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Abstract 

A visual servoing algorithm for mobile robots is pro- 
posed. The main feature of the algorithm is that it 
exploits object profiles rather than solving correspon- 
dence problems using object features or texture. This 
property is crucial for mobile robot navigation in un- 
structured environments where the 3D scene exhibits 
only surfaces whose main features are their apparent 
contours. The framework is based on the epipolar geom- 
etry, which is recovered from object profiles and epipolar 
tangencies. Special symmetry conditions of epipoles are 
used to generate the mobile robot control law. For the 
sake of simplicity, mobile robot kinematics is assumed 
to be holonomic and the camera intrinsic parameters 
are assumed partially known. Such assumption can be 
relaxed to extend the application field of the approach. 

1 Introduction 
This paper deals with the problem of controlling the 
pose of a mobile robot with respect to a target object 
by means of visual feedback. 
Visual servoing has been applied recently to mobile 
robotics, see e.g. [6, 8, 41. In visual servoing, the con- 
trol goals and the feedback law are directly designed in 
the image domain. Designing the feedback at the sensor 
level increases system performance especially when un- 
certainties and disturbances can affect the robot model 
and the camera calibration [7]. 
In [7] the authors presented a classification of visual 
servoing systems. The approach used in this paper is 
known as image-based visual servoing, where the error 
between the robot pose and a target object or a set of 
target features is computed directly from image features. 
Visual servoing algorithms make use of object cues 
whose image plane projections are controlled to desired 
positions through the visual servoing process. Usually, 
these cues are distinctive textures, like corners, of ob- 

jects in the 3D scene. 
However, it may happen that the 3D scene does not ex- 
hibit any appropriate textures but only smooth surfaces 
whose main features consist of their apparent contours, 
defined as the projection of the contour generators of ob- 
jects’ surfaces [3]. As pointed out in [lo], if the object 
surface does not have any noticeable texture, the object 
profile is the only information available to estimate the 
structure of the surface and the motion of the camera. 
The aim of this work is to exploit object profiles to syn- 
thesize a visual servoing algorithm. It is worthwhile to 
notice that, in general, tracking object profiles instead 
of textures can be performed in a more robust way since 
solutions of correspondence problems are not required. 
Exploiting profiles in visual servoing is crucial in out- 
door navigation where objects in the scene are highly 
unstructured (hills, trees, etc.) and solving correspon- 
dences is a difficult task which usually gives rise to poor 
results. 
Recent results on using apparent contours and profiles to 
reconstruct object surfaces and recover camera motion 
are due to Cipolla and his colleagues, see [3, 11 for exam- 
ple. In [l] visual servoing was based on the estimation of 
the homography between initial and final viewed profiles 
but the algorithm worked with planar closed contours 
and required a correspondence optimization procedure. 

2 Visual modeling 
Assume that a pinhole camera is fixed to a mobile robot 
moving on a plane. Let zc be the optical axis of the 
camera-robot frame < c >. The configuration space of 
the mobile robot (or of the camera) is R2 x S 0 ( 2 ) ,  where 
SO(2) is the special orthogonal group of 2 x 2 rotation 
matrices. Let (2, 0 X c ) T  be the camera center position 
in the base frame < b >, and a, be the rotation angle of 
the camera-robot with respect to the z-axis of the base 
frame (see Fig. 1). 
For the sake of simplicity a holonomic mobile robot is 
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Figure 1: Mobile robot wit:h a fixed camera. 

considered. Thus system degrees of freedom are fully 
actuated by 

2, = U,; 

& = G, 

where (U,, u , ) ~  is the linear velocity of the camera-robot 
on the plane and w is the angular velocity about the y- 
axis. 

{ x, = U,; (1) 

2.1 Epipolar geometry 

Before describing the proposed visual servoing algo- 
rithm, we introduce some concepts of’ epipolar geom- 
etry [5, 31. Consider a pair of cameras with optical cen- 
ters c’, c ,  optical axes a‘, a and iinage planes q’, q .  The 
segment c’c is called the baseline and its intersections 
with the image planes define the epipoles. The image 
line passing through the epipole and the image center is 
called the horizon line, while any plane containing the 
baseline is called an epipolar plane (see Fig. 2). 
Given a pair of views of a scene and a set of correspond- 
ing points p:,  pi  in homogeneous coordinates, there ex- 
ists a matrix F E called the fundamental matrix 
[ 5 ] ,  such that: 

. 

piTFpi  = 0 ‘J i  (2) 

For any point pi  (p:)  in one view, the product Fpi 
(FTpi )  defines a line, called tht: epipolar line, in the 
other view such that the corresponding point pi (pi) 
belongs to this line. Moreover, the null right vector of 
F ( F T )  represents the epipole e (‘5’) on the image plane. 

Consider now the situation depicted in Fig. 2. Two 
images are taken by the same camera, which undergoes 
a rotation 0 about the axis 0. The optical centers c‘, c are 
displaced at  the same distance r from the intersection 
point o of the optical axes. Moreover, image planes and 
camera rotation axes are perpendicular to  the epipolar 
plane containing o. Under such assumptions and for a 
camera intrinsic matrix K = I ,  the fundamental matrix 

Figure 2: Symmetric camera displacement. 

0 

Figure 3: General cameras displacement. 

F is given by (see [9, 101 for details): 

) (3) 
0 cos@- 1 0 

- sin0 0 0 
F =  ( c o s @ - 1  0 sin 0 

where 0 is the angle between the optical axes a’ and a ,  
and the epipoles e‘, e are given by 

Remark 1 For the circular displacement an Fig. 2, a 
special symmetry condition holds: the x-coordinate of 
the two epipoles in (4) have the same magnitude and 
opposite sign. Such a symmetry will play a key role in 
designing the visual servoang algorithm. 

Symmetry is not preserved in the general configuration 
shown in Fig. 3 where the camera c’ is shifted along its 
optical axis a distance F. In this case, the fundamental 
matrix F assumes the form 

0 p c o s 0 - y s i n 0  

0.  -/?sin@ - ycos0 0 
F = (  -,B 0 P ) (5) 

where 

cos0 - -L (6) r+F’ 
p = 1-  

y = sin8 (7) 
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T and the epipoles are e' = (cy', 0, l)T and e = (a ,  0 ,  1) 
with 

Remark 2 The assumption of known camera intrinsic 
matrix (K = I )  has been introduced for clarity of presen- 
tation. The symmetry property still holds for unknown 
focal lengths fx and f,, and henceforth we will assume 
that the intrinsic matrix is partially known: 

K = diag(fz, f y ,  1). 

e' = (fza' ,  0, 1)' 
e = ( f z a ,  0, 

Under this assumption, the epipoles are given by 

(9) 

that is, they are obtained b y  scaling a and cy' in (8) b y  
the positive factor f z .  
Finally, note that the camera intrinsic matrix can be 
assumed completely unknown at the cost of  a more in- 
volved discussion that, however, would not improve the 
problem insight. 

3 Circular motion 
In this section the visual servoing algorithm is described 
for circular motion. Extensions to genera1 planar motion 
will be discussed in Section 4. 
The core procedure of the proposed visual servoing al- 
gorithm consists in exploiting profiles to estimate the 
epipoles of current and desired images. 
Consider the problem of moving a camera from an ini- 
tial position to a desired position following a circular 
trajectory on the plane and exploiting only information 
derived from the desired image and the initial image. 
As in Section 2, suppose that the image plane and the 
rotation axis of the camera are perpendicular to the 
motion plane, and that the optical axis intersects the 
trajectory center (see Fig. 2). Two different cases must 
be analysed. 

3.1 Case I: known radius 

Assume that the circular trajectory radius T is known. 
The image of the axis of rotation projects to the vertical 
line passing through the image center in each view of the 
scene. According to Section 2.1, the epipoles lie on the 
horizon line and their position is symmetric with respect 
to the rotation axis: 

Figure 4: Epipolar tangencies for the symmetric cam- 
eras displacement case. 

where 
w = fx/tan(8/2).  (10) 

This means that the x-coordinates of the epipoles pro- 
vide informations about the angle 8 even when the cam- 
eras are uncalibrated. 
In what follows, profiles will be exploited to estimate 
the epipoles of the initial and desired images. The basic 
idea is to use corresponding profiles in the images in 
order to estimate the epipole positions. Let obj be an 
object in the scene visible in both views and consider 
an epipolar plane p (distinct from the horizon plane) 
tangent to object obj. The tangent point between plane 
p and object obj is called frontier point: this point has 
the property of belonging to the apparent contour of 
object obj in each view [3]. Moreover, the epipolar line 
corresponding to this point is tangent to the apparent 
contour in each view (see Fig. 4) and, due to the chosen 
circular motion, the angle between the epipolar tangent 
and the horizon line is the same in each image. 
This suggests that the epipole positions can be found by 
minimizing the sum of distances between the apparent 
contour and the corresponding epipolar tangency: 

w = argmin[Dist(l'(G), C') + Dist(l(G), C)]  (11) 
cl 

where l ' (G),  Z(G) are the corresponding epipolar lines 
depending on the epipole positions 5 and -6, C',C 
are the apparent contours and Dis t ( . ,  .) is the distance 
between the epipolar line and contour. In other words, 
we are looking for the epipole positions w and -w such 
that the corresponding epipolar tangent in the current 
view is an epipolar tangent in the desired view. 
Observe that the optimization problem in (11) has only 
one free parameter w.  The visual servoing, leading the 
robot towards its final position algorithm, is designed 
on the basis of the estimated parameter w.  
Let the circular trajectory of the camera be parameter- 
ized as follows (see Fig. 5): 

Z,( t )  = rcoscp(t), 
x , ( t )  = rsincp(t), 
ac(t) = cp(t) + 7r e ' =  (-w, 0, I ) ~ ;  e = (w ,  0, I)' 
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Figure 5: Parameterization of a circular motion centered 
on the origin of the base frame and with radius r .  

where cp is the current camera position angle. The dif- 
ferential kinematics of the system is hence described by: 

where +(t) is the control parameter steering the linear 
and angular velocity in (1).  
To design the visual servoing algorithm, the control pa- 
rameter $(t)  must be computable from the image mea- 
surement w.  Observe that @ = Vd - cp, thus when cp 
approaches the desired value Pd; $ decreases and goes 
to zero for cp = Vd as shown in (.Lo), see also Fig. 5 .  
Therefore, a simple proportional control law of the vi- 
sual measurement $ is given by: 

(14) 
x +(t) = ~- 

w ( t )  

for some X > 0. 

3.2 Case 11: unknown radius 

Now suppose that the only a priori knowledge of the 
motion of the camera-robot is that a circular displace- 
ment occurs between the desired and the initial posi- 
tions about an axis perpendicular to the motion plane 
and passing through an unknown point of the optical 
axis zc. The trajectory radius r is unknown. 
Let the initial configuration ci and desired camera po- 
sition c be as given as shown in Fig. 6. Starting from 
an initial guess i o  for the trajeciiory radius, apply con- 
trols w ,  U ,  and U ,  (angular and linear velocities) as in 
(13) and (14). If i o  # r ,  the camera leaves the circular 
trajectory of radius r and reache;; the new configuration 
c', after some amount of time, a;; shown in Fig. 6. The 
desired image and the current one (that taken by the 

Figure 6: Robot motion under a (circular) control law 
with a wrong estimate of the radius. 

camera in e') do not exhibit the property of symmetry 
discussed in Remark 1. In this new configuration (e',  c), 
the epipoles are not symmetric with respect to  the ro- 
tation axis and their positions are given by (9). 
Two parameters, e, and e,, can be defined as: 

1 1 
e,  = - + -, 

f z a '  f &  
1 1 

e ,  = 
fza '  f z a '  

The parameter e, is defined as the sum of the inverse 
of the z-coordinates of the two epipoles. It accounts for 
the unsymmetric part of the displacements between the 
two views. On the other hand, parameter e, accounts 
for the angle @ and'as in Section 3.1 will steer the camera 
along the circular trajectory with known radius. 
The following properties hold and are relevant for the 
design of the visual servoing procedure: 

In order to  define the visual servoing procedure, we must 
compute the camera position e', obtained by rotating 
the camera of the angle $ about an estimate of the 
rotation center 8 (Fig. 6) .  
The general camera position and orientation c' along the 
(unknown radius) trajectory with respect to  the initial 
position ci can be written as 

&(t)  = ( r  - i ( t ) )  coscpi + i ( t )  cos (pi + $( t ) )  , 
xc(t) = (T  - i ( t ) )  sincpi + i ( t )  sin (cpi + $( t ) )  , 
4 t )  = cpi + $( t )  + 7r (19) 

where i ( 0 )  = i o ,  $(O) = 0 and cpi identifies the initial 
camera position ci on the plane. Note that the camera 
orientation at e' is such that the optical axis intersects 8. 
The corresponding differential kinematics are obtained 
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Figure 7: Trajectories followed for different initial esti- 
mates Po: 0.1r, T ,  27- and 37- (decreasing order). 

by differentiating: 

Z,(t) = iyt) [cos (yi + +(t ) )  - cospi] 

k , ( t )  = +(t)  [sin (pi + +(t ) )  - sin yil 

b,(t) = ?j( t ) .  

:P( t )$( t )  sin (Yi + +(t))  1 

+f( t )$( t )  cos (Vi + +(t))  , 

From (17) and (18) it can be easily shown that the 
simple proportional control law 

(20) $(t)  = Xreu( t ) ,  
$ ( t )  = -A,es( t )  

is such that (for suitable positive A, and A,) 

lim c ' ( t )  = e. 
t+m 

Fig. 7 shows the trajectories followed by the camera for 
four different initial estimates +O of the unknown circular 
radius 7- = 1. Control parameters were set to A, = 1, 
A, = 0.1. Further details on the controller design can 
be found in [ 2 ] .  
Observe also that in this case visual servoing (20) is 
entirely defined in terms of image measurements. The 
estimation of the epipoles is given by the solution of 
an optimization problem similar to (11) which has two 
free pararneters (the two x-coordinates of the epipoles) 
instead of one and is constrained by the tangency con- 
dition in each view. 

4 General planar motion 
In this section the case of general cameras displacement 
is discussed. No a priori knowledge of the rotation and 
translation between the initial and the final positions is 
given. Assume only that the optical axes of the camera- 
robot in the initial and final configurations intersect at 
a point o. This case is that of general cameras dis- 
placement depicted in Fig. 3, where the property of 
symmetry discussed in Remark 1 does not apply. 
Consider the trajectory consisting of a translation along 
the optical axis and a rotation about the axis through 

Figure 8: Trajectory followed by the robot in the case 
of general planar motion. 

o, leading the camera from the initial configuration to 
the final one. 
In order to reach the desired position, the visual servoing 
algorithm steers the robot along this trajectory in two 
steps: 

1. the robot starts translating along the optical axis 
to reach a distance from o equal to 7- (i.e. to make 
r" = 0 in Fig. 3); 

2. the robot moves to the desired position with a cir- 
cular motion. 

Observe that the first step does not require knowledge of 
the current or desired radius. In fact it consists of a sim- 
ple translation along the optical axis and the stopping 
condition occurs when parameter e,  (15), accounting 
for non-circular displacements, goes to zero. A simple 
proportional control law can be chosen as 

F(t) = Xe,(t) (21) 

for some X > 0 and, consequently, the robot differential 
kinematics become 

. q t )  = k b ( t ) & ( t ) ,  
U t )  = h ( W C ( t ) ,  

&(t)  = 0. 

The second step brings the robot to the desired posi- 
tion following a circular trajectory as described in the 
previous section. Observe that neither knowledge nor 
estimation of the trajectory radius is required. Fig. 8 
shows the complete trajectory followed by the camera in 
the case of general camera displacement from an initial 
configuration cp to the final configuration e. 

5 Simulations 
Simulation results are reported to validate the proposed 
visual servoing algorithm for holonomic mobile robots. 
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cp --Ti ditions at the cost of a more involved discussion that, 
however, would not improve the problem insight. 
The visual servoing algorithm is based on a measure 
of the symmetry of the epipolar geometry which is re- 
trieved using image contours and tangency constraints 
but without solving any correspondence problem. Ex- 
ploiting profiles in visual feedback is crucial in outdoor 
navigation where objects in the scene are highly unstruc- 
tured and solving for correspondences is difficult. 
Work is in progress to  test the visual servoing algorithm 
on an experimental platform, the XR4000 by Nomadic 
Inc. 

\. . 
Figure 9: General planar motion: io = 3r (solid) and 
PO = 0 (dashed). 

C 1- 

Ci 

Figure 10: Trajectory for r^o = 37- and different values 
of A, (0.5,1,2). 

General planar motion was tested. The initial and final 
robot-camera configurations are 

(2+( -0 4; 866 ) ,  ( $ ) = (  -0 0 5  866 ) 
ffc, 2n/3 

Fig. 8 shows the ideal translatimal and rotational tra- 
jectories followed by the visual servoing. The pure trans- 
lation moves the robot along the optical axis from cp to 
the intersection c, with the circle passing through c and 
centered on 0. From this point the robot-camera starts 
to  rotate as described in Section 3 2. This second part 
of the trajectory, which steers the mobile robot to e ,  
strongly depends on the initial guess of the unknown 
radius T .  Simulations are repoi-ted in Fig. 9: the solid 
line (dashed line) corresponds to an initial guess which 
is three (zero) times the true value. Control parameters 
are set to  A = 1, A, = 1 and A, = 0.1. 
A second simulation was run t o  show system behavior 
for different control parameters. Circular motions with 
unknown radius were considered. Fig. 10 shows the 
trajectories followed for l‘o = 3, A, = 1 and different 
values of A,. 

6 Conclusions 
Epipolar geometry was exploited to  design an image- 
based visual servoing algorithm for a mobile robot with 
a fixed camera. For the sake of simplicity mobile robot 
kinematics was assumed to  be holonomic and the cam- 
era intrinsic parameters were assumed partially known. 
These assumptions can be relaxed to  less restrictive con- 
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