 - SC23 * S5) }  

N -2 .50~10-~  * (SS23 * S5 - SC23 * C4 * C5) 
- 2 . 4 8 ~  lo-’ * C2 * (S23 * 55 - C23 * C4 * C5) 
+ 8.EOxlO-4 * 54 * C5. 

b116 = 0 .  

b l z s  = 2 * { - I b * s 2 3 + I l s * C 2 3 + 1 1 6 * s 2 3 * S 4 * s 5  
+I18 * (C23 * C4 * S5 + S23 * C5) + 1 1 9  * C23 * SC4 
+I20 * S4 * (C23 * C4 * CC5 - 523 * SC5) 
+ I z 2  * G23 * S4 * S5) ; 

x 2,67xlO-’ * S23 - 7.58x10-’ * C23 . 
6124 = -118 * 2 * S23 * 5’4 * S5 + 119 * 523 * (1 - (2 * SS4)) 

+120*S23*(1 -2*SS4*CC5) -114*S23;  % O w  

b125 = I 1 , * C 2 3 * S 4 + I l 8 * 2 * ( s 2 3 * C 4 * C 5 + c 2 3 * s 5 )  
+120*s4*(C23*(1-2*SS5)-s23*C4*2*SC5); 

X 0 .  

6126 = - Iz s* (S23*C5+C23*C4*S5) ;  x O .  

613, = 6124 - 6135 = b l z s  * 6156 = b126 * 

bl45 = 2 * {I15 * S23 * C4 * C5 + 1 1 6  * C2 c C4 * C5 
+ I l s * c 2 3 * s 4 * c 5 + 1 2 2 * C 2 3 * c 4 * C 5 } + I 1 7 * s 2 3 * C 4  
-I*o * (s23 * c4 * (I  - 2 * SS5) + 2 * C23 :: SC5) ; 

X O .  

6146 = I23 * 5’23 * S4 * 55 ; N 0 . 
b156 = -123 * (6’23 * 5’5 + ,523 * C4 * c 5 )  ; X 0 .  

b212 = 0 . b2ls 0 .  

b z l r  = I l t  * S23 + 119 * S23* (1 - (2*  SS4)) 
+2*{-Il5*C23*C4*S5+116*S2*C4*S5 
+I20 * (523 * (CC5 * CC4 - 0.5) + C23 * C4 * SC5) 
+ I 2 2  * S23 * G4 t S5) ; 

X 1.64X10-s * 5’23 - 2 . 5 0 ~ 1 0 - ~  * C23 * C4 * S5 + 
2.48~10-’ * S2  C4 * S5 + 0.30~10-’ * 523 * (1 - (2 * ss4)) . 

bzla =2*{ -115*C23*S4*C5+122*S23*S4+C5 
+116*S2*S4*C5}-I17*C23*s4 
+rzo~(C23~s4~(1-2~ss5)-2~s23~sC4~SC5); 

- 6.42x10-’ * C23 * 5 4  . X -2.50~10-’ * C23 * S 4  * C5 + 2 . 4 8 ~ 1 0 - ~  * 5 2  * 5 4  * c5 

b216 = -6126 * 

b223 =2*{-112*S3+I~*C3+116*(C3*C5-53*C4*S5))j 
a 2 . 2 0 ~ 1 0 - ~  * S 3  + 7.44x10-’ * C3 . 
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b424 = 0 . 
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