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Abstract Sensor based planning for rod-shaped 
robots i s  necessary for the realistic deployment of non- 
circular symmetric robots into unknown environments. 
To this end, the rod hierarchical generalized Voronoi 
graph (rod-HGVG), introduced in this paper, is a 
roadmap for rod-like robots. A key feature of this 
roadmap i s  that it can be incrementally constructed 
using distance (range) information. This planning 
paradigm is an extension of previous work on sensor 
based planning for point robots. 

1 Introduction 
Sensor based planning makes use of sensor informa- 

tion reflecting the current state of the environment, in 
contrast to classical planning, which assumes full knowl- 
edge of the environment prior to planning. This paper 
extends the sensor based planning scheme for a point 
robot [3] to the case of robots which can be modeled 
as rods. This work is the next step towards the ulti- 
mate goal of sensor based planning for an articulated 
multi-body chain robot. The primary advantage of this 
method is that distance measurements are made entirely 
in the workspace, instead of the configuration space 
where measuring distance with conventional sensors is 
quite difficult. 

The rod hierarchical generalized Voronoi graph (rod- 
HGVG), introduced in this paper, is a roadmap which 
captures the global topological properties of the robot’s 
free space and has the following important properties: 
accessibility, departability and connectivity. These prop- 
erties imply that the planner can construct a path be- 
tween any two points in a connected component of 
the robot’s free space by first finding a path onto the 
roadmap (accessibility), traversing the roadmap to the 
vicinity of the goal (connectivity), and then constructing 
a path from the roadmap to the goal (departability). 

2 Relation to  Prior Work 
Sensor based planning has received increased atten- 

tion, as it Is a requirement for realistic deployment of 
autonomous robots in unstructured environments. For 
a review of many sensor based planning techniques, 
see [13]. Unfortunately, current sensor based planning 
methods are limited because: (1) many are based on 
heuristic algorithms, and it is therefore impossible to 
prove if they will work in all possible environments; (2) 
proof of convergence for other algorithms is limited to 

the case of a point in two-dimensional environments (for 
example, Lumelsky’s “bug” algorithm [7]); or (3) the 
robot is assumed to be a point in configuration space, 
where its sensors can measure distance in configuration 
space. The goal of this work is to develop provably cor- 
rect rod motion planning schemes which can be robustly 
implemented with realistic sensors. 

The generalized Voronoi diagram (GVD) is a 
roadmap which was first used for motion planning in 
[12]. Active research in applying Voronoi diagrams to 
motion planning began with 6’Dfinlaing and Yap’s work 
[SI, which considered motion planning for a disk in the 
plane. However, the method in [8] requires full knowl- 
edge of the world’s geometry prior to the planning event. 
This work was extended to the case where the robot is 
a rod in [SI, but it, too, requires full knowledge of the 
world’s geometry prior to the planning event. R,ecently, 
Cox and Yap [5] developed an “on-line” strategy for path 
planning for rods. Although this method can be read- 
ily modified with tactile sensors for sensor based use, 
it does not provide a roadmap of the rod robot’s free 
space. The goal of the work described in this paper is 
to d e h e  a roadmap for a rod, and demonstrate that it 
can be constructed using realistic sensors. 

An incremental approach to creating a Voronoi 
diagram-like structure, which is limited to circular 
robots in the plane, is introduced in [lo]. To our knowl- 
edge, the only endeavors pertaining to sensor based 
adaptations of roadmaps for configuration space dimen- 
sions greater than two are 1111 (which is based on Canny 
and Lin’s Opportunistic Path Planner (OPP) [l]), and 
[3] (which is where the generalized Voronoi graph is de- 
fined). A limitation of these roadmaps is that distance 
measurements are assumed to be made in a configu- 
ration space (or some parameterization of it). In this 
paper, we define a configuration space roadmap based 
on workspace distance measurements which are obtain- 
able from realistic sensors. Therefore, the rod-HGVG is 
easier to construct using realistic sensors. 

This paper is an extension of a previous sensor 
based planning scheme which is based on the generalized 
Voronoi graph (GVG) [3]. The GVG is the foundation 
for a point robot roadmap. In this paper, we term the 
GVG the point GVG in order to distinguish it from the 
generalized Voronoi graph for a rod. 

The point GVG was defined in terms of a distance 
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Fig. 1. The ticked line segments form the planar GVG for a 
bounded environment. The ticks point a t  the nearest point 
on an obstacle, and are thus the negated gradients of the dis- 
tance function. 

function 
d i ( r )  = min Ilr - CII 

CECi 

where r E R2 and Ci i s  a convex obstacle. The basic 
building block of the point GVG is the two-equidistant 
surjective surface which is a set of points equidistant to 
two convex obstacles, and is denoted 

SSij = { r  E R" : (d i -d j ) ( r )  = 0 and V d i ( r )  # Vdj ( r ) ) ,  

where V d i ( r )  is a unit vector based xt r and pointing 
away from c along a line defined by c and r .  In con- 
structing the GVG, we are interested in a subset of S S i j  
termed the two-equidistant fa.ce which is defined as 

Fij = { r  E cl(SS;j) : d i ( r )  5 &(r)  Vh} .  

The intersection of 3'ij and Fj;.rc forms a three-equidistant 
face, denoted Fij;.rc, and it is the set of points equidistant 
to three obstacles: ci, cj, and ck [3]. 

In the plane, the two-equidistant :faces and three- 
equidistant faces are one and zero-dimensional, respec- 
tively and the point GVG is the collect,ion of these one- 
dimensional edges and zero-dimensionatl vertices. In the 
plane, the GVG, which is the set of points equidistant to 
two or more obstacles, is always connected. See Figure 
1. In R", the GVG is the set of points equidistant to 
m obstacles and is always one-dimensional, though not 
necessarily connected. [3]. 

3 Rod Distance Function 
DEFINITION 3.1 (ROD) A rod R is a line segment of 
length L that has two end points P and &. 

The configuration space of the rod is SE(2) (SE(2) N 

R2 x S'). Let 4 be the configuration of the rod, and let it 
be determined by the x and y coordinates of the point 
P ,  and the orientation of the rod with respect to the 
horizontal, i.e. q = (x,y,O). See Figure 2. Let q(P) be 

Pig. 2. The configuration of a rod is determined by the 3: and y 
coordinates of P and the orientation of the rod with respect 
to the horizontal. 

the x and y coordinates of the point P when the rod 
is at  configuration q, let y(8) be the orientation of the 
rod when it is at  configuration q, and let q(R) be the 
sei; of points in the plane that the rod occupies when it 
is at  configuration q. Note that q ( P )  E R2, q(8)  E S1, 
and q(R) c R2. Let superscripts ' and Y, denote the 3: 
and y coordinates, respectively, of a point in the plane. 
For example, y(P)"  is the 2 coordinate of the point P 
at configriration q. 

A function which encodes the distance between the 
robot a n c l  nearby obstacles is bey to our definitions. We 
assume a rod robot R is operating in a subset W of 
R". W is populated by obstacles Cl,. . . , C, which are 
convex sets. Non-convex obstacles are modeled as the 
union of convex sha,pes. It is assumed that the boundary 
of W is a collection of convex sets, which are members 
of the obstacle set { C t } .  

D:EFINITION 3.2 (ROD SINGLE OBJECT DISTANCE) 
The rod .single object distance function is the distance 
between i%n obstacle, Ci, and a. rod, R, when the rod is 
at  a configurationi g. It is determined by 

An important characteristic of D,(y) is that it can be 
readily computed from sensor measurements made in 
the workspace. For example, the rod robot in Figure 3 
hats range sensors dlstributed around its perimeter. The 
diistance between the obstacle and the rod is the mea- 
surement of the range sensor associated with a local 
minima of measurements. It can be shown that the rod- 
diistance ifunction is continuous and smooth in the inte- 
rior of the workspace for convex sets. Let the gradient 
of rod distance function, V D i ( q ) ,  be the 3 x 1 unit vec- 
tor [Vd;( i*)  Q I T ,  where r is the closest point on the rod 
R to obstacle C,. 'VD,(q) describes the direction along 
which thi? rod must translate (with a fixed orientation) 
to maximally increase its distance from Ci. For convex 
sets, V D , ( q )  is continuous. 
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P 
Fig. 3. The distance from the rod (thick solid line) to an obstacle 

is the distance (dotted line) between the nearest point on the 
rod to the obstacle and the nearest point on the obstacle to 
the rod. 

4 Rod-GVG 
The rod-GVG serves as a basis for the rod-HGVG. A 

key feature of the rod-GVG is that it is defined in terms 
of a distance €unction. Before defining the rod-GVG, 
we define the rod-GVD because the rod-GVG is an ex- 
tension of the rod-GVD. (The rod-GVD was termed the 
Voronoi complex in 691). The basic building block of the 
rod-GVD and the rod-GVG is the set of rod configura- 
tions equidistant to two sets Ci and Cj, which we term 
the configuration two-equidistant surface, 

eSij = { q  E SE(2) : Di(q) = Dj(q )  > 0). (I) 
Of particular interest is the subset of eS;j termed the 
configuration two-equidistant surjective surface, 

essq = { q  E es;j : V D ; ( q )  # V D j ( 4 ) ) .  (2)  
which is the set of configurations, q, that are equidistant 
to two objects such that V D i ( q )  # V D j ( q )  (i.e., the 
function (0; - Dj) (q )  is surjective). This definition is 
required to  deal with non-convex sets that are modeled 
as the finite union of convex sets. 

The configuration two-equidistant face, 

eyij = { q  E cl(ess;j) : 

W q )  = D j ( Q )  I D h ( Z )  Vh # i , j } ,  (3) 
is the set of configurations equidistant to obstacles Ci 
and Cj, such that each point z in cl(C3Sij) is closer 
to  Ci and Cj than any other obstacle. See Figure 4 
for examples of rods whose configurations are in the 
configuration two-equidistant face. The configuration 
two-Voronoi set, e3’, is the union of all configuration 
two-equidistant faces, i.e., 

n-1 n 

(4) 
i=l j=i+l 

Let the rod generalized Voronoi diagram (rod-GVD) be 
e3’, which is the set of configurations in which the 
rod is equidistant to  two or more closest points on the 
boundary of a bounded space. 

Accordingly, one can define a configuration three- 
equidistant face and configuration three- Voronoi set re- 

Fig. 4. The thick solid lines are rods which are in the configuration 
two-equidistant face defined by obstacles C; and C j .  The light 
dotted lines delineate the distance to the nearest obstacle. The 
thick dotted line is an example of a rod which is not in a 
configuration two-equidistant face because it is closer to Cj 
than C,. The thick dashed line is not in the two-equidistant 
face either because it is closer to ck. 

‘i 

C. 
J 

Fig. 5. The thick solid lines represent three configurations of 
the rod whose configurations are in the configuration three- 
equidistant face defined by obstacles C;, Cj  and ck. The thin 
dotted lines represent the distance between the rods and an 
obstacles. 

spectively as 

These structures are the set of configurations where the 
rod is equidistant to three obstacles. See Figure 5. Next, 
the configuration four-equidistant face and configuration 
four- Voronoi set are defined respectively as 

Finally, in keeping with the generalized Voronoi 
graph literature, the configuration three equidistant 
faces are also termed rod-GVG edges and the configu- 
ration four equidistant faces are termed rod-GVG ver- 
tices. Using the pre-image theorem, it can be shown 
that the rod-GVG edges and rod-GVG vertices are one 
and zero dimensional, respectively. Now, we can define 
the rod-GVG. 

DEFINITION 4.1 ( ROD-GVG) The collection of rod- 
GVG edges and of rod-GVG vertices is the rod-GVG. 

The rod-GVG edges can be incrementally con- 
structed using only line of sight information in a fash- 
ion similar to the incremental construction of point 
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Fig. 6. The rod may pass from its initial configuration to its fi- 
nal configuration while staying inside of the junction region 
defined by Ci, C j ,  and c k .  

GVG edges described in [4]. Just like the point GVG 
edges, the rod-GVG edges are traced in an incremental 
manner using an adaptation of numerical continuation 
techniques [6] which trace the roots of the expression 
G(y, A) = 0 as the parameter A varies where q = (y, A). 

If G is surjective (whose proof is omitted due to space 
restrictions), then the implicit function. theorem iimplies 
that the roots of G(y, A) locally define a rod-GVG edge 
as X is varied. Since the incremental construction pro- 
cedure is defined in terms of the distance function, it is 
amenable to sensor based implementation. 

5 Accessibility 
Accessibility is the property that the rod can move 

from any configuration in the workspace to a configu- 
ration on a rod-GVG edge. The accessibility algorithm 
described below prescribes a path to a rod-GVG edge 
such that the rod moves with a fixed orientation. In 
a sense, this reduces the problem to accessibilit,y of a 
point in a planar configuration space because tbe con- 
figuration space of a rod with a fixed orientation is R2. 

For the study of accessibility and connectivity, we 
define the junction region, a i j k ,  to be the set of points 
where obstacles, Ci, Cj, and c k  are the three closest 
line of sight obstacles. That is, 

8 i j k  = { q  E SE(2)  : Di(q) 5 Dh(q) ,dDj(q)  5 Dh(q),  
and D ~ ( Q )  I D ~ ( Q )  Vh # {Gj,  ]GI). (8) 

It can be shown that e 3 i j k  C &jk  and that the union 
of all the junction regions are all the configurations of 
the rod robot in the workspace. Figure 6 illustrates an 
example of a junction region. 

The following proposition demonstrates that; there 
exists a path from a configuration in a junction, a;jh,  to 
a configuration on e F i j k .  For the fobwing proposition, 
let Z T T ~ ~ F ~ ~  be the operator which projects a vector onto 
the tangent space of eFij. For example, 7 w q e 3 ; j v D i ( Q )  

C. 
1 

Fig. 7. The solid lines represent the rod, which is moving with 
a fixed orientation from an initial configuration to the rod- 
GVG. The solid arrow represenis the portion of the path in 
which t,he rod is following the gradient to the nearest obsta- 
cle. The dotted arrow corresponds to the find portion of the 
path where the rod1 moves toward ck while remaining equidis- 
tant to' C; and Cj (i.e., the rod follows K T ~ ~ T , ~ V D ~ ( Q )  - 
nTP e3ii V D k  (PI). 

is the gradient vector, VDi(q), ,  projected onto the tan- 
gent space of C3i.i. 

PIROPOSI'TION 5.1. (ROD ACCESSIBILITY) Let the con- 
vex obstacles Ci, Cj and c k  be the three closest obsta- 
cles to a rod, R, at an initial configuration, q E a i j k ,  

such that Di(q) << Dj(q)  < Dk(q), and ci, Cj and c k  

are within line of sight of the :rod. There exists a path 
from the initial configuration q to the rod-GVG edge, 
e r F i j k  in the fobwing two steps: (1) while maintaining 
a k e d  orientatio.n, the rod moves away from the near- 
est point on C i  (i.e., it traces a path following V D i )  

until the rod is doubly equidktant to Ci and Cj; (2) 
thien, while maintaining double equidistance to C i  and 
Cj the rod moves towards ck; by following the differ- 
ence of the gradients V D i  and V D k  projected onto e 3 i j  

(Le., ~ ~ , , 1 : 3 ~ ~ V D i ( q )  - 7 r T q e 3 , , V D k ( q ) )  until it is triply 
equidista,nt to Ci,) cj and c k .  

The accessibility path is defined in terms of distance 
gradients to the .nearest obstacles, and is thus already 
iniplementable fosr sensor based use [2]. See Figure 7 
for an example of the rod accessing a point on a rod- 
GVG edge. The proof of this proposition appears in the 
Appendix. 

COROLLARY 5.2  There exists a continuous map 
H': a i j k  X [o, 11 -+ 8 i j k  where H(q, , t )  describes the 
rod accessibility path starting at a configuration, 
q c t  E 8 i j k ,  such that H(qa,al) = qa, H ( q a , . 5 )  = q b  
and H(y,, 1) = qc where q b  E e 3 i j  and qc E e y i j k -  
Moreover, for all t E [0,1], N(qa, t ) (@)  = qa(@) (Le., the 
rod's orientation remains fixed). 

The proof of this proposition appears in the Appendix. 
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Fig. 8. The two clusters of solid lines represent rods whose con- 
figurations are triply equidistant to three obstacles. The left 
cluster represents rods whose configurations are elements of 
the rod-GVG edge e3';j~., and the right cluster are elements 
of e 3 ' ; k r .  In this example, both rod-GVG edges are diffeomor- 
phic to S1 (i.e., they are cyclic) and neither rod-GVG edge is 
connected to  any other rod-GVG edge. 

I I I 

C. 
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' GVG edge fragment CE. 
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CF.. 
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Fig. 9. The dark line segment on the left represents a rod configu- 
ration in e3;js, and the dark segment on the right represents 
a rod configuration in e3;jl. These rods are connected by 
the point GVG edge 3;j. The point GVG edge gives rise to 
a linking structure termed the R-edge which connects e 3 ; ; j b  
and e3;jr. 

6 The Rod-HGVG 
It was shown in [9] that the configuration rod-GVD 

is connected. However, the rod-GVG is not necessarily 
connected as can be seen in Figure 8. In order to connect 
the rod-GVG, we define additional structures, termed 
R-edges, which link disconnected rod-GVG edges by ex- 
ploiting the property that the point GVG is connected 
in the plane. See Figure 9. The R-edges are the set of 
rod configurations which are tangent to the point GVG 
edge, in a specific fashion defined below. See Figure 11. 

Recall that the tangent space of a planar point GVG 
edge is the line orthogonal to the line segment which 
connects the nearest points of the two nearest obstacles 
which locally define the point GVG edge [4]. Let C ~ ( T )  
be the closest obstacle to a point r in the plane. In 
this vein, let ci be the vector which connects T and the 
closest point to  r on the closest obstacle C ; ( r ) .  

We define a mapping ,O which describes the tangent 
space of a point GVG edge at a point. Let p:  SSij -+ S' 
be defined as 

i/ \\\ 
Fig. 10. The solid lines delineate three configurations of a rod that 

lie in r (r ) .  P(r) is the angle which describes the tangent space 
to the point GVG edge at the point 1'. 

where $ is measured in radians. It can be shown that 
c ~ ( T )  is a continuous function for convex sets [SI, and 
thus p is a continuous function. 

Let the mapping I?: S S i j  + SE(2) be defined as 

1 { rz +;;(" r(r) = r y  + I  sin(p(r)) : z E 1~~ . (10) 

It can easily be seen that l? is a continuous mapping. 
r ( T )  can be viewed as all the rods which lie in the tan- 
gent space of a two-equidistant surjective surface (and 
thus a two-equidistant face) a t  a point r. See Figure 10 
for an example of r ( r ) .  

Let the R-two-equidistant surjective surface defined 
by C; and Cj be 

RSSi j  = {I'(r) : r E SS,,}. (11) 
Since R S S ; j  II SS,j x R1, the dimension of R S S i j  is 
two (recall that in R2, the dimension of SSi j  is one [3]). 
RSSij may be viewed as (but is not) a tangent bundle 

Let the R-two-equidistant face be the set of configu- 
rations equidistant to two obstacles such that (I) there 
exists a point, T E R, that is closer to  obstacles Ci and 
Cj than any other point on the rod and (11) no other 
obstacle is closer to  the rod than the two equidistant 
obstacles. In other words, 

of ss;j. 

RFij = ( 4  E cl(RSSij) : such that 3r E y(R) 
(I) di(r) I di(ri) Vri  E q(R) and 

(11) di(r) 5 Dh(q) Vh # i,j}. (12) 
In SE(2) ,  an R-two-equidistant face is termed an R- 
edge, (denoted 2 i j )  because it is one-dimensional, as 
shown by the following proposition. 

The inequality I d i ( r )  L: di(r1) V r l  E y(R) deter- 
mines how the rod is tangent to the point GVG edge. 
Let rmin be the point in 3ij where the distance to  Ci 
and Cj is the smallest (i.e., for all r E 3ij\{rmin}, 

d i ( ~ )  > di(Tmin)). For all points r E 3ij\{rmin}, the 
rod is tangent to the point GVG edge at P or Q. Oth- 
erwise at rmin, the rod is free to  slide along the tangent 
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Fig. 11. The rod is moving from left to right while remaining 
tangent to the point GVG edge defined by obstacles C, and 
C, . The thick solid lines represent different configurations of 
the rod in an R-edge. The dotted lines represent the slhortest 
distance between the rod and the nearby obstacles. Note, for 
all configurations where the rod is not tangent to r the closest 
point on the rod to C, and C, is either P or Q. 

space of the point GVG edge. See Figure 11. 

PROPOSITION 6.1 The R-edges are one dimensional in 
S E ( 2 ) .  
The proof appears in the appendix. 

The incremental construction technique of the R- 
edges is the same as the incremental constructioin pro- 
cedure for point GVG edges (described in [4]), which is 
amenable to sensor based implementation. Hence, the 
R-edges can be constructed in an incremental fashion 
using only line of sight information. 

DEFINITION 6 . 2  ( ROD-HGVG) The rod hierarchical 
generalized Voronoi graph (rod-HG VG) is the collection 
of rod-GVG edges and R-edges. 

The following two lemmas, whose proofs appear in 
the appendix, indicate that a linking strategy using the 
R-edges echos the linking strategy defined by the second 
order GVG for the point GVG in higher dimensions [3]. 

LEMMA 6.3  The R-edges are subsets of configuration 
two-equidistant faces. 

LEMMA 6.4 For all configurations q E !Ri, , the rod does 
not intersect any obstacle (with the exception of points 
P or Q lying on the intersection of two obstacles). 

7 Connectivity of the rod-HGVG 
PROPOSITION 7.1 Let q1 and q 2  be two configurations 
of the rod. There exists a path between q1 and q 2  if and 
only if there exists a path on the rod-HGVG between 
H(q1,l) and H ( q 2 , l )  where H is the function which 
describes the accessibility path of the rod from an initial 
configuration to  a configuration on the rod-GVG. 
Proof First we show the converse of this statement. By 
Proposition 5.1  and Corollary 5.2,  there exists a path 

between 41 and H (  q1, l), and there exists a path between 
q 2  and H(q2, l ) .  If there exists a path from H(q1,l) to 
H(Iq2,l) on the rod-HGVG, tlhen there exists a path 
between q1 and q 2 .  

Next, we show that if there exists a path between q1 
and q 2 ,  then there exists a path between H(q1,l) and 
H(lq2,l) on the rod-HGVG. If q1 E 8 i j k  and q 2  E &,. 
and there exists a path between them, then there exists 
a series of adjacent junction regions, &e, J i j l ,  . . . , aPq,. 
thirough which this path passes. 

The problem of connectivity is now reduced to  
de:monstrating thatt: (1) there exists a path between two 
rod-GVG edges in adjacent junction regions if and only 
if there exists an .R-edge which links the two rod-GVG 
ed,ges and ( 2 )  if two R-edges i.ntersect a configuration 
three-equidistant face, e y i j k ,  then there exists a path 
between t,he two edges if and only if there exists a path 
between t4he two edges on C!Fij ,k .  

LE:MMA 7.2 Let be two configurations in a junc- 
tiam region & j k .  q1 and 42 are path connected within a 
junction, d i j k ,  if and only if H(&,  1) and H(&,  1) are 
path conlriected in C y i j k .  

Prloof Ely defini.tion, e F i ; j k  c & j k .  By Proposi- 
tion 5.1 and Corollary 5.2,  the:re exists a path between 

and H(il,l), and there exists a path between i 2  

and H(&,  1). Therefore, if there exists a path between 
 HI(^, 1) and H ( i : ! ,  1) in e y i j k ,  then there exists a path 
between i 1  and 42 in & j k .  

Recall from Colrollary 5.2 that there exists a contin- 
uous function, H(q ,  t )  which describes the accessibility 
for the ro'd. 

Let s(t) be a c.ontinuous function which describes a 
pakh from 41 to  42 such that ~ ( 0 )  = 41 and s(1) = 42. 

Folr all t E [0,1], H(s(t),l) E ( Z F i j k .  The image of the 
pakh between 61 and 4 2  under H ( s ( t ) ,  1) is a connected 
pa,th on E ? 3 i j k  because the ima,ge of a connected set un- 

v 
Now, iit needs to  be shown t8hat the R-edges connect 

the rod-GVG edges in adjacent junction regions. The 
folllowing proposition guarantees that there exists a path 
between two adjacent rod-GVG. edges if and only if there 
exists a connected R-edge linking them. 

LEMMA '7.3 Let (71 E eFii,,c, and 42 E such that 
& and qz are also on an R-edge, a i j ,  and e 3 ; j k  and 
e2Fijz are in adjacent junctionis regions. q 1  and qz  are 
path connected if and only if the R-edge between them 
is Connected. 

Proof If Q1 and lie on a connected R-edge then there 
exists a path between ij1 and 92. 

If there exists a path between q1 and I&, then there 
exists a point based GVG edge, Fij, which connects 
[qjp,gy]T and [$,ij;lT in the plane. The R-edge which 

der a continuous mapping is a connected set. 

3589 



connects 61 and 42 is the image of a connected subset 
of Fij, which connects [ c $ , ~ Y ] ~  and [q;,ji]T: under r. 
The R-edge is a connected set because the image of a 
connected set under a continous function is a connected 
set. Lemma 6.4 guarantees that all configurations of the 
rod on the R-edge do not intersect any other obstacle. V 

By Lemmas 7.2 and 7.3, if there exists a path between 
y1 and 42, then there exists a path between H ( q l ,  1) and 

s W(q2,1> and thus the rod-HGVG is connected. 

8 Conclusion 
This paper introduces a retract-like structure called 

the rod hierarchical generalized Voronoi graph. Al- 
though this structure was specifically developed for sen- 
sor based implementation of a rod, it can be used for 
classical motion planning as well. Moreover, since it is 
defined in terms of the distance function, the rod-HGVG 
readily lends itself to sensor based implementation. In 
fact, the incremental construction technique of the rod- 
HGVG is similar to the incremental construction pro- 
cedure for the point HGVG. Because of its graph-like 
structure, motion planning can be reduced to a one- 
dimensional graph search. Simulations of this method 
are underway. 

One of this method’s limitations is that it assumes 
there are range sensors distributed throughout the body 
of the rod. Discrete sensor placements should ade- 
quately approximate such a sensor distribution, but this 
approximation is currently being investigated. Further- 
more, there are environments where range sensor infor- 
mation cannot be readily provided, so a robot must rely 
on visual sensor data. 

Since its definitions are based on those of the GVG, 
a rod-GVG for rods floating around in R3 (whose con- 
figuration space is SE(3) )  can be readily defined. This 
extension is a future topic of research. The intention 
of this work is to provide a foundation for sensor based 
planning of robots modeled as convex sets. 
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Appendix 

Proof: For the first portion of the accessibility path, 
it was shown in [8] that there exists a path from an 
initial configuration to a configuration two-equidistant 
face, Wi j  by following VDi(q )  while maintaining a 
k e d  orientation. Let q1 be the configuration of the 
rod when it first becomes doubly equidistant. Hence, 
Di(q1) = Dj(q1) and Di(ql)-Dk(ql)  < 0. Without loss 
of generality, assume that q1 is not the closest config- 
uration of the rod on e3ij at the fixed orientation to 
objects C; and Cj. This way, T T , , ~ ~ ~ ~ V D ~  # 0. 

Now the second closest obstacle is ck (C; and Cj are 
now both the first closest obstacles). Next, it needs to 
be shown that v D k ( q )  # V D i ( q ) .  Assume v D k ( q )  = 
VDi(q ) .  Since D;(q)  < Dk(q), VDk = V D i  implies that 
C; occludes CI, which violates our original hypothesis 
that ck is always within line of sight of the rod. Hence, 
v D k ( q )  # VDi(q ) ,  (VDi - v D k ) ( q )  # 0, and since 
V D ,  and VDk are both unit vectors, 7rTqesij(VDi - 
v D k ) ( q )  # 0 for all configurations g on a path traced 

Since 7 r ~ ~ e s ~ ~ ( V D i  - VDk) (q )  # 0, by continuity 
of the distance function, gradient ascent following the 
gradient TTge3ij(VDi - v D k ) ( q )  traces a path from q1 

where Di(q1) - Dk(q1) < 0 to a configuration 42 where 

Proof of Proposition 5.1 

out by TT,e3,j (VDi - VDk) (q ) .  
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Fig. 12. The dark solid lines represent portions of eF,,k. The 
thick straight lines represent the two accessibility paths of the 
two configurations Pal and qaz which start near each other. 
The shaded region represents the neighborhood of a point of 
H(qa,, t )  where the contradiction occurs. 

Di(q2) -Dk(qZ) = 0. q2 is a configuration in a rod-GVG 

Proof of Corollary 5.2 
Proof: For all t E [0, .5 ) ,  Di(H(qu, t ) )  < Dj(H(q,, t ) )  < 
ak(H(q, , t ) )  < Dh(H(qu, t ) )  for all h # i,j,IC. Ely con- 
tinuity of the distance function, there exists a neighbor- 
hood around each configuration H(q,, 1:) where t [0, .5) 
such that for all configurations q in this neighborhood, 
Di(q) < Dj(q )  < Dk(q)  < Dh(q) for all h # i,j,IC. 
Therefore, there exists a tubular neighborhood sur- 
rounding the accessibility path described by H from qa 
to q b  Such that 

edge because Di(q2) = Dj(q2) = Dk(qz). 

Di(q) < Dj(Q) < Vl l#  i , i k  (13) 
for all configurations in the neighborhood. 

By a similar argument, there exists a similar tubular 
neighborhood from q b  to qc such that for all h # i, j ,  I C ,  

Di(q) < Dj(q) < Dk(q) < Dh(q) or 
Dj(4 )  I: a ( q )  < D k ( Q )  < DldQ') (14) 

for all configurations in the second tube. 
The proof now follows by contradiction. Assume that 

H(q)  is not continuous. Pick qul and qa2 such thak qu2 E 
nbhd(qul) but H(qaa, 1) @ nbhd(H(qtzl, 1)) (i.e., qca 
nbhd(qc,)). 

Since H(qaz ,  1) @ nbhd(H(qul, l ) ) ,  there exists a t < 
1 for which either: (1) H(qul , l )  E nbhd(H(q,,,t)), or 
(2) H(qa2,  1) E nbhd(H(qul, t)). If the former were true, 
then there exists a t < 1 for which there is a configura- 
tion, q,  in the neighborhood of H(qaZ,  t )  where l l ; (q)  = 
Dj(q)  = Dk(q).  This contradicts tlhe inequalities of 
Equations 13 and 14. If the H(q, , ,  1) E nbhd(H(qul, t)), 
then a similar contradiction arises. Thierefore, H is con- 

Proof Assume without loss of generality that obstacles 
C; and Cj have one unique pair of closest points, c; and 
cj. Let the distance between these two points be 2D,i,. 
Therefore, for all points c1 E Ci\{c;}, and for all points 

tinuous. Figure 12 helps visualize this, proof. 
Proof of Proposition 6.1 

c2; E Cj, llcl - c2;I/ > 2D,i,. This assumption implies 
that there exists a unique point, rmin E S S i j ,  where 
d,:(rmin) = a?j(rn3in) = Dmin and for all other points 

The proof follows in two steps. First, we show that 
falr all Configurations q E R 3 , j  where d;(r) > Dmin, 
there exists a unique configuiration of the rod that is 
tangent to the point based GVG and that satisfies the 
inequalities in Equation 12. Second, we show that the 
set of configurations where D;(q)  = Dmin forms a one 
dimensional curve in SE( 2). 

Assume 
the point of contact r is neither q(P)  nor q(Q) .  By 
Equation 12, D;(q)  = d i ( r )  which is greater than 
Dmin, by hypotlhesis. Let the projection of the dis- 
tance gradient at r onto the rod be rq(qVdi(r).  We 
know rq(R)Va?i(r) does not -vanish because Di(q) > 
D,i,. Hence, - - ~ ~ ( ~ ) V d ; ( r )  # 0 and there exists a 
y E nbhd(r) n q(R) such that di(y) < di (r ) .  This vi- 
oliates the inequality, a ? * ( ~ - )  < di(r1) V r l  E q(R) (from 
Equation 12). 'Thus, the only points for which the 
rod may intersect S S i j  and maintain the inequality, 
d.i(r)  5 di(r1) 'h-1 E q(R),  is either q(P) or q(Q).  
Therefore, all coinffigurations $1 E eSS;j that satisfy the 
inequality, d i ( r )  < di(r1) Vrl  E q(R),  can be identified 
with SS; j  x { q ( P ) )  or SS;j x { :q(Q)} ,  both of which are 
oine-dimensional. 

Now, consider the case where di(rm;,) = dj(r,i,) = 
Dmin. ~ ~ ( ~ ) V a ? i ( r , i , )  vanishes for the set of configura- 
tions where di(rmin) = dj(rmin) = Dmin. Thus, for all 
configurations of the the rod where rmin n q(R) = r,;,, 
there always exists a neighborhood, nbhd(r,i,) q(R),  
where d;(y)  2 d;i(rmin) for all y E nbhd(r,i,) n q(R).  
Therefore, all such configurations can be identified with 
{,r,i,} x [0, L] which is also one-dimensional. 

The inequality d;(r )  5 Dl,(q) Vh # i , j  forces the 
rod to be closest to obstacles Ci and Cj, but does not 

w 
Proof of Lemma 6.3 
Proof Recall that for all configurations q E Rij, there 
exists ain r E q(R) such that d i ( r )  5 di(rl), and 
d j ( r )  5 dj(r1) for all points r1 E q(R).  Since Di(q) = 
niin,ER(g),cECi l I ~ - - c / / ,  di(r) = Di(q) and d j ( r )  = Dj(q ) .  
Therefore for all configurations q E Rij, D;(q) = Dj(q )  
and thus for all (1 E Xij) q E (Yij .  

F'roof a ~ f  Lemma 6.4 
Proof By definition, for all q E Rij, there exists 
r E q(R) such that di(r1) 2 di (r )  for all r1 E q(R).  
Since di(r) 2 0, for all r1 E q(R),  di(r1) > 0 because 
we assume the rod does not fully intersect an obsta- 
des boundary. Thus, with perhaps the exception of the 
point P or Q ,  the rod does not intersect an obstacle. 

r E SSij\{T,i,}, &(r)  = d j @ )  > d i ( fmin)  = dj(rmin). 

Consider the case where &(r)  > Dmin. 

affect the dimenaisnality of th.e edges. 
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