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Abstract 
This paper addresses the problem of numerically 

finding an optimal path for a robot with non-holonomic 
constraints. A car like robot, whose turning radius is 
lower bounded i s  considered as an example, where the 
arc length and the change in steering angle are opti- 
mized. The car like robot is kinematically constrained 
and i s  modelled as a 2 D object translating and ro- 
tating in the horizontal plane in the midst of well de- 
fined static obstacles. Given the initial and final con- 
figurations of the car and a complete description of 
the obstacles, our procedure directly generates a non- 
holonomic path as a function of the control variables 
in an environment of reasonable obstacle clutter. Non- 
holonomic paths in the midst of more complet obstacle 
clutter have been generated by identifying grid points 
on a geometric road map and by applying our proce- 
dam between successive grid points. 

1 Introduction 
This paper concerns path planning for a robot with 

non-holonomic constraints. These constraints arise 
due to one or more rolling contacts between rigid bod- 
ies and it turns out that the relative velocity of the two 
points in contact is zero. These constraints render the 
dimension of the space of achievable velocities smaller 
than the dimension of the configuration space of the 
robot. 

The motion planning problem without non- 
holonomic constraints, also referred to as the piano- 
mover problem, consists of finding a feasible motion 
for a connected set of rigid bodies amidst obstacles in 
three dimensional Euclidean space. This problem can 
be reformulated into the problem of motion of a point 
in configuration space. A comprehensive overview of 
the various approaches for solving this problem can be 
found in [l]. This simple formulation in configuration 
space does not hold when planning constrained mo- 
tions, where constraints are nonholonomic in nature. 

A car is a typical example of a mechanical non- 
holonomic system. In the absence of obstacles, it 
can attain any position and orientation in the plane, 
rendering the configuration space three dimensional. 
However, assuming no slip, the velocity of the mid- 
point between the two rear wheels is always tangen- 
tial to the car orientation. The space of achievable 
velocities at any configuration is clearly two dimen- 
sional. A successful path planning procedure should 

construct a collision free path connecting the source 
and goal configurations in the subset of configurations 
such that the robot does not graze or intersect obsta- 
cles. Important results have been recently reported 
using tools from differential geometric control theory. 
Laumond, Canny, Murray, Sastry, Latombe, Lafferiere 
and Sussmann have initiated investigations in this di- 
rection. 

Laumond [2, 31 was one of the early investigators 
of motion planning with non-holonomic constraints 
in the area of robotics. Later, Fortune and Wilfong 
[4] developed a decision based algorithm for finding a 
feasible path satisfying the constraints. Barraquand 
and Latombe [5] have presented a non-holonomic mo- 
tion planner which finds a path using potential field 
methods to systematically search the configu'ration 
space, with minimum number of maneuvers. Jacobs 
and Canny [6, 71 have given a path planning proce- 
dure based on canonical trajectories, constructed from 
Dubin's paths. Murray and Sastry [SI have shown 
that systems with non-holonomic constraints can be 
steered between arbitrary states using sinusoids, in the 
absence of obstacles. 

Jacobs, Laumond, and Taix [9] have developed a 
two stage planner for a car like robot. The first stage 
finds a path without accounting for the non-holonomic 

ance skeleton to be used as a road map. The metric 
used to determine the clearance captures information 
about the non-holonomy of the robot and the robot 
navigates from start to goal configurations by loosely 
following the skeleton. An example of a planar two 
axle car has been cited. Ideas from Reeds and Shepp 
characterization of shortest paths between any two 
configurations of the car have been used to design the 
local planner. 

Most of these approaches appear to begin with a 
holonomic or geometric path and arrive at a non- 
holonomic path. The numerical approach adopted 
by us directly arrives at a non-holonomic path. The 
path findin problem is converted to a finite dimen- 
sional non-finear optimization problem. Piecewise 
constant control inputs serve as optimization parame- 
ters. For low and medium complexity obstacle clutter, 
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our planner accepts initial estimates of the optimiza- 
tion parameters, descriptions of source and goal con- 
figurations of the robot along with the non-holonomic 
differential constraints and obstacle avoidance state 
constraints to  generate a global collision free non- 
holonomic path. In case of high complexity obstacle 
clutter, where the optimization process faces conflict- 
ing terms within the objective function, a geometric 
road map is first drawn. Convenient grid points or 
sub-goal configurations are identified on the road map. 
Our planner is used to generate feasible paths be- 
tween successive grid points. A global non-holonomic 
path can thus be constructed by putting together these 
paths between successive grid points. Our procedure 
has been implemented for a car like mobile robot with 
two front wheels and two rear wheels navigated by 
means of two control inputs, the drive velocity and 
the steer velocity. The car like robot is an example 
where the kinematic constraints do not restrict the 
reachable configurations. The kinematics of the car 
like robot are constrained because the front and rear 
wheels are only allowed to roll and spin but not slide 
sideways. Consequently the robot cannot slide side- 
ways or rotate in place. In spite of this, we know that 
in the real world, a car can be moved to any arbitrary 
configuration. This controllability property has also 
been established with rigorous mathematical proofs 
[13]. Hence the car like robot serves as a good exam- 
ple for implementing non-holonomic motion planning. 
See [12] for further insight into non-holonomic motion 
planning. 

2 Problem Formulation 
2.1 Modelling 

Figure 1 shows a four wheeled car, C, modelled as 
a two dimensional object translating and rotating in 
the plane. The rear wheels are aligned with the car 
while the front wheels are allowed to spin about their 
respective vertical axes. The front and rear pairs of 
wheels are modelled as single wheels at the mid point 
of the respective axles. The constraints on the system 
arise by allowing the wheels to roll and spin but not 
slip. 

The configuration space of the robot is 2) x S1, 
where 'D is a compact domain of 'R2. 'D is compact 
since the range of positions reachable by the robot is 
bounded. The robot configuration is parameterized by 
the co-ordinates x and y of the mid point between the 
two rear wheels and the an le 8 between the X-axis 
of the Cartesian frame embe%ded in the plane and the 
main axis of the car. The steering angle 4 measures 
the orientation of the front wheels with reference to 
the main axis of the car. The control inputs of the 
car are the velocity U,* E 'R of the front wheels in the 
direction in which the front wheels are pointing, and 
the steering velocity U; E 'R. 

Assumin that there is no slipping, the velocity of 
the point &,y) at the midpoint of the rear wheel 
axle is always parallel to the main axis of the car. 
Hence the resultant sideways velocity of the wheels is 
zero. The constraints for the front and rear wheels 
are formed by writing the expression for the sideways 

velocity of the wheels and setting it equal to zero. For 
the rear wheels, this can be written as 

isinO-$cosO=O (1) 

For the front wheels, this can be written as 

d d 
- (z+lcos0)~s in(0+~)- - (y+ls in8)~cos(0+~)  = 0 dt dt 

f2) 
\ I  

From (1) and (2) 

sinOdz-cosOdy=O (3) 

sin(0 + 4) dz - cos(8 + 4) dy - 1  COS(^) d8 = 0 (4) 
The system equations may be easily written in a tra- 
ditional control-theoretic form as 

i = case u1 
= sin@ U1 

1 i = - t a n 4 ~ 1  
1 

4 = U2 (dl ( 5 )  

In this paper, U1 will be referred to as the drive 
velocity and U2 as the steer velocity. The obstacles 
are assumed to be finite in number. Each obstacle is 
modelled as a finite union of convex polygons. Each 
convex polygon is represented by its vertex list given 
in order. The work space of the robot is also bounded 
by a finite union of convex polygons. 
2.2 Optimal Control Formulation 

The problem is to obtain the drive velocity and 
steer velocity functions so as to realize a connected 
path between the source and goal, or intermediate 
oal configurations satisfying the non-holonomic dif- 

ferential constraints defined by the equations in ( 5 )  
and the obstacle avoidance state constraints imposed 
by the presence of obstacles. Obstacles in the vicin- 
ity are considered in case of path planning between 
intermediate goal states. 

The solution of the above problem is transposed as 
the solution of the same problem cast as an optimal 
control problem. It seems a good idea to minimize 
path length and 'integrated change in the steering an- 
gle, 4.' The arc length component is represented as 

J1 = 1' d-dt = 1' abs(U1) dt (6 )  

The 'change in steering angle' component is written 
as 

I' J2 = 1 a h (  z) d4 dt = abs(U2) dt (7) 

The problem is to minimize J1+ Jz subject to satisfy- 
ing the differential constraints, the state constraints, 
and the initial and goal states. 

Next, the state constraints have to be represented 
mathematically in the optimization. In order to ex- 
press the obstacle avoidance condition mathematically 
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we need to  quantify the proximity of a pair of objects 
represented a8 convex polygons. 

Let P and Q be two convex polygons in R2. Let 
{PI. . pm} and {ql . - .  qn} be the ordered vertex lists 
of polygons P and Q respectively. Let and 6, @ # 
4 be specified reference points in the interiors of P 
and Q respectively. We define the ‘expansive distance 
between P and 9,’ d(P,  Q) [14] as: 

d(P,Q)=min{A:p+AP n Q+AQ#0}-1  (8) 

It is easy to see that: 

(i) d(P,  Q )  + 1 denotes the least expansion (con- 
traction is taken as negative expansion) of P 
and Q about their reference points, so a8 to 
reach a ‘just touching’ position. 

ii) P n Q  = 0  iff d(P,Q) > 0 
int P n  int Q # 0 iff d(P,Q)  < 0 
P and Q are ‘just touching’ iff d ( P , Q )  = 0. 

Thus positive d(P, Q )  implies that the polygons do 
not intersect, and negative d P,Q) implies that the 

collision,’ can now be expressed as d(P,Q)  2 0. If P 
and Q are represented as convex hulls of points and n 
denotes the total number of points then d(P,Q)  can 
be computed in time O(n) using a linear programming 
formulation. 

Let: X = (x,y,O,+) denote the configuration of 
the car; 81,  . . . , 0, denote the convex polygons that 
represent the obstacles; C ( X )  denote the space oc- 
cupied by the car while it is in configuration X ;  
X, = (x,, yo,6,,+,) denote the initial configuration 
of the car; and, Xl = ( .,+i6j,t$,) denote the fi- 
nal configuration o the c:! en the optimal control 
problem is to find VI(.), U2(.) and X(.) that solve the 
following 

polygons intersect. The con 6 ition, ‘P and Q avoid 

minimize J1 + 52 (9) 

(5) vt € [O, 11; X ( 0 )  = x,; (10) 
X(1) = x,; d(C(X(t)),Oi) 2 0 v i ,  t (11) 

subject to: 

Given VI(.) and U2(.), let X(t;Ul, U2) denote the 80- 
lution at t of (5) with X(0) = X,. In this way it is 
easy to get rid of the unknown, X(-), as well as the 
constraints in (IO). 

However, (ll),  which contains the boundary con- 
dition, X(l) = XI and the point-wise state con- 
straints corresponding to obstacle avoidance are hard 
constraints on U1 and U,, and are difficult to deal 
with. We handle these constraints by using a penalty 
approach. Let p ( d )  denote a penalty function of the 
type shown in Figure 2. We choose two ‘large’ con- 
stants cl and c2 and replace (9)-(11) by the approxi- 
mate problem, 

min = J1+ 5 2  + c1 IlX( 1; U1, V2) - Xj [ I 2 +  
c2 ~ f , ,  s,’ P ( ~ ( c ( x ( ~ ;  ~ 1 ,  ~211, 0i))dt 

(12) 

If we select a sequence of (c1, c2) values going to infin- 
ity and sequentially solve the corresponding problems 
in (12) then, under reasonable conditions we will ar- 
rive at a solution of (11). However, usually a single 
good choice of (cy, c2) and the corresponding solution 
of 12) leads to a solution that satisfies (10) and ( l l ) ,  
an 6 has a good small value for J1 + 52. 

3 Numerical Solution 
Application of computer based methods for the 80- 

lution of the unconstrained optimization problem for- 
mulated above requires finite dimensional approxima 
tions. The optimization parameters U1 and U2 repre- 
senting the drive and steer velocities have to  be appro- 
priately discretized, with trade-offs between complex- 
ity, accuracy and computation time. One way is to 
discretize the entire path into a number of segments. 
In each segment, U1 and U2 can be represented by nth 
order splines, typically cubic splines, where the spline 
coefficients become the optimization parameters. 

Alternatively, the coefficients of the truncated 
Fourier series expansion of U1 and U2 could be used as 
optimization parameters. We have chosen U1 and U2 
to be piecewise constant in each path segment to limit 
the number of optimization parameters. Varying the 
number of segments as a trade-off between accuracy 
and complexity has an effect on computation time. If 
there are n segments in the path, there will be 2n 
optimization parameters. The problem then reduces 
to an unconstrained nonlinear minimization problem 
involving a finite number of variables. 

The important task in any optimization routine is 
the function evaluation. Closed form expressions can 
be written to evaluate the integrals involved in the 
definition of 51 and J2 .  The evaluation of the third 
component in (12) requires the solution of (5). The 6 
and t$ trajectories are obtained by integration of 5(c) 
and 5(d) and are available as closed form expressions. 
Then x and y are obtained by integrating 5(a) and 
5(b) using Simpson’s rule. 

The fourth component in (12) relates to obstacle 
avoidance. For non-intersecting configurations, the 

tersecting configurations, at each 
be obtained from the interpolants 

value of d is immaterial since p ( d )  is zero. 

obstacle polygon and polygon Q is considered as the 
robot for applying the obstacle avoidance quantifica- 
tion procedure discussed in section 2. The @ and t j  are 
the respective centroids. Given this, the integral can 
then be numerically computed using Simpson’s rule. 
Computing this fourth component is the most expen- 
sive part of computing the objective function J. 

Several optimization procedures such as Shanno’s 
extended conjugate gradient(CG 1 5 ,  BFGS quasi- 
Newton(QN) (151, Principal axis(P1) 1161 and Nelder 
and Mead’s simplex(SM) [17] were implemented. For 
conjugate gradient and quasi-Newton, we used an effi- 
cient implementation by Shanno called CONMIN. For 
Principal axis method, we used Brent’s PRAXIS, and 
for simplex, we used Nelder’s implementation. Quasi- 
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No obstacles 
Few obstacles < 3 
Many obstacles > 3  

Table 1: Relative computation efforts (rough) of vari- 
ous optimization methods. 

UN c G  PA SM 
1 3 1 6 
1 6 10 Failed 

Newton BFGS proved to be the least expensive in 
terms of computation time, number of iterations and 
the number of objective function evaluations. Ta- 
ble l gives rough estimate of the relative performance 
(computational effort) of the various methods, tak- 
ing quasi-Newton BFGS to be 1. Further discussion 
and results in this paper refer to BFGS quasi-Newton 
met hod. 

Choice of initial values for the optimization parame- 
ters does have a significant effect on conver ence. Sup- 
pose B is the largest circular disc around 2 0  such that 
B is in the free work space. It was observed that initial 
estimates of V I ( . )  and Va(-) such that 

X ( t )  E B v t  € [O, 11 

resulted in quick convergence. It can be seen that 
such a path is very unlikely to intersect any of the 
obstacles. Convergence was much faster with such an 
initial estimate rather than to start with a path which 
cuts through obstacles even if the endpoint of that 
path is close to Xf. The graphic screen output in the 
former case showed the path winding through from 
source state to goal state avoiding obstacles at every 
iteration. But in the latter it proved more expensive 
to bring a path out of intersection with the obstacles. 

Our procedure was found to be successful with a 
variety of state constraints and in fairly tricky sit- 
uations in which there were about sixteen cluttered 
obstacles. Parallel parking and low and medium com- 
plexity mazes were some of the problems solved suc- 

Problems with highly cluttered obstacle space were 
solved by constructing a rough road map such as a 
Voronoi diagram and identifying convenient interme- 
diate goal states. Mirtich and Canny’s [ll] road map, 
which captures the non-holonomy of the problem, can 
be very useful for generating intermediate goal states. 
However, the local planner that they use between in- 
termediate points on their maximal clearance skele- 
ton may result in a global path with a large number 
of cusps. On a global basis, the path reported by us 
is likely to be much smoother as state continuity and 
control continuity can be ensured at each intermediate 
goal state. Further, in our procedure a non-holonomic 
map or a highly accurate Voronoi diagram was not 
found necessary as the procedure performed success- 
fully even when successive intermediate points were far 
off. Hence successful performance as a local planner 
is well guaranteed. 

cessfully. 

4 Examples 
Our procedure was implemented on a Personal IRIS 

4D/20 work station with interactive graphics showing 
the moving object, the obstacles and the path at the 
end of each iteration. We tested the planner on a 
variety of examples using a simulated car like robot 
with a length to width ratio of 4:l. 

Figures 3 shows the solution of a parallel park- 
ing problem without state constraints for two differ- 
ent initial estimates of the control parameters; Fig- 
ure 4 shows the parallel parking problem with state 
constraints. Figure 5 shows the progress of the al- 
gorithm displaying the path returned at intermediate 
iterations. This is a simple case, with few obstacles 
where convergence is reached within five quasi-Newton 
iterations. Figure 6 shows an example with a more 
cluttered workspace. Here our planner was used to 
generate a non-holonomic path on a global basis given 
the source and the goal states. Compare this with 
Figure 7 which shows the same example as in Figure 
6 but in this case our planner is being used as a local 
planner. Several intermediate goal points were identi- 
fied on a rough road map and the planner was used to 
generate non-holonomic paths between these interme- 
diate goal points. The global non-holonomic path was 
then obtained by putting together these paths. On 
an aggregate, roughly a 4:l reduction in computation 
time was observed when such a road map method was 
adopted, depending on the nature of the workspace. 

5 Conclusion 
In this paper we have presented a numerical path 

planner which directly generates a non-holonomic 
path. For the car like robot example, the paths gen- 
erated by the planner have minimal length, minimal 
change in steering angle and avoid obstacles. For im- 
plementing numerical methods to solve the problem, 
both the work space and the configuration space of 
the robot was discretized. Further, the discretized 
control inputs served as the optimization parameters. 
We have also reported success through the presenta- 
tion of several illustrative examples. The approach is 
expected to work for any non-holonomic system. We 
hope to extend the application to trailer like robots 
and other higher etage controllable systems. 

References 
J .C.Latombe, Robot Motion Planning, Kluwer 
Academic Pub., 1990. 

J.P.Laumond, “Feasible trajectories for mobile 
robots with kinematic and environment con- 
straints,” International Conference on Intelligent 
Autonomous Systems, Amsterdam, pp. 346-354, 
1986. 

J .P.Laumond, “Finding collision free smooth tra- 
jectories for a non-holonomic mobile robot ,” In- 
ternational Joint Conference on Artificial Intelli- 
gence, pp. 1120-1123, 1987. 

!%Fortune and G.Wilfong, “Planning constrained 
motion,” STOCS, pp. 445459, Chicago, 1988. 

829 



[5] J.Barraquand and J.C.Latombe, "On non- 
holonomic mobile robots and optimal maneuver- 
ing," 4th International Symposium on Intelligent 
Control, Albany, 1989. 

[6] P.Jacobs and J.Canny, "Planning smooth paths 
for mobile robots," International Conference on 
Robotics and Automatiod, pp. 2-7, 1989.r 

[7] P.Jacobs and J.Canny, "Robust motion planning 
for mobile robots," International Conference on 
Robotics and Automation, 1990. 

[SI R.M.Murray and S.S.Sastry, "Steerin non- 
holonomic systems using sinusoids," IEE% Con- 
trol and Decision Conference, 1990. 

[9] P.Jacobs, J.P.Laumond and M.Taijr, "A complete 
iterative motion planner for a car like robot," 
J o u r n k  de GQmCtrie Algorithmique, INRIA, 
June 1990. 

"Fast and exact trajectory planning for mob& 
robots and other systems with non-holonomic 
constraints," Technical Report # 90318, LAAS, 
CNRS, Toulouse, fiance, September 1990. 

[ll] B.Mirtich and J.Canny, "Using skeletons for non- 
holonomic path planning among obstacles," In- 
ternational Conference on Robotics and Automa- 
tion, pp. 2533-2540, May 1992. 

[12] Z.Li, R.M.Murray and S.S.Sastry, Robotics: Ma- 
nipulation and Planning, Preprint, December 
1990. 

[13] A.Bellaiche, J.P.Laumond and P.Jacobs, "Con- 
trollability of Car like robots and complexity of 
the motion planning problem with non-holonomic 

[lo] P.Jacobs, J.P.Laumond, M.Wx and R.Murra 

constraints,' The %hernational Symposium on 
Intelli ent Robotics, Bangalore, India, pp. 322- 
337,1891. 

[14] E.G.Gilbert, Personal communication. 

1151 D.F.Shanno and K.H.Phua, "Minimization of 
unconstrained multivariate Functions," ACM 
" a c t i o n s  on Mathematical Software, pp. 618- 
622, Dec. 1980. 

[16] R.P.Brent, Algorithms for Minimirafion wifhout 
derivatives, PrenticeHall Inc., Englewood Cliffs, 
New Jersey, 1973. 

1171 J.L.Kuester and J.H.Mize. ODtimizafion Tech- . .  
niques with Fortran, McGraw-Hill Book &.,-New 
York, 1973. 

Figure 1: Four wheeled cor like robot 

Figure 2: A penally function for obstacle-avoidance 

CPU TIME: 4s 
Fig 3: Parallel Parking without stdte 

constraints. 
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CPU TIME: 8s 

Fig. 4. Parallel Parking with state 
constraints. 

CPU TIME:  14s 

F i g . 5 .  Prograss of the algorithm for a simple 

exam pl e 

CPU TIME : 885s 

CPll TIME: 18% 

FIG .7. Example of figure 6 with One intermediate goal 
FIG.6: Global path for a more complex example. point 
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