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Abstract

A ‘hyper-redundant’ manipulator is a redundant ma-
nipulator with a large or infinite relative degree of re-
dundancy. This paper presents a method for gener-
ating inverse kinematic solutions for hyper-redundant
manipulators of fized or variable length. This method
uses a continuous ‘backbone curve’ to capture the ma-
croscopic geometric features of the manipulator. The
tnverse kinematics of the backbone curve can be used
directly to specify the geometry of a wide variety of
hyper-redundant manipulator morphologies. In this pa-
per hyper-redundant manipulators are broken into non-
redundant segments which have closed form inverse
kinematic solutions. The kinematic constraints for each
segment are specified independently by the backbone
curve, and the kinematics of the total manipulator can
therefore be solved in parallel. The method is demon-
strated with planar and spatial variable geometry truss
manipulators.

1. Introduction

Hyper-redundant manipulators have a relative degree
of redundancy which is large or infinite. Implemen-
tations of hyper-redundant manipulators may consist
of truly flexible physical structures such as rubber gas
actuator driven devices [4], or the manipulator may
consist of a large number of rigid links which approx-
imate a continuous morphology [1,2], or a variable ge-
ometry truss [7,8]. ‘Hyper-redundant’ manipulators,
as first referred to in [1], have previously been called
‘swan’s neck’[5], ‘tentacle’ [6], and ‘highly redundant’
[7], among a variety of other names. Applications
of hyper-redundant manipulators may include devices
for inspection in highly constrained environments [4],
novel locomotion devices [3], and articulated space
structures [7].

Algorithms for redundant manipulator inverse kine-
matics generally involve the computation of a Jaco-
bian pseudo-inverse. The computation of a pseudo-

CH2969-4/91/0000/0708$01.00 © 1991 IEEE

708

inverse becomes prohibitive as the number of manip-
ulator degrees of freedom increases and is impractical
for hyper-redundant robots. Special algorithms have
been developed for Variable Truss Geometry Manipu-
lators (VGTMs) [7,8]. In those approaches, a continu-
ous curve model was used to describe the macroscopic
truss geometry. While that analysis was a big step
in demonstrating the use of VGTM’s, past work has
several drawbacks. First, for spatial manipulators, a
curve.alone is not sufficient to describe manipulator
configuration [2]. Second, unless the curve used to
describe the manipulator is parameterized with mean-
ingful physical variables, additional computations are
required to specify a desired distribution of actuator
displacements. Lastly, while [7,8] deal exclusively with
VGTMs, it is not clear how they would apply to other
types of hyper-redundant manipulators.

In [1], a method to analyze the kinematics and inverse
kinematics of planar continuous and discrete morphol-
ogy noneztensible (fixed-length) hyper-redundant ma-
nipulators was presented. This method is based on
an intrinsic parameterization of a ‘backbone curve,’
which captures the macroscopic geometric features of
the manipulator, and a modal expansion of the in-
trinsic curve parameters. Other authors have recently
proposed similar ideas for strictly planar manipulators
(5,9], while [2] have extended the ideas to 3 dimen-
sions. The work in [2] is extended in this paper to ez-
tensible manipulators and its application to discretely
segmented manipulators is formulated as a parallel al-
gorithm.

The structure of this paper is as follows: Section 2 re-

views kinematic methods developed primarily for non-

extensible continuous morphology hyper-redundant ma-
nipulators and extends the analysis to the case of ex-

tensible manipulators. Sections 3 shows how these

methods can be implemented as a parallel algorithm

and uses the algorithm to solve the inverse kinematics

of two particular hyper-redundant manipulators.



2. The Modal Approach to Hyper-Redundant
Manipulator Kinematics

This section introduces methods for determining the
inverse kinematics of extensible hyper-redundant ma-
nipulators. Problems such as noncyclicity and the bur-
densome computation associated with using pseudo-
inverses are circumvented by resolving the hyper-re-
dundancy in ways which lead to closed form inverse
kinematic solutions.

2.1 Planar Hyper-Redundant Manipulators

This formulation assumes that the geometric features
of any hyper-redundant manipulator without branches
or closed loops can be captured by a ‘backbone curve.’
To describe the planar backbone curve, a frame defin-
ing an z1-z5 coordinate system is attached to the base
of the manipulator. The ‘backbone curve’ is the locus
of all points in the base frame which have position de-
fined by Z(s,t) = [21(s,1), 29(5,1)]T, where s € [0, 1]
specifies a point on the manipulator at time ¢ € [to, t5].

The backbone curve can be parameterized as follows:

z1(s,t) = /05 {o,t)sin (o, t)do (1a)

zo(s,t) = /03 (o,t) cosf(o,t)do (1d)

where I(s,t) = 14+¢(s,t) > 0. €(s,t) describes the local
extensibility of the manipulator. For a nonextensible
manipulator, €(s,t) = 0, and s becomes the arclength
of the backbone curve. €(s,t) < 0 indicates local con-
traction of the manipulator, while e(s,t) > 0 corre-
sponds to local expansion. The term local indicates
that over the length of the manipulator contractions
and expansions can occur simultaneously for different
values of s.

In this paper we will only consider the case I(s,t) =
Io(t) (e(s,t) = lo(t) — 1), which corresponds to a uni-
form extension. lo(to) = 1 is the nominal reference
configuration. 6(s,t) is the clockwise measured an-
gle which the tangent to the curve at point s makes
with the z4- axis at time ¢. Henceforth, the restriction
0{0,t) = 0 is observed.

Forward kinematics can be computed by exact or nu-
merical integration of (1). However, the inverse kine-
matic problem can have an infinite number of solu-
tions. The complexity of the inverse kinematic prob-
lem in the uniform extension case, I(s,t) = lo(t), can
be reduced by specifying:

N
0(s,1) = Zai(tm(s), @)
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which is referred to as modal form, where ®; is a mode
function, and a; is a time-varying modal participation
factor. N is the number of modes, which will depend
upon the number of end-effector or other task con-
straints which are specified.

The {®;} are specified functions, and thus the in-
verse kinematics problem is reduced to finding the {a;}
which satisfy the end effector constraints when the de-
sired length, lg, has been specified. When N is the
same as the number of specified end-effector degrees
of freedom, inverse kinematic solutions based on the
modal approach in (2) serve as a means of ‘hyper-
redundancy resolution’ to within a choice of manip-
ulator length. lo parameterizes the remaining redun-
dancy directly in closed form. The method is cyclic
because the choice of modes, {®;} (which must satisfy
nondegeneracy conditions [2]), and number of modes,
N, uniquely specifies the effective number of degrees
of freedom of the manipulator, for a specified manip-
ulator length.

For some choices of modes, exact inverse kinematic so-
lutions can be found, one of which is presented below.
Consider the following choice of modes for N = 2:

®y(s) =sin27s;  Pa(s) =1—cos2ms.  (3)
Substituting these two modes into (1-2) and evaluating
at s = 1,(which is the point on the manipulator located
at the end-effector), it can be shown that the forward
kinematics equations reduce to

21(1,1) = losin(az)Jo (3 + ag)%] (4a)

z2(1,t) = lo cos(az)Jo [(af + a%)%] (4b)
where Jj is the zero™ order Bessel function. The ‘in-
verse kinematics’ (evaluation of modal participation
factors) for the case lo = 1 has been computed in [1].
It should be noted that whenever an inverse kinematics
solution can be found for a nonextensible manipulator
of the form @ 3‘__1(5(1,1?)), the inverse kinematic
solution of the uniformly extensible case will be @ =
7_1(5(1,15)/10), as can be seen by comparing Equa-
tion (1) evaluated with I(s,t) = 1 and I(s,t) = k()
respectively. This means that other inverse kinematics
solution presented in previous work [2] can be used for
the solution of both nonextensible and extensible ma-
nipulators. While it is desirable to have closed form
solutions for the backbone curve inverse kinematics, it
is not a necessity. For instance, resolved rate formu-
lations can be used with the participation factors as
the generalized coordinates. Alternately, the backbone



curve forward kinematics can be computed numeri-
cally to generate a look-up table relating end-effector
coordinates to participation factors.

2.2 Spatial Hyper-Redundant Manipulators

Every point on the backbone curve of a spatial hyper-
redundant manipulator can be represented by the para-
metric equations:

[5 (o, 1) sin K (0, 1) cos T(, t)do

z(s,t) = | [, l(o,t) cos K (o,t) cos T(o,t)dor (5)

Js Uo,t)sinT (o, t)do

This form is not unique and was chosen so that when
T(s,t) = 0 for all s,¢, the spatial case degenerates to
the planar case. By convention, K(0,t) = T(0,¢) = 0.

A frame can be assigned to every point on a space-
curve defined by the parameters K, and 7. This frame,
referred to as the nominal reference frame is denoted
by the triplet of vectors {W1(s,t), Uy(s, 1), Ws(s,1)} :
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oW,
{8s’

T’

1 0,

U, = —=
2 cosT 9K

le

Ty = (6)
and are respectively termed the tangent, complemen-
tary vector, and planar-normal.

The orientation of the nominal reference frame at point
s and time ¢ with respect to the fixed frame at the
origin is given by the matrix
[¥(s, 0] = [Ta(s,), Tals, 1), Tals,0)] . (7)
Unlike the planar case, the geometry of spatial hyper-
redundant manipulators is not completely specified by
the curve representation. The function called the roll
distribution, R(s,t), is also required to specify the spa-
tial hyper-redundant manipulator configuration. R(s, 1)
is defined as follows: A frame denoted {Fg(s,?)}, and
termed the body fized frame, is initially coincident with
the nominal reference frame for all s. The unit basis
vectors of {Fr(s,t)} are given by: {Zi(s,t),Za(s,1),
Za(s,1)}, where ?2(3,1‘) = Wy(s,1). The roll distribu-
tion is the angle defined by
R(s,t) = cos™! (Z(s,t) - Wi (s,1)), (8)
and measures how much the body fixed frame twists
along the manipulator backbone curve with respect to

the nominal reference frame. By convention, R(0,1) =
0.
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The modal method can be used to formulate spatial
hyper-redundant manipulator kinematic algorithms :

Ng N
K(s,t) =) a;i(t)®i(s); T(s,t)= Y as(t)Ts(s)
i=1 i=1
(9a)
Nr
R(s,t) = Bi(D)Ai(s). (9%)
i=1
5 modal participation factors, distributed between {a;}
and {a;}, and at least a one parameter roll distribu-
tion, determined by specifying {f;}, are generally suf-
ficient to solve spatial position and orientation prob-
lems, with lp parameterizing a free degree of freedom.
Solution techniques for the inverse kinematics of a spa-
tial backbone curve are essentially the same as for the
planar case.

3. Inverse Kinematics in Parallel

A parallel algorithm based on the kinematic formula-
tion of the previous section is introduced here. For the
sake of simplicity, manipulators with a modular archi-
tecture are considered. For example, the modules of an
extensible spatial hyper-redundant manipulator might
be Stewart platforms. It is assumed that the modules
are uniform in structure and size, although this is not
necessary.

The continuous curve kinematic solutions can be used
to generate the inverse kinematic solution for modular
manipulators as follows. Consider the i** module in
the manipulator chain consisting of n modules. At-
tach a frame, {F;_1}, to the ‘input’, or base, of the
module, and a frame, {F;}, to the ‘output’, or top, of
the module. To have the discretely segmented modu-
lar manipulator configuration conform to the contin-
uous curve geometry, the frames {F;_,} and {F;} are
chosen to coincide with the body fixed frames of the
continuous curve at points given by s = (i — 1)/n and
s = i/n respectively.

The 4 x 4 homogeneous transform relating {F;} to
{Fi_1} is denoted by Hi_,. This consists of the rel-
ative translation, 7i_; and rotation, [Q}_,, of {F;}
with respect to {F;_1}, i.e.,

HI, = (10)

It is assumed that the inverse kinematics of the mod-
ule, which relate {F;} to {F;_;}, can be solved in a
closed or efficient form. Equation (10) supplies, as a



function of the modal participation factors, the input
to the inverse kinematics of each module.

The discrete manipulator configuration will conform
to the continuous curve model by setting :

[Q)Li-y = [A(G - D/m, O] [AG/n 0] (1)

and

F()i_y = [A(G = 1)/n, O (@(i/n, t) = 2((i — 1)/, 1)
(12)

where:

(A5, )] = ROT@a(s, 1), R(s, O (s, 0] (13)
is the rotation matrix relating the orientation of the
body fixed frame with unit vectors {Ei(s,1)} at point
s to the base frame at s = 0. The notation ROT([7, w]
indicates a rotation about the vector T by an amount
w (using the right hand rule). In other words, [A(s, 1)]
describes the orientation of the frame {Fg(s,t)} with
respect to the base frame. [A(s, )] is a composition
of rotations from the base frame to the nominal refer-
ence frame, and a rotation due to the roll distribution.
In this way, the frames fixed in the discrete manip-
ulator, {F;(#)}, coincide with the body fixed frames,
{Fg(i/n,1)}, defined for the continuous backbone at
the discrete points s = i/n for all ¢ € [0,n]. In the
planar case T'(s,t) = R(s,t) = 0 for all 5,1, and the
above equations reduce to:

fi;l_ sin[d(s,t) — 6(:=2, 1)lds

=1 ff—_L cos[f(s, t) — 0(1=2,1)]ds (14)

0

and

[Q]i_, = ROT [43,9 (%t) ) (’_%lt)] (15)

where g3 = [0,0,1]7.

Once the backbone curve inverse kinematic solution
has been computed, each [Q]i_; and F;_; can be com-
puted in parallel. Similarly, the inverse kinematics of
each module can also be performed in parallel, and this
method can in theory be applied to manipulators with
an arbitrary number of degrees of freedom with the
same computation time. This method is applicable to
a wide variety of morphologies. The following sections

present two examples which illustrate the theory.

3.1 A Planar Truss Manipulator

711

Figure 1 shows one module of a planar truss manipula-
tor. In this case, one segment of the truss is composed
of side members and a cross element. The position
vector connecting like vertices in the truss are denoted
T on the left and 7 on the right. @ denotes the cross
clement. These vectors can be determined from the
continuous curve model as follows:

Ti

17 7’-{; + ROT(—EEM gie)ﬁj’

7i_y — W + ROT(~2s,0;. )72

j=12

(16)

oL S

where 0%, = 6(i/n,t) — ((i — 1)/n,t) and 7; are the
vectors to the ji* vertex of the ith platform in the
frame affixed to that platform. For this specific ex-
ample, i = [—wo/2,0]F and = [wo/2,0]T where
wp is the width of each horizontal face of the truss.

it face

\/— i— 19 face

One Section of a Planar Truss
Manipulator

Figure 1:

The controlled degrees of freedom are the lengths

2 = || (17)
for i = 1,...,n, and j = 1,2. Thus, (16) and (17)
provide the inverse kinematics solution for this module
geometry based on the backbone curve geometry.

N =151

We now use the 6(s,t) function of the example pre-
sented in [1] to demonstrate how the geometry of a
truss manipulator could be specified in an obstacle
field. For this example the manipulator is restricted
to be locally nonextensible so lo(f) = 1, even though
the physical structure allows extension and contrac-
tion. The objective in this example, as seen in Figure
(2b), is to navigate the manipulator through the ob-
stacle field with dimensions specified in Figure (2a).



One way to achieve this is to define :

(s, t) = J;'* (—]}-> sin (2£> —nW(s,s1+3L,1).
81 81
- %(s — 51)W(s, 51,51 + L)
+ [%(s — 81— L) — 7]W (s, 51 + L, 51 + 2I)
- %(s — 51— 20)W(s, 51 + 2L, 5, + 3L)

(18)
where the window functions W (s, a, ) simply take the
value of 1 when a < s < b and zero otherwise. s;
is the length of the manipulator backbone curve out-
side of the obstacle field. h is the distance between
the manipulator base and the entrance to the obsta-
cle, and L is defined in Figure 2(a). The details of
how Equation (18) was derived can be found in [1].
In Figure 2(b) The width of the truss is taken as
wo = 0.053, and the number of bays in the truss is
n = 15 with the values s; = 1.0,0.793,0.607.

Il

1 HE

Figure 2: Truss Manipulator In an Obstacle
Field
3.2 A Spatial Truss Manipulator

Figure 3 shows the geometry of one story, or bay, of
an articulated spatial truss structure previously exam-
ined in [7,8]. The geometry of the base and top faces of
each truss segment is fixed, and the vertical and diag-
onal elements can expand and contract. Because the

712

elements are connected with passive ball joints there
are no constraint equations involved and the dimen-
sions of the six actuators define the position and ori-
entation of the top face with respect to the bottom.

node (1,9) node (2,3)

—

node (3 ,3)

KA%N

——

node (3,7 —1) node (l,i—l)

Figure 3: One Story of a Highly Articulated
Structure

The module inverse kinematics problem reduces to the
determination of the lengths of the truss elements which
cause the manipulator to conform to the backbone
curve. The lengths of the truss elements required to
generate a position and orientation of the i** face rel-
ative to the ¢ — 1! face can be determined as follows.

Denote the position vector from node (j,i—1) to node
(],z) by & for j = 1,2,3. These vectors are defined
in the body fixed frame {F;_;}, and can be computed

as:
v =Ty + ([Q)ioy — [T, (19)

7; are the vectors to the vertices in the frame affixed

to the center of each face, which is defined by the unit

vectors {;}. For the particular example given, these

vectors are

m = wi[1, 0, 0]F
= w[-sin7/6, 0, —cos7/6]T

T3 = wy[~sin7/6, 0, cos7/6]T

ny

where w; determines the width of the truss. The three
cross elements are each denoted by g; for j =1,2,3.
They have the explicit form:

=T —m 4 [Q ™ (20a)
Eé = Ti—l —ny+ [Q]ﬁ-l”ﬁ (200)
& =7 — s + Q). (20c)

The actuatable degrees of freedom are the magnitudes

of each of these vectors. These are denoted by /\;,

where ] ]
As = IT51l;

Mts = IE]]. (21)



Figure 4: Two Configurations with the Same
Backbone Curve

Figure 4 shows a VGTM with 9 bays, [p = 1, and w1 =
0.1. In this example Nx = 3, Ny = 2, and Ng =1
and the modes used are ®1(s) = I'1(s) = B1(s) =5,
By(s) = Ta(s) = 1 — cos2ms, and ®3(s) = sin2ws.
The inverse kinematics of this example has not been
solved in closed form. Figure 4(a) shows the con-
figuration corresponding to the participation factors
((ll, az, a3) = (06, 0,0), (Q’l, CYQ) = (—-—1.2,0), and ,31 =
0. This corresponds to a position of (0.19,0.74, —0.53),
and direction cosines of the tangent to the backbone
curve at the end-effector of (0.21,0.30,—0.93). The
only difference between Figures 4(a) and (b) is that
in Figure 4(b), A1 = 3.0. This example demonstrates
that even though two VGTs may have identical back-
bone curves, the manipulator configuration is not fully
specified until the roll distribution is defined.

4. Conclusions

This paper has generalized the kinematic methods de-
veloped in [1,2] to extensible manipulators. Applica-
tion of the method as a parallel algorithm was ex-
plained. Hyper-redundant robots have failed to achieve
wide-spread applicability due to inefficiency and inef-
fectiveness of previous kinematic modeling techniques,
complex mechanical design, and complexity in the pro-
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gramming of these devices arising from their non-an-
thropomorphic geometry. The algorithms developed n
this paper are a step toward efficient kinematic control
of hyper-redundant robots. Challenging work in me-
chanical implementation and high performance control
algorithms still remain.
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