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Abstract— This article presents a new approach for robot
motion control, using images acquired by an on-board camera.
A particularity of this method is that it can avoid reconstructing
the entire scene without limiting the displacements possible. To
achieve this, an image base of the environment is used to describe
the navigation space. We extract from this base a sequence of
overlapping images which define the zone that the robot must
traverse, in order to reach the desired position. Motions are
computed on-line using only points of interest extracted from
these images. A method based on potential field theory has
been adapted in order to ensure a sufficient visibility of these
features during the entire motion of the robot. Experimental
results obtained on a six degrees of freedom robotic system are
presented and confirm the validity of our approach.

I. INTRODUCTION

This article deals with automatic robot motion determination

using visual information provided by an on-board camera. This

problem is not new, but is still largely unsolved especially

for real environments. Firstly approaches dealing with this

problem are based on the classical ”Perception-Decision-

Action” cycle. Usually, those methods need a preliminary

reconstruction step of the navigation environment. On the

other hand, several works consider a local approach of visual

servoing [5], [12]. It consists of minimizing an error measured

between a current and a desired visual information. Therefore

it is assumed feature matching can be done, which limits

possible displacements.

The main objective of this work is to consider very large

motions. A typical example (but still futurist) is a vehicle with

an on board camera, able to autonomously displace itself to

different places of a city. In order to avoid an expensive (in

term of complexity and computational time) reconstruction of

the environment, we use an image base of the scene, which

will help us to define the motion that the robot can do.

Methods using Perception-Decision-Action loop can be clas-

sified with respect to the representation they make of the

robotic navigation space. Some construct a roadmap repre-

senting a collection of mono-dimensional curves associated to

configurations the robot can reach. Depending on the method

used to obtain it, the roadmap is called a visibility graph [8],

Voronoi diagram [25], generalized cones [2] or probabilistic

map [19]. Other methods divide the navigation space into

cells, corresponding to allowed or forbidden regions of the

robot configuration space [7], [27]. But those methods rely

on a planification step, which means that the entire robot

trajectory is generally computed off-line and therefore it is

difficult to deal with unpredictable events occurring during the

displacement. Potential field methods, originally developed as

an online collision avoidance approach [9], [14], work directly

in the work space. The robot is treated as a particle under

the influence of an artificial potential field defined as the

sum of an attractive potential pulling it toward the desired

position, and a repulsive one pushing the robot away from

undesirable configurations. However it is still supposed that

the place topology is perfectly known, which implies that a

reconstruction step must be done before.

Furthermore, in the planification methods presented previ-

ously, methods used for robot localization are not presented.

Methods called SLAM (for Simultaneous Localization and

Map building) propose to localize the robot and to improve

the scene model, thanks to robot motions and laser-like

sensors [23]. But these methods are not yet able to use a

single camera as a sensor. In [24], localization is obtained

with an image retrieval system, based on histograms defined

in the neighborhood of each image features. Although a

camera is used, environments considered are structured, and

no autonomous navigation task has been foreseen.

Some works deal in a same formalism with both localization

and navigation. In [4], localization is performed by comparing

the environment model, obtained during a learning step, and

a local one obtained with an on-board sensor. The scene is

divided into free convex regions, which enables to consider a

navigation task as a sequence of straight line motions. In [13],

[16], a camera sensor is used both for localization and navi-

gation. But theses schemes can not manage navigation tasks

between two positions defined by two images totally different.

The method proposed in this paper enables the robotic

system localization with respect to an available image base of

the environment (and not with respect to its 3D environment),

and then navigation toward a desired position while satisfying

an adapted visual constraint. Therefor, an image retrieval is

first performed in order to extract from the data base an

image sequence. Those images delimit the area of the whole

environment the robot is allowed to traverse to reach its goal.

A control law based on potential functions is then executed to

move the robot. In [18], a planification method with a sequence

of images has been introduced. It will be shown why this new

scheme is more efficient.

The next section presents how the sequence of images is

extracted from the database. The adaptation of a potential

field method is then presented in Section 3. Finally, Section 4
gives some experimental results that confirm the validity of

this approach for planar environments.



Fig. 1. Successive steps for extracting an image sequence

II. IMAGE SEQUENCE SELECTION

This section describes how a navigation task can be defined

in term of 2D images. The initial position is defined by the

image acquired by the camera before the motion, and the

desired position by the image the camera has to obtain at the

end of the motion. Those two images will be referred in the

rest of this paper as the initial image and the desired one.

The image base corresponds to a set of views describing

the whole environment of navigation. When a navigation task

is specified, a collection of views, which visually define the

scene the camera should observe during the motion, is selected

from the base. That means that common features must exist

between each couple of consecutive images of the sequence.

Operations presented in this section are carried out before

any movement takes place. The first step, construction of the

base graph, is done offline, only one time. The two next stages

are applied for each motion task, i.e. when a desired image is

specified. Fig. 1 summarizes the successive operations.

A. Offline stage: construction of the base graph

We consider here that an image base of the environment

has been acquired. In order to define a relationship between

those images, a robust matching algorithm [26] is used. It

provides, for each couple of images, points of interest that are

in correspondence. Those points correspond to high curvatures

of the gray scale image [11].

The graph is then generated as follows:

• each node corresponds to one image of the base,

• an edge indicates that at least 4 points have been matched

between the two corresponding images. This edge is

weighted by the inverse of the number of matched points.

Indeed, the more correspondences images have, the more the

motion between the associated positions is likely to be easy,

and well controlled. This weighted graph enables to define an

image path between any couple of images from the base.

B. Image retrieval

Once a navigation task is defined, the first operation consists

of linking the initial and desired images with the image base.

Therefor, the nearest images to the initial image, and the

nearest to the desired one are searched in the base. A content

based retrieval system is used, without doing a robust matching

with the entire database (which would be too much time

consuming). It is reminded that two retrievals are successively

done: one for the initial image, and one for the desired one.

More precisely, each point of interest from images of the

base are characterized by a descriptor. We used photometric

invariants, vectors that remain the same under translation,

rotation, scaling changes and illumination variations [20]. The

same descriptors are computed for the requested image.

The retrieval consists then of a k-nearest-neighbor-search:

each request descriptor gives a vote to the k nearest descriptors

from the base (euclidean distance is used). The images having

the most votes are the nearest images. The interested reader

could refer to [1], [20] for more details on image retrieval.

C. Determination of the image path

Initial and desired images are matched with their most

similar images in the base in order to complete the graph.

Then, Dijkstra’s shortest path algorithm [3] extracts from the

base an image path linking the two request images. This

methodology assures that:

• consecutive images contain enough common features,

• the selected path is the shortest one, with respect to the

weighting system used.

Fig. 4 presents an example of an image sequence extracted

from the base. It can be seen that each couple of images has a

common region, which ensures that the environment between

the initial and desired position is correctly defined.

III. ROBOT MOTION DETERMINATION

Here it is explained how robot motions can be computed

with the image sequence. In [18] a robot trajectory is obtained

during an offline planification step. It is then followed using

an image-based visual servoing which ensures that the robot

converges to each image successively (which is constraining

and in fact useless).

In our method, the motion is computed on-line, for each

image acquired by the camera and without any planification

step, which gives to this method a higher reactivity. Indeed,

unexpected exterior events occurring during the motion (like

a moving obstacle provoking an occlusion) could be easily

taken into account within the scheme proposed. Furthermore,

each intermediate image need not be reached exactly by the

robot during its motion. The image base is employed here to

describe the environment in which the robot is likely to move.

But this base can not provide any particular motion task with

the best intermediary positions.

The 2D positions of the points matched between these

images are the only information used. Successive matched sets

between images of the sequence inform whether or not features

should become visible or disappear during the motion. There-

fore robot motions will consist of making features initially out

of the field of view, become visible, until the robot reaches

the desired position. In order to do this, we use a potential

field approach, using an original attractive potential.

Reprojection from the sequence of images is used in order

to know the position of features not yet visible on the image

plane. Therefore the next section reminds some projective

geometry notions. The method proposed is then presented.



A. N images geometry and notations

Let us consider two views ψ1 and ψ2 of a planar scene.

This plane Π is represented in the second frame F2 by the

vector πT = [n2 −d2], where n2 is its normal vector, and

d2 the orthogonal distance between the plane and the optical

center. A 3D point Pj ∈ Π is projected under perspective

projection onto the two images on points measured in pixel

p1,j = [u1 v1 1]
T

and p2,j = [u2 v2 1]
T

. These projections

are linked by the transformation [6]: p1 ∝ 1G2p2 where 1G2

is a collineation matrix. It corresponds to a projective frame

transformation from view ψ2 to ψ1 (∝ is the equality up to

a factor). This matrix can be estimated with several methods.

Four points are necessary in the general case, or even three if

the epipolar geometry is already known [6], [21].

If we suppose the camera internal parameters K known, the

collineation 1H2 = K−11G2K can be decomposed in:

1H2 = 1R2 +
1t2

d2

nT
2 ,

where (1R2
1t2) is the rigid motion between the two frames

F1 and F2. 1R2 and 1t2 (up to a factor) can be extracted from

this collineation matrix [6]. It is also possible to determine

the ratio ρj , defined for each couple of projection between the

depth Zj of the 3D point and d2 [17]:

ρj =
Zj

d2

=
1 + nT

2
1RT

2 (1t2/d2)

nT
2

1RT
2 K−1p1

(1)

Let us now consider a set of N+1 images ψi (i ∈ [0, N ]).
ψ0 is the initial image, and ψN the desired one. mi,j is the

metric coordinates of the projection onto the image plane

ψi of the 3D point Pj . Mi is the feature set matched

between views ψi and ψi+1. A couple of projections from

Mi is noted (mi,j ,mi+1,j). These matching sets enable to

obtain N metric collineation matrices: 0H1, . . . ,
N−1HN . By

composing these collineations, a relation between any pair of

images is obtained:

mi,j ∝
k−1
∏

l=i

lHl+1mk,j = iHkmk,j , (2)

with i < k ≤ N . This composition enables to predict a feature

position in the current image plane even if the considered point

is not yet visible (a similar image transfer can be found in

[10]). Feature projections that are nearby the camera field of

view can then be detected, and the robot can move in order

to make them enter into the visibility area.

A projection mt,j ∝ (u, v, 1) is said visible if u ∈ [um uM ]
and v ∈ [vm vM ], where um, uM , vm and vM define a frame

in the current image ψt. We note Cfree this visibility area. The

set Ii corresponds to the 3D points that have been detected in

the image ψi of the path. Points that are visible in the current

image ψt are noted st,j . Vi is the set of features from the

image ψi of the path that are visible in ψt, which means:

st,j ∈ Vi ⇐⇒ Pj ∈ Ii

The robot configuration is represented by a vector X in the

configuration space W . As the 3D scene model is not known,

Fig. 2. Loop realized to compute the robot motion

the partial parameterization Xk =
[

ktdN N ,uθ
]

is used. From

the collineation kHN it is possible to compute tRN , and
ktdN N = ktN/dN . The normalized rotation axis u and the

angle of rotation θ are deduced from tRN .

B. Proposed methodology

The method proposed consists in making enter into the

current image frame feature projections of the next images

of the path that are not yet visible. Step by step, the robot

moves thus toward its desired position. This section presents

the successive operations done for each image acquired by the

camera. Fig. 2 summarizes these steps.

Before the motion starts, the collineations linking the pro-

jections between each successive couple of images, iHi+1

(i ∈ [0, N − 1]), are computed. All known points are then

projected onto the first and initial image plane ψ0:

m0,j ∝ 0Hkmk,j ,

with k ∈ [1, N − 1] and the matrices 0Hk obtained by

collineation composition. Features that belong to Cfree will be

tracked in the next image. From theses visible points, noted

s0,j , sets Vi can also be initialized.

1) Feature tracking: in ψt−1, the position of a visible

feature set st−1,j is known. The well-known Shi-Tomasi-

Kanade point tracker [22] permits to update their position

st,j in the current image ψt. Some points may get out the

free area Cfree. They are kept for the moment to compute the

current collineation (those points are out of Cfree, but still in

the current frame). The following step will take care of them,

as well as points that are entering into the free area thanks to

robot motions.

2) Current collineation determination: collineations be-

tween the current image and images ψi of the forthcoming

path are computed. Two possibilities raise:

• card (Vi) ≥ Nh

• card (Vi) < Nh,

where card(S) is the number of elements of the set S and

Nh is the minimal number of points needed to compute a

collineation matrix. In the first case, the collineation is directly

obtained, by resolving the following system:

st,j ∝ tHimi,j , ∀st,j ∈ Vi (3)

In the second case, the image content is not sufficient to

directly compute the collineation. But if we consider that the

collineation tHl between ψt and the frame ψl of the path has



been obtained with (3), the collineation between the current

frame and ψi can be deduced from:

tHi = tHl
lHi, (4)

where l < i < N and lHi obtained by composition of

collineations defined on the image path.

3) Visible features update: with these collineations, fea-

tures mi,j can be projected onto the current image plane from

the image ψi they belong to. A set mt,j is obtained:

mt,j ∝ tHimi,j (5)

This reprojection concerns only points that are not yet visible.

Indeed, as long as collineations are computed from matched

points and/or by collineation composition, no more precision

in term of position for the tracking can be obtained by

reprojecting already known points.

Points st,j tracked between previous and current views that

no longer belong to the free area are removed. Points obtained

with (5) verifying mt,j ∈ Cfree are added to st,j . Sets Vi are

also updated, with respect to the novel set st,j .

4) Interest point set selection: we are looking among all

the sets of matching Mi defined onto the path the one Mi∗

that will be used to define the robot motion. The selection

criterion is that its point projections must be close to the free

area, and at the same time, this set must be the furthest with

respect to the path. Therefore, we select among all the sets

M∗

i verifying:

card (mi∗,j |mi∗,j ∈ Vi∗ ∧ (mi∗,j ,mi∗+1,j) ∈ Mi∗) ≥ NM

the one with the rank i∗ maximal (NM is a threshold).

5) Attractive force computation: the attractive force is

defined by [17]:

Ff (x) = −ε

(

∂f

∂X

)+

~∇T
f
Vf ,

where f is a derivable function onto the whole configuration

space W and ~∇T
f
Vf is the gradient of a potential function

Vf = V (f (X )). ε is a positive gain used to fix the amplitude

of the force.

The attractive potential Vf is defined onto the image plane,

in order to attract into the field of view features from Mi∗

that are not yet visible. We propose the following potential:

Vs =
∑

j

Vs(sj), (6)

with:

Vs(sj) = g(uj − uM ) + g(vj − vM )

+ g(um − uj) + g(vm − vj),

and

g(x) = x ∗
(

π−1 arctan(kπx) + t
)

.

sj is the coordinate vector (uj vj 1)T of the feature concerned,

k and t are constants. If all the points sj project into Cfree,

this potential is null. Fig. 3 shows this potential function in

the case of a single point.

Fig. 3. Visibility constraint based potential function, for a single point

The corresponding attractive force is then:

Fs = −ε

(

∂s

∂X

)+

~∇T
s
Vs = −εL+~∇T

s
Vs,

where ~∇T
s Vs is easily obtained from (6) and L is the interac-

tion matrix related to s [5]. It defines the motion of the image

features with respect to the camera velocity Tc : ṡ = LTc. For

a k feature set, the interaction matrix is:

L(s,Z) =
[

LT (p1, Z1) . . . LT (pk, Zk)
]T
, (7)

where L (pi, Zi) is the classical interaction matrix of a point

pi whose depth is Zi. Considering relations (7) and (1), we

obtain [17]:

L (p, di∗+1) =
1

di∗+1

[

S Q
]

where Q =
[

QT
1 . . .Q

T
k

]

and S =
[

ST
1 . . .S

T
k

]

are two 2n×3
matrices independent of di∗+1. Sj and Qj are defined as :

Sj =

[

− 1

ρt,j
0 x

ρt,j

0 − 1

ρt,j

y
ρt,j

]

Qj =

[

xy −(1 + x2) y
1 + y2 −xy −x

]

Ratios ρt,j are deduced from tHi∗+1 with (see (1)):

ρt,j =
1 + nT

i∗+1
tRT

i∗+1(
tti∗+1/di∗+1)

nT
i∗+1

tRT
i∗+1

K−1pj

,

where pj is the projection onto the current image of the point

Pj considered (pj = st,j if the point is visible, pj = pt,j

otherwise).

6) Control Law: the robot velocity is directly servoed in

order to move in the direction defined by the previous force:

Tc = Fs

A novel image ψt+1 is then acquired. This scheme is done

in a loop-way until enough image features from the desired

image ψN are in the camera field of view. At this moment,

the robot is considered to be close to the desired position.
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Fig. 4. Example of an image sequence. a is the initial image, and g is the
desired one. Other ones have been automatically extracted from the base.

7) Desired position convergence: Once the robot is close

to the desired position, a classical attractive force is used until

the total system convergence:

Fa = −ε~∇T
a Va,

where the potential force is a parabolic function:

Va =
1

2
‖Xt −X ∗‖2.

Robot position Xt is deduced from matrix tHN , which also

enables to detect when points belonging to the last matching

set are entering the Cfree area. Since X ∗ = 06×1, the attractive

force is nothing but:

Fa = −εXt

Robot motion are deduced from Tc = Fa. This control law

exactly corresponds to an hybrid visual servoing [15]. It could

be also possible to use an image-based visual servoing, based

on the error between the current and desired feature positions.

IV. EXPERIMENTAL RESULTS

Experiments presented here were obtained on a six degrees

of freedom robot arm, with an on-board camera. The nav-

igation space is a plane on which several photographies are

sticked. To demonstrate the validity of our approach, we select

a case where the robot can not go in a straight way from the

initial position to the desired one. Images extracted from the

base and defining the path to perform are shown in Fig. 4.

Fig. 5 presents the reprojection onto the first image plane

of the whole interest points of the images. Image borders are

also drawn. A large amount of points are not visible in the

first view.

A. Obtained trajectory comparison

Fig. 6 shows the trajectory done by the principal point

of the camera during the motion. The robot does not reach

intermediary positions corresponding to images of the se-

quence. The 2D trajectory is compared to two other methods

in Fig. 7. The first method is a planification based on the

Fig. 5. Points and image borders projected onto the first image plane

Fig. 6. Principal point trajectory projected onto the first image plane

temporal decomposition of the collineation matrices between

each couple of images. The result trajectory is then followed

by an image-based visual servoing [18]. The different images

of the sequence are in this case intermediary desired positions

that the robotic system successively reaches. In the second

method, the robot still converges to intermediary positions

with an image-based visual servoing, but the current servoing

is stopped as soon as enough points defining the next servoing

are visible. The next image of the path is then considered as

the desired one. Therefore, the robot no longer converges to

each image of the sequence (as we can see in Fig. 7), but it

is still dependent to the intermediary positions.

The method proposed in this article gives a shorter trajec-

tory, while abiding by the visibility constraint. Moving for

making features enter into the camera field of view does not

penalize at all the robot motion.

B. Intermediary view positions independence

In order to show the independence of our method to the

positions associated to the intermediary images, a 180 degrees

rotation were applied to images b and f . Resolution of this

path with [18] constraints the robot to make those useless

rotations during motions ab, bc, ef and fg. Second method,

even if it avoids the total convergence to the intermediary



Fig. 7. 2d robot trajectory for the path defined by Fig. 4

Fig. 8. Robot trajectories compared (path defined by Fig. 4 and the same
with rotated images)

images, realizes anyway a part of those rotations. Fig. 8

compares the trajectory for the path without rotation, and the

trajectory obtained when views b and f are rotated. The two

trajectories are nearly the same, which proves that our method

is independent to the positions associated to the image path.

V. CONCLUSION

This article has presented a novel method for robot motion
control, by considering visual information. The path to realize
is first described by a sequence of images extracted from a base
of the environment. This method, which uses potential field
theory, avoids from local minima by only using one attractive
force, dealing with the camera attraction toward next image
features defined onto the path. Experiments prove also that the
trajectory does not depend at all on the positions associated
to the images of the sequence. Nevertheless, we can for the
moment only consider planar environments. We are therefore
working on this point, and looking forward to integrate non
holonomic constraints in order to work with a mobile robot.

REFERENCES

[1] S.A. Berrani, L. Amsaleg, and P. Gros. Approximate searches: k-
neighbors+precision. In ACM International Conference on Information

and Knowledge Management, Louisiane, USA, 2003.

[2] R.A. Brooks. Solving the find-path problem by representing free space
as generalized cones. IEEE Trans. on Systems, Man and Cybernetics,
13(3):190–197, 1983.

[3] T.H. Cormen, C Stein, R.L. Rivest, and C.E. Leiserson. Introduction to

Algorithms. McGraw-Hill Higher Education, 2001.
[4] J. L. Crowley. Navigation for intelligent mobile robot. IEEE Journal of

Robotics and Automation, 1(1), 1985.
[5] B. Espiau, F. Chaumette, and P. Rives. A new approach to visual servo-

ing in robotics. IEEE Trans. on Robotics and Automation, 8(3):313–326,
June 1992.

[6] O.D. Faugeras and F. Lustman. Motion and structure from motion in a
piecewise planar environment. Int. Journal of Pattern Recognition and

Artificial Intelligence, 2:485–508, 1988.
[7] B. Faverjon. Obstacle avoidance using an octree in the configuration

space of a manipulator. In IEEE Int. Conf. on Robotics and Automation,
pages 504–512, Atlanta, Ga., 1984.

[8] S. K. Ghosh and D. M. Mount. An output sensitive algorithm for
computing visibility graphs. In IEEE Symp. on Foundations of Computer

Science, Los Angeles, 1987.
[9] H. Haddad, M. Khatib, S. Lacroix, and R. Chatila. Reactive navigation

in outdoor environments using potential fields. In IEEE Int. Conf. on

Robotics and Automation, pages 1232–1237, Louvain, May 1998.
[10] D. Hager, D. Kriegman, E. Yeh, and C. Rasmussen. Image-based

prediction of landmark features for mobile robot navigation. In IEEE

Int. Conf. on Robotics and Automation, pages 1040–1046, 1997.
[11] C. Harris and M. Stephens. A combined corner and edge detector. In

Alvey Vision Conf., pages 147–151, University of Manchester, England,
Sept. 1988.

[12] S. Hutchinson, G.D. Hager, and P.I. Corke. A tutorial on visual servo
control. IEEE Trans. Robotics and Automation, 12(5):651–670, Oct.
1996.

[13] S. Jones, C. Andersen, and J. L. Crowley. Appearance based processes
for visual navigation. IEE/RSJ Int. Conf. on Intelligent Robots and

Systems, Sept. 1997.
[14] O. Khatib. Real-time obstacle avoidance for manipulators and mobile

robots. Int. Journal of Robotics Research, 5(1):90–98, 1986.
[15] E. Malis and F. Chaumette. Theoretical improvements in the stability

analysis of a new class of model-free visual servoing methods. IEEE

Trans. on Robotics and Automation, 18(2):176–186, April 2002.
[16] Y. Matsumoto, M. Inaba, and H. Inoue. Visual navigation using view-

sequenced route representation. In IEEE Int. Conf. on Robotics and

Automation, pages 83–88, Minneapolis, 1996.
[17] Y. Mezouar and F. Chaumette. Path planning for robust image-based

control. IEEE Trans. on Robotics and Automation, 18(4):534–549,
August 2002.

[18] Y. Mezouar, A. Remazeilles, P. Gros, and F. Chaumette. Image
interpolation for image-based control under large displacement. In IEEE

Int. Conf. on Robotics and Automation, volume 3, pages 3787–3794,
Washington DC, May 2002.

[19] C. Nissoux, T. Simon, and J-P. Laumond. Visibility based probabilistic
roadmaps. In IEEE Int. Conf. on Intelligent Robots and Systems, pages
1316–1321, Kyongju, Core, Oct. 1999.

[20] C. Schmid and R. Mohr. Local grayvalue invariants for image retrieval.
Pattern Analysis and Machine Intelligence, 19(5):530–534, May 1997.

[21] A. Shashua and N. Navab. Relative affine structure: Canonical model for
3d from 2d geometry and applications. Pattern Analysis and Machine

Intelligence, 18(9):873–883, Sept. 1996.
[22] J. Shi and C. Tomasi. Good features to track. In IEEE Computer Vision

and Pattern Recognition, pages 593–600, Seattle, June 1994.
[23] A.C. Victorino, P. Rives, and Borrelly. Localization and map building

using a sensor-based control strategy. In IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems, pages 937–942, Takamatsu, Japon, Oct.
2000.

[24] J. Wolf, W. Burgard, and H. Burkhardt. Robust vision-based localization
for mobile robots using an image retrieval system based on invariant
features. In IEEE Int. Conf. on Robotics and Automation, Washington
DC, May 2002.

[25] C.K. Yap. An O(n log n) algorithm for the voronoi diagram of a set of
simple curve segments. Technical report, Robotics Laboratory, Courant
Institute, New-York University, 1985.

[26] Z. Zhang, R. Deriche, Q. Luong, and O. Faugeras. A robust approach
to image matching : Recovery of the epipolar geometry. Int. Symp. of

Young Investigators on Information-Computer-Control, 1994.
[27] D. Zhu and J.C. Latombe. New heuristic algorithms for efficient

hierarchical path planning. IEEE Trans. on Robotics and Automation,
7:9–20, 1991.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	header: Proceedings of the 2004 IEEE                                   International Conference on Robotics & Automation      New Orleans, LA • April 2004
	footer: 0-7803-8232-3/04/$17.00 ©2004 IEEE
	01: 4695
	02: 4696
	03: 4697
	04: 4698
	05: 4699
	06: 4700


