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Abstract—This paper describes the improvements achieved 
in our mosaicking system to assist Unmanned Underwater 
Vehicle navigation. A major advance has been attained in the 
processing of images of the ocean floor when light absorption 
effects are evident. Due to the absorption of natural light, 
underwater vehicles often require artificial light sources 
attached to them to provide the adequate illumination for 
processing underwater images. Unfortunately, these flashlights 
tend to illuminate the scene in a nonuniform fashion. In this 
paper a technique to correct non-uniform lighting is proposed. 
The acquired frames are compensated through a point-by-point 
division of the image by an estimation of the illumination field. 
Then, the gray-levels of the obtained image are remapped to 
enhance image contrast. Experiments with real images are 
presented. 
 
 

I. INTRODUCTION 
 

When Unmanned Underwater Vehicles (UUVs) perform 
missions near the ocean floor, optical sensors can be used to 
improve local navigation [1,2]. A mosaicking system can be 
used to process the images provided by a down-looking 
camera carried by the vehicle. In this way, the acquired 
images can be used to refine the estimation of the vehicle’s 
position when it is navigating near the ocean floor [3].  

However, light gets attenuated and scattered in the 
underwater medium, disappearing from the image-forming 
process [4,5]. This process of absorption of the medium 
generates serious problems in underwater images, such as 
blurring of image features, limited range, clutter and lack of 
structure in the regions of interest. Often, as depth increases, 
natural light is not sufficient for imaging the sea floor. For 
this reason, a light source is normally attached to the 
submersible providing the necessary lighting. Artificial light 
sources tend to illuminate the scene in a nonuniform fashion, 
producing a bright spot in the center of the image with a 
poorly illuminated area surrounding it. Therefore, application 
of standard computer vision techniques to underwater 
imaging requires dealing first with these added problems. 

In this paper we propose a revision of our mosaicking al-
gorithm [6], adapting it for dealing with changes in the 
brightness of the imagery as the vehicle moves. The 
remaining of the paper is organized as follows. First, section 
II gives a brief description of our mosaicking algorithm. 
Then, section III proposes an image enhancement technique 
to compensate nonuniform lighting effects. Next, some 
experiments performed on real data acquired by the under-

water vehicle URIS are shown in section IV; and, finally, the 
conclusions and future work close the paper. 

 
 

II. MOTION ESTIMATION THROUGH MOSAICKING 
 

Our mosaicking system is intended to work on either 
URIS or GARBI, the two UUVs developed at the Computer 
Vision and Robotics Group of the University of Girona. 
Depending on the sensors available in every vehicle, the 
mosaicking system may take advantage of additional infor-
mation provided by the on-board sensors (e.g. altimeter 
sonar, compass, Doppler Velocity Log, Inertial Navigation 
System, inclinometer, etc.). A Sensor Fusion module (SF) 
integrates an estimation of the motion of the vehicle. Detailed 
description of this module is out of the scope of this paper, 
since it depends on which vehicle we consider, and which 
on-board sensors are available. In the best case, the SF 
module would provide incremental measurements on position 
and orientation (x,y,z,φ,θ,ψ). However, since we plan our 
mosaicking system to work under different conditions, this 
estimation may not be available, or may be inaccurate (e.g., 
the robot may only carry a gyrocompass, which means that 
only yaw will be available). Therefore, we can assume with-
out loss of generality that the SF module provides the 
necessary information to compute a planar homography r

c′H  
with 8 degrees of freedom, which encodes any available 
information (converting pitch and roll into rough estimations 
of perspective deformation) [7]. 

The mosaicking system is divided into two main blocks, 
namely: mosaic supervisor and mosaic engine. The mosaic 
supervisor keeps the state of the system and takes decisions 
according to this state. It takes into account the estimations of 
the SF module (which depend on the vehicle and its 
configuration), analyses how the vehicle is moving and 
generates the pertinent orders for the mosaic engine. The 
supervisor module is responsible of the mosaic data 
structure, that is, updating the mosaic image (Im), according 
to the acquired images. It provides the engine with the 
images which will be used to estimate the motion of the 
vehicle. One of these images is the current frame acquired by 
the camera (Ic). The second one is a reference image (Ir) 
which has been extracted from the photo-mosaic at the 
present location. Along with these images the engine 
provides an initial estimate of the apparent motion between 
them. This initial estimate of the apparent motion is mate-



(1) 

rialized in the form of the “a priori” 3×3 estimation matrix 
r

c′H . This matrix can be computed from the data provided by 
the SF module, or, if on-board sensor information is not 
available, the supervisor can generate r

c′H  based uniquely 
on the vision system, as will be described below. The output 
of the mosaic engine is another matrix, r

cH , which provides 
a refinement of the initial motion estimation and its 
associated uncertainty. The engine is controlled by the 
mosaic supervisor. Therefore, it is only executed when the 
supervisor requires an iteration of the engine, providing a 
matrix r

cH  which describes the planar motion between 
images Ic and Ir. 

The operations performed by the supervisor are the 
following. First, image Ic is acquired by the camera, and the 
geometric distortion caused by the lens and the camera 
housing is corrected. The next step consists of selecting 
image Ir to be passed jointly with image Ic to the engine. At 
time instant k, the supervisor uses matrix r

c′H  to check if the 
overlapping between the previous reference image Ir(k−1) 
and the current one Ic(k) is below a desired threshold. If this 
is the case, it will select a new reference image Ir(k). The new 
reference image will be extracted from the mosaic image 
Im(k−1) at the same position and orientation as that of the last 
image processed by the system, i.e., the current image at the 
previous time instant Ic(k−1). If the overlap between images 
Ic(k) and Ir(k−1) is bigger than the threshold, the reference 
image will not change, i.e. Ir(k) = Ir(k−1). Finally, images 
Ir(k) and Ic(k), and matrix r

c′H  are passed to the mosaic 
engine, and it is told to execute. 

The engine then begins its execution by detecting interest 
points in image Ic. The goal of our interest point detector is to 
find stable features in the image, i.e. scene features which 
can be reliably found when the camera moves from one 
location to another and lighting conditions of the scene 
change somewhat. The strategy which has been used to 
detect these interest points is based on the use of a corner 
detector [8]. 

Once the interest points have been detected in image Ic, 
the next step consists of finding their correspondences in the 
reference image Ir. Before searching for correspondences, 
both images are smoothed with a 3×3 Gaussian mask. Given 
an interest point cm  in image Ic, instead of considering the 
point as an individual feature, an n×n region ( )cR m  centered 
at this point is selected. Then, the engine aims to find a point 
r m  in reference image Ir, surrounded by a n×n area ( )rR m , 
which presents a high degree of similarity to ( )cR m . This 
“similarity” is computed as a correlation function [9]. In 
order to reduce the computational cost, the considered 
regions, ( )cR m  and ( )rR m , are subsampled by a factor q, 
reducing the processed pixels from n×n to m×m, where 

( )( 1) 1m n q= − + , as shown in equation (1). 
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in which ( 1) 2 ,a n q= −  Ic and Ir are the current and 
reference images for which the motion is to be computed, 

2 ( )Iσ  is the variance of the image computed in the 
correlation window (see equation (2)); and ( , )I x y  is the 
average of the correlation window in the image as shown in 
equation (3). 
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Equation (1) is normalized by substracting the mean and 
dividing by a factor which takes into account the dispersion 
of the gray levels in the considered regions. For this reason, 
this measurement of correlation is very adequate for 
underwater imaging, where lighting inhomogeneities are 
frequent. Unfortunately, although equation (1) produces good 
results in absence of rotations, its reliability decreases as 
images Ic and Ir present a higher rotational component. For 
this reason the reference image extracted from the mosaic has 
the orientation of the last image acquired by the system 
Ic(k−1). The high frame rate guarantees the difference in 
orientation and scaling between two consecutive images will 
be very small. On the other hand, it has been proved that the 
accuracy of subsampling the correlation window is 
practically the same as using the full window [10]. This is 
due to the strong correlation in the gray level of neighboring 
pixels, producing smooth intensity variations, especially after 
a low-pass filtering. 

According to equation (1), given an interest point cm, its 
correspondence rm should be the point which has obtained 
the highest correlation score. Unfortunately, experimental 
work with underwater images has proved that in some cases 
the true correspondence is not the one with the highest 
correlation score, although its score is normally quite high. 
For this reason we also use texture as a similarity measure to 
solve the correspondence problem (see [11] for further 
details). 

Once the pairs of corresponding points have been 
detected, those points which do not describe the dominant 



motion between both images are deleted through LMedS, a 
robust outlier detector [12]. Next, the apparent motion 
between current Ic(k) and reference Ir(k) images is computed 
from the remaining pairs of points, giving rise to a 3×3 
matrix .r

cH  When the engine completes its execution, it 
gives back the control to the mosaic supervisor. The mosaic 
supervisor then decides whether image Ic(k) should be 
merged with the composite mosaic image or, on the contrary, 
should only be taken into account to update the positioning 
estimation of the vehicle. Finally, the mosaic image Im(k) is 
updated and 3D positioning is obtained through triangulation 
by taking into account the camera focal length and a sonar 
altimeter (if available) [13]. 

In some cases the available on-board sensors may not be 
enough to provide “a priori” estimation matrix r

c′H . In this 
situation an additional execution of the engine is required. 
From the previous iteration, the supervisor knows the planar 
motion between the last current image ( 1)cI k −  and the 
reference one, being ( 1)r

c k −H  the homography provided by 
the mosaic engine at the previous instant. Then, the controller 
asks the engine to compute the motion between the last two 
acquired images: ( 1)cI k −  and ( )cI k . The resulting homo-
graphy is multiplied by ( 1)r

c k −H , and in this way “a priori” 
estimation matrix ( )r

c k′H  is obtained. Once matrix ( )r
c k′H  

has been obtained, the controller provides the engine with 
this matrix and the current and reference images, with which 
the engine performs a second iteration. 
 
 

III. CORRECTION OF LIGHTING EFFECTS 
 

The previous section has given a brief description of our 
mosaicking system. Although the mosaic engine is able to 
register two images presenting slight variations in their 
radiosity, better results can be obtained if the images undergo 
a process of radiometric rectification prior to the motion 
estimation phase. In this section, a strategy for correcting 
non-uniform lighting is described. This strategy exploits the 
illumination-reflectance model by considering the image as a 
function of the product of the reflectance properties of the 
imaged objects, and the illumination field present in the 
scene [14], as shown in equation (4). 

 ( , ) ( , ) ( , ),f x y i x y r x y= ⋅  (4) 

where f(x,y) is the image sensed by the camera, r(x,y) is the 
reflectance function (or ideal image under absence of 
shading) and i(x,y) represents the illumination multiplicative 
factor. Depending upon the camera characteristics, it may 
also contribute two more terms: (i) a gain component g(x,y) 
and (ii) an offset term o(x,y):  

 ( , ) ( , ) ( , ) ( , ) ( , ),f x y g x y i x y r x y o x y= ⋅ ⋅ +  (5) 

Depending on the camera characteristics, gain and offset 
terms may be a function of (x,y), or may also be two 
constants g and o, instead of g(x,y) and o(x,y). In any case, 
arranging equation (5), the sensed image can be expressed as 
a reflectance function adjusted by a multiplicative ( , )mc x y  
and an additive ( , )ac x y  shading component: 

 ( , ) ( , ) ( , ) ( , ),m af x y c x y r x y c x y= ⋅ +  (6) 

Normally, the multiplicative factor ( , )mc x y  due to light 
sources carried by the vehicle and camera sensitivity can be 
modeled as a smooth function. In order to model this non-
uniform illumination, a Gaussian-smoothed version of the 
image acquired by the camera ( , )f x y  is proposed. The 
smoothed image ( , )sf x y  is intended to be an estimate of 
how much the illumination field (and camera sensitivity) 
affects every pixel of the image. To obtain this effect, the 
smoothing has to be large compared to the size of the 
features in the image. Therefore, the acquired image can be 
corrected by a point-by-point division by the smoothed 
image, giving rise to an estimate of ideal image ( , )r x y  can 
be obtained through: 

 ( , )( , ) ,
( , )s

f x yr x y
f x y

δ= ⋅  (7) 

where δ  is a normalization constant which restores the 
overall image luminance. Here we have deliberately ignored 
offset term ( , )ac x y  which could come from non-uniform 
camera sensitivity since in an underwater environment its 
influence is quite small with respect to ( , ),i x y  at least for a 
standard camera. 

Next, the contrast of the resulting image is emphasized 
through equation (8), giving rise to ( , ),r x y′  an “equalized” 
version of ( , ).r x y  

( ) ( ) ( )
( , ) ( , ) min ( , ) ,

max ( , ) min ( , )
H L

Lr x y r x y r x y
r x y r x y

τ τ
τ

−′ = − +   −
  (8) 

where Hτ  and Lτ , are, respectively, the maximum and mini-
mum desired values of ( , );r x y′ ( )max ( , )r x y  represents the 
brightest gray level of image ( , )r x y  which is smaller than 
1.5 times the third quartile of the histogram of ( , );r x y  and a 
similar approach is applied to ( )min ( , )r x y  with the first 
quartile. In this way the proposed methodology increases its 
robustness with respect to noise. 

Moreover, in our implementation the smoothed image is 
not computed for every image of the sequence. It is only 
computed from a set of consecutive frames. The result is 
averaged, and then a 2D-Gaussian function is adjusted to the 
average image. In this way, it is used in equation (7) for 
every new image, thus saving computational effort. However, 
this simplification is only valid if the vehicle keeps constant 
its distance to the ocean floor (known as altitude). 
Fortunately, this is almost always the case when the vehicle 
is mosaicking the ocean floor. 
 



IV. EXPERIMENTAL RESULTS 
 

Some experiments have been carried out to test the 
performance of the lighting-correction strategy as a 
preliminary step for the construction of photo-mosaics. The 
images have been acquired by URIS in shallow waters of 
Costa Brava at sundown, to avoid the influence of the sun 
rays, thus simulating Deep Ocean operation. In these images, 
the vehicle carries its own light producing a serious 
nonuniform illumination effect in the form of a bright spot 
close to the center of the image. Although the mosaicking 
system can run in real time while the vehicle is performing its 
mission, the sequence of images considered in this paper has 
been acquired and stored to disk to be processed offline. In 
this way, the different approaches can be tested exactly on 
the same data. The considered sequence is formed by a flat 
area of the sea floor with sand and small rocks. However, 
since the underwater terrain is not perfectly flat, the motion 
of the vehicle, and therefore, motion of the light source, 
induces small shadows in the scene. These shadows move in 
opposite direction of the light source, which introduces an 
additional difficulty in the motion estimation process. 

Fig. 1(left) shows two sample images of the sequence. 
Their size is 384×288 pixels. Smoothing these images with a 
large Gaussian kernel (of size 51×51) gives rise to the images 
displayed in Fig. 1(right). The size of the smoothed images 
has been kept constant. This explains the gray border around 
the filtered images. In these images the ocean floor presents a 
flat relief, with small changes in range with respect to the 
camera and the light source. In this situation, it is not 
 
 

 

 

   

   

 (a) (b) 

Fig. 1. Estimation of the illumination field in a sequence of images 
presenting nonuniform illumination. (a) Original images, (b) Result of low-
pass filtering with a Gaussian kernel of size 51×51 pixels. 

 

 
 

Fig. 2. Resulting image after averaging several smoothed images. 
 

 
necessary to compute ( , )sf x y  for every acquired image, but 
it is computed only for the first few images of the sequence. 
Then, these smoothed images are averaged, and an estimation 
of the illumination field is obtained, as shown in Fig. 2. 

Fig. 3 shows the result of correcting the illumination 
effects of the two images illustrated in Fig. 1(left), following 
the strategy described in section III. For both frames, the 
image of Fig. 2 has been taken as smoothed image ( , ).sf x y  
From Fig. 3 we observed that the resulting enhanced images 
compensate the nonuniform lighting in quite an efficient 
way.  

Finally, the sequence of images has been used to 
construct a mosaic, while estimating the vehicle’s trajectory. 
Two mosaics are shown in Fig. 4. The first one has been 
constructed from the original images, without correction of 
the illumination artifacts. The last mosaic, shown in Fig. 
4(b), is the result of processing the original images with the 
technique described in section III, and then applying the 
mosaicking algorithm to the enhanced images. In both cases, 
no additional information from any on-board sensors has 
been used, in order to enable comparison between both 
strategies. It can be seen from Fig. 4 that the results are quite 
acceptable in both cases. Obviously, the mosaic with lighting 
correction presents a more uniform and clear appearance. 
Unfortunately, it is not possible to obtain an error 
measurement of the trajectory of the vehicle when the 
experiments are run in open sea, since the true trajectory is 
not known. However, from a qualitative (and subjective)  
 

 

   

 (a) (b) 

Fig. 3. Correction of non-uniform lighting. Individual frames of Fig. 1(left) 
after being enhanced through the strategy proposed in section III, using the 
Gaussian function illustrated in Fig. 2. 



analysis, small misalignments can be perceived in some areas 
of the first mosaic. These alignment errors are not perceptible 
in the second mosaic. Moreover, comparing both images it 
can be observed that the first third of the mosaic of Fig. 4(a) 
is a bit stretched, while the last part of the mosaic has been 
shrunk by a small factor. In any case, this experiment proves 
that the performance of the textural-aided correlation is quite 
good in the presence of uniform differences in the 
illumination field, while it suffers from a small degradation 
when the variations in the image irradiance are more 
pronounced. These sharp changes occur in the visible seams 
between images every time a new reference image is 
extracted from the mosaic image (see Fig. 5). These seams do 
not appear in the mosaic with corrected illumination. 

 
 

V. CONCLUSIONS AND FUTURE WORK 
 

A new methodology to construct photo-mosaics of the 
ocean floor has been presented, achieving a number of 
improvements with respect to our previous work [6]. First, 
detection of correspondences between images provides better 
results by considering new texture operators [11]. Second, 
the propagation of drift errors as the mosaic increases its size 
has been reduced. This is achieved by exploiting the 
reference image technique, instead of processing every pair 
of consecutive images. Drift is kept to a minimum for several 
consecutive images which share the same reference image. 
Finally, lighting inhomogeneities can be removed from the 
mosaic, obtaining a mosaic without visible seams between 
images. This is important if the reference image has to be 
extracted from the mosaic image as the system evolves, 
avoiding the processing of images like the illustrated by Fig. 
5(b). 

We have seen that although correcting nonuniform 
illumination before the images are processed leads to more 
accurate trajectory estimations, the result is not so different, 
just a small stretching or shrinking of the estimated vehicle 
path. This is due to the good performance of correlation and 
texture analysis, which provide good results under smooth 
differences in the illumination field between the two images 
which are being processed. However, if the illumination field 
changes abruptly, as in the mosaic of Fig. 4 (a), this 
nonlinearity deteriorates the accuracy of the similarity 
measure. For this reason removing lighting inhomogeneities 
is a good option.  

Future work is being focused in integrating the 
methodology described in [15], which was tested in 
simulation data, with the whole mosaicking system. In this 
way trajectory estimation will be improved when the vehicle 
re-visits areas which have been already mosaicked. 
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 (b) 

Fig. 4. (a) Mosaic constructed from the original images, without correction of 
the illumination artifacts. (b) Resulting mosaic obtained from the images 
enhanced with the technique described in section III. 

 

 



   

 (a) (b) 

Fig. 5. (a) Current image, after being rotated and scaled by the mosaic 
supervisor to match the characteristics of the reference image. (b) Reference 
image extracted from the mosaic. Better results are obtained when the 
reference image is extracted from a seam-less mosaic. 
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