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- Abstract—1t is essential in many applications that maobile
robots localize themselves with respect to an unknown envi-
ronment. This means that the robot must build a map of its
environment and then localize using the map. This process
is called simultaneous localization and mapping (SI.AM). This
paper presents an iterative solution to the landmark initialization
probiem inherent in a bearing-only implementation of SLAM, No
prior knowledge of the environment is required, and furthermore,
there are ne requirements about having the data association
probiem solved. Once landmarks are initialized, they are inserted
into an extended Kalman Filter (EKF) to solve the SLAM
problem. Both indoor and outdoor experiments are presented
to validate the method.

I, INTRODUCTION

Here we discuss two major problems that must be addressed
in any implementation of simultaneous Jocalization and map-

ping {(SLAM): data association and landmark initialization.

The data association problem deals with matching measure-
ments o the appropriate landmark, or similarly, matching
measurements from the current step to measurements from
prior steps. If the landmark locations are known, then the
data association problem is fairly straightforward to solve
[2]. The landmark initialization problem deals with using the
rmeasurements to determine a spatial estimate for the landmark.
These problems are particularly important in the case where
available sensors provide only bearing information. While
a single range and bearing measurement is usually enough
to initialize a landmark relative to the robot, two or more
measurements are required if only bearing information is
available [1]. )

This paper presents a new method of dealing with the land-
mark initialization problem in bearing-only SLAM. Bearing-
only SLAM allows for SLAM algorithms to be run on mobile
platforms with inexpensive sensors such as low resclution
monocular cameras. Furthermore, this aids in SLAM im-
plementations in which a camera is used to detect natural
landmarks such as edges.

The approach presented in this paper is an iterative method
for initializing landmarks given only bearing measurements.
The iterative nature of the algorithm allows it to be incorpo-
rated into an extended Kalman fiiter (EKF) in a straightforward
manner. This method makes no assumptions about having
the data association problem solved or that disambiguating
between any subset of the landmarks is possible.
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II. BACKGROUND

Leonard and Durrant-Whyte [2] first coined the term simul-
taneous localization and mapping or SLAM. This field has
received considerable attention in the past five years. Con-
ventional SLAM involves fusing observations of landmarks
with dead-reckoning information in order to track the location
of the robot and build a map of the landmark locations.
Implementations of SLAM are uvsually done using Kalman
Filters (3] [4] [5] (6] or particie filters [7] [8]. The EKF
[9] 3] [4] vses a linear approximation of the system in
order to maintain a state vector that contains the locations
of the robot and landmarks. In addition to this, it maintains a
covariance matrix that contains an approximation of correlated
uncertainty. ,

The problem of conducting SLAM using only bearing mea-
surements has also been discussed in the recent literature, The
nonlinear nature of the bearing-only SLAM problem has led to
some difficulties in estimating the location of the landmarks
given a series of robot poses and measurements from those
poses. Techniques have been developed to determine when
the problem is well-conditioned for landmark jnitialization
[10] [1]. These methods ignore the data association problem,
ie., they assume it is known as to which measurements
correspond to which landmarks. This is important in that
it allows for merging measurements from the current pose
with the appropriate measurements from prior poses. A fast,
accurate, and robust method for running SLAM algorithms on
a bearing-only problem was also considered [11]. This method
employs a batch technique in order to initialize the landmarks.

Monocular vision cameras are an increasingly popular sen-
sor for SLAM in light of the developments in bearing-only
SLAM. As this is the case, various methods from the vision
community have been applied to SLAM, such as color-based
feature tracking [12] and structure from motion (SFM) [13}
[14]. Feature tracking-based approaches, as well as the SFM
methods, have solved the data association problem; landmarks
are tracked from one frame to another so the measurements
are automatically associated. Additionally, batch optimization
techniques do not directly require that the landmarks be
initialized; however, they are sensitive to the initial conditions
vsed in the optimization process. The work presented here
goes beyond these results by presenting a method of fandmark
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initialization that does not rely on feature tracking or baich
optimization.

II1. LANDMARK INITIALIZATION

The bearing-only SLAM landmark initialization methods
mentioned in Section I all assume that the data association
is known a priori; however, if a system is to be used in
an unknown environment with landmarks that are not easily
distinguishable from each other, then it is unlikely that such
an assumption about the data association would be reasonable.
Similaly, if a robot needs 1o reach its goal in a short period of
time, it becomes harder to obtain frames that are close together
causing feature tracking to fail. In this section, a method is
presented for initializing landmarks without any a priori data
association or requiremenis about the distance the robot can
travel between frames.

A. Determining Spatial Estimates for the Landmark Locations

The locations of the robot and landmarks are maintained in
a state vector, X, with an associated covariance matrix, P,

T
vy Tin, Yin ] 3
(N
where [2.,yr, 8| are the position and orientation of the robot,
and [xy3, yu| are the location of the ith landmark.
The bearing measurements are maintained in a vector Z,

X:[Iry Yo Or, T, W,

Z=[a, ., am ], @)

where «; is the jth measurement from the current robot pose.

Consider an ideal system with perfect positioning and no
sensing uncertainty. Note that a single measurement corre-
sponds to a ray eminating from the robot position at which
the measurement was taken. For measurements taken from
a sequence of robot positions, a landmark that has been
seen from multipte locations will lie at the point where rays
eminating from those locations intersect, Without a method for
determining the data association, it is unknown which rays to
intersect (Figure 1). So the only option is to consider every
possible intersection. Only some of these calculated infersec-
tions correspond to actual landmark locations. The remaining
inmiersection points are due to intersecting measurements that
do not correspond 1o the same landmark (i.e. a misassociation).
Some intersections can be eliminated by ensuring that the peint
lies in the detectable range of the robot at the poses from
which the measurements originated. Storing the number of
times that a given point has been calculated as an intersection
will yield some measure of persistence of that landmark pose
estimate as a possibility. As additional measurements are taken
from new robot locations, the persistence of an intersection
can be tracked. As the intersection’s persistence increases, the
probabitity of that intersection corresponding 1o a landmark
increases!, Once the probability reaches an acceptable range,
the landmark can be initialized.

This is only gqualitative. We have not yet derived a formal relationship
between persistence and probability.

éf/

Fig. 1. Two measurements are obtained from each of the two poses. These
wo measurements can be modeled as lines and intersected resulting in four
intersection points. Of these four intersection points, only two cerrespond o
the actual landmark locatons (denored by the solid black circles).

In the presence of positioning and sensing uncertainties,
this process is mot as straightforward, but can still serve
as a guideline for landmark initialization. A set of possible
landmark locations must still be generated by intersecting
measurements, and this set can be further reduced by taking
into consideration the sensing range limitations of the robot.
The difficulty due to sensing and positioning error arises in
determining the persistence of the landmarks. Some measure
of the uncertainty of the intersection point due 10 the robot’s
positioning and sensing esrors must be determined; therefare,
as each intersection is determined, so is a corresponding
covariance mairix. The choice of Gaussian representations for
this uncertainty follows naturally from the Kalman filtering-
based solution to the SLAM problem since the robot’s posi-
tioning and sensing unceriaimies are already represented as
Gaussian distributions and stored in covariance matrices.

B. Creating Gaussian Representations

In order to represent the uncertainty of the calculated
intersection point of two mmeasurements, several pieces of
information need tc be fused. We opt to perform this fusion
in the plane, which means that we must project measurements
from sensor space onto the plane. To accomplish this, we
present a technique of approximating the projection of a mea-
surement as a bivariale Gaussian distribution in the plane. In
order to create the Gaussian then, three pieces of information
are needed: a major and minor axis, a; and ay respectively, for
the ellipse and an angle of rotation, ¢ == (8, + a) where &, is
the orientation of the robot and ¢ is the bearing measurement
to a landmark. Since the measurements are relative bearings
to the landmarks, bearing is a natural selection for one of
the axes of the ellipse. While the uncertainty of the bearing
measurement is constant, the spatial uncertainty of the estimate
increases as the distance to the estimate increases. Therefore,
this axis of the ellipse can be given by

ay = Dsinga, (3
where ¢, is the standard deviation of the measurement and D
is the distance from the robot’s pose to the intersection point
(Figure 2). If the standard deviation of the measurement is suf-
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ficiently small, then the following small angle approximalion
can be made,

4

To create the other axis, of the ellipse, some notion of uncer-
tainty in the direction perpendicular to the bearing is necessary.
Since the sensor does not return any range information, the
best that can be done is to create a very large uncertainiy in
this direction (¢.g. some constant times the distance io the
intersection). The ellipse is now given by

ro.2
_|e 0
-7 &l

as = Doag.

(5)
where a3 is some large uncertainty and a9 is given by Equation
4. All that remains is 1o rotate the eliipse such that the range
axis is normal to the robot and the bearing axis lies in a
tangential direction (Figure 2):

C, = RERT, (6)
where R is given by
[ cos(@r+a) —sin( £ a) -
sin (0, +a) cos{f-+a) |’

This covariance matrix, Co, represents the uncertainty of
the landmark estimate given only sensor noise; it does not take
into consideration the uncertainty of the robot’s pose, C;. In
order to combine the newly calculated sensor uncertainty with
the robot’s position uncertainty, compounding from [15] is
used. Compounding is a method of determining the unceriainty
of an estimate due to a measurement from another uncertain
location. This method requires functions, f and g, that describe
the transformation from the robot frame to the intersection
frame, and also the Jacobian, J, of these functions (for more
details see [15]). Specifically; the new covariance matrix is:

C3z =TC,TT + C;, (8)

where the transformation mairix, T, that translates the
robot’s pose uncertainty, C,, to the intersection point, X,
is given by: :

= ~yr)
(zi—z) |’

where [z),y] is the location of the landmark estimate and
{#r,yr] is the rebot’s location. Cj contains the uncertainty of
the robot’s pose at the time of the measurement, C,, and the
uncertainty of the pose due to measurement noise, Ca.

The landmark pose estimate, X3, and its covariance matrix,
Ca, represent the landmark estimate due to a single mea-
surement, but two measurements formed the intersection. This
means that a second estimate, X4 and Cg4, must be created in a
similar fashion for the other measurement. At the intersection
point, there are now two estimates that need to be combined to
yield a single estin?ate for the intersection. In order to combine

p_[10
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Fig. 2. Two rays comesponding to measurements from two distinct poses
intersect at a point. ag is determined using the standard deviation of the
sensor’s uncertainty. a3 is chosen to be large, and the ellipse created vsing
a1 and a2 is rotated 1o its proper orientation.

the estimates, the merging method discussed in [15] will be
used. The merging equations are

C3 [C3 -+ C4]—1

K = (10
Cit = C3-KC; (11)
Xint = Xs+K(X4—Xs3), {12)

where K is the Kalman gain factor, C;,, is the covariance
matrix of the intersection, and X;,,; is the resulting landmark
pose estimate (Figure 4),

Now that an estimate of each intersection as well as a repre-
senation of its uncertainty have been obtained, the persistence
of each estimate can be determined.

C. Clustering and Combining Intersections

The next step in the process is to group the intersections
into clusters. In order to do this a notion of closeness is
needed. Therefore, the distance between intersections must be
determined. The representation of an intersection was chosen
to be a mean value and corresponding Gaussian distribution,
and numerous distance metrics between such distributions can
be found in Statistics literature., One such distance metric is
the Bhattacharyya distance ‘metric [16]. The Bhattacharyya
distance between two multivariate Gaussian distributions is
given by

I+
2
+ lln( det (21 + B3} /2 ),
2 \/det. (Zl)ﬁiet (3,)

B = -;-(ml—mg)T( )_1(m1—m2)

13

1766



Fig. 3. An intersection is found from a pose with some uncertainty, C; . The
uncertainty of the robot is translated to the intersection point. The uncertainty
due to sensing noise, Ca, is determined. The two sources of uncertainty are
compounded.

Pose 2

Fig. 4, Merging C'3 and Cy yields Cipy.

where m; and my; are the means of the estimates and similarly
¥, and X, are the corresponding covariance matrices, If
the distance between two estimates is close enough for the
given system, then the two estimates should be combined and
the persistence count should be increased. This is done for
subsequent estimates as well. This method doesn’t explicitly
cluster, but it does use estimates from several steps in order to
determine a better estimate. In order to combine the estimates,
the merging method mentioned above (Equations 10 - 12) is
used.

As the persistence count increases, the certainty of the
estimate corresponding to a landmark also increases. Once this

certainty is sufficiently large, the landmark can be initialized
with the intersection’s mean vector being appended to the sys-
tem’s state vector, and the covariance matrix being appended
to the covariance matrix of the system.

IV. BEARING-ONLY SLAM

Section III discussed initializing a landmark given only the
robot’s pose and bearing measurements to the landmark. This
section discusses how this initialization can be included into an
EKF implementation of SLAM. Section IV-A summarizes the
EKF and how it is used in SLAM. Section IV-B discusses data
association for previously initialized landmarks. And Section
IV-C discusses how the aforementioned landmark initialization
method can be included in the EKE

A. EKF

The locations of the robot and the landmarks are stored in
a state vector, X, as given in Equation 1 with a corresponding
covariance matrix, P. Linearizing about the current robot pase
estimate in a fashion simtlar to a first order Taylor series ap-
proximation allows the EKF to compute estimates despite the
systems nonlinearities. The EKF consists of two major steps,
the time update or propogation step and the measurement
update step. During the time update, the odometry information
obtained from the robot is treated as an input, ug, to generate
an estimate of the robot’s new position and uncertainty

4
(15

F(Xp-1,ux)
T = AP AT + Wi Qe WY,

Xk =

where f is a nonlinear function that describes how the state of
the system propogates as a function of the previous state and
the current inputs, ( is the process noise covariance matrix,
and A and W are the Jacobians of the state propogation func-
tion, £, with respect to the state and process noise respectively,
i.c.

of

A = a‘fu::‘ck‘;,u:uk) (16)
of

W = Exl(xzik_l,u:uk)‘ (17

If any landmarks are detected, the SLAM algorithm tries to
associate the new measurement with landmarks contained in
the state vector (sce Section IV-B). If any measurements are
associated, then a measurement update is run. The measure-
ment update calculates what it would expect the measurements
to be given the current estimate of the robot’s and landmarks’
locations

(18)

The Kalman gain, K, and posterior estimates of the state
and covariance matrix can be determined by

. = h(f(;__)
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K. = P.H](HP;HT+V.R,VI)" (9
ke = X + K (2 — 2) (20
P, = (I-K:Hy)P,, (21)

where R is the sensor noise covariance matrix, and H and V'
are the Jacobians of the sensor model, h, with respect to the
state and sensor noise respectively, i.e.

dh

= al(x=i:) (22)
&h
= Bl @3
If no landmarks are associated, then
X = X (24)
. Py P.. 25

_ This means that in the absence of any measurements, the
"~ best estimate that can be determined comes simply from
propogating the odometry.

B. Data association

Data association between a measurement and a previously
initialized landmark is typicaily done using a Chi-squared test.
The Chi-squared test is given by

x> T8y, (26)

where v is the innovation, ¥ = [Gupserved = Cestimate)> and S
is the innovation covariance given by

Sk = HyPL H' + VR, VT. @7

The value of y can be obtained frem a Chi-squared table.

The observation has 1-degree-of-freedom, and if the system
was to associate measurements to landmarks with a confidence
of 95%, then the value of x would be 3.84.
If a given measurement passes the Chi-squared test, it
is added as a possible match for the landmark. If multiple
" measurements are associated to the same landmark, or multiple
landmarks are associated with the same measurement, several
options are available. The measurement could simply be dis-
regarded to avoid a possible misassociation, the measurement-

landmark combination with the lowest chi-squared value could.

be associated since it will have the largest probability of
being correct, or as done in [12], the set of measurement-
landmark combinations that yields the highest number of
jointly-compatible matches can be selected.

C. Landmark initialization

In order for the bearing-only SLAM algoerithm to be com-
plete, it must be able to initialize landmarks and add them to
the state of the system. In Section ITI, a method for initializing
landmarks with only bearing information was presented. For
this method to be used in conjunction with the EKF presented
here, it must be added after the data association step. This
means that the robot takes a step and propogales its odometry
and error covariance matrix. Then a measurement is taken,
and data association is attempted. If there are unassociated
measurements, they are used in the landmark initialization
algorithm along with the current estimate of the robot’s
position, X;;. If any new landmarks are initialized as a result
of these new measurements, the state vector and covariance
matrix need to have the new information added:

.- oo \T T

Xnew = [ (xold [ ) ] . (28)
- P 0

P = old . 29
new [ 0 Pia.na‘mark] @9)

In this manner, each new landmark can be added as it is
initialized. And the EKF can be run with no other modifica-
tions.

V. EXPERIMENTS

Current tests of the EKF and landmark initialization method
consist of simple outdoor SLAM experiments where the robot
was driven for fifty feet, Section V-A, and also an indoor
mapping experiment where the robot was driven for over one
hundred feet, Section V-B.

A. OQurdoor SIAM

The outdoor experiments were conducted on a differential
drive robot built at the Sensor Based Planning Lab, Camegie
Mellon University. The robot was equipped with encoders
attached to the two motors used for determining the robot’s
odometry and a monocular camera used to measure bearings
to pink golf balls that were used as landmarks. A picture of the
robot during a run can be seen in Figure 5. The robot drove
for about fifty feet (fifteen meters) while gathering bearing
measurements to several landmarks during three seperate ex-
periments. In the first experiment, there were eight landmarks
spread out in order to allow the robot to see at least one
landmark at all times. The second experiment was set up
such that there were fewer landmarks (enly five landmarks),
but they were stiil set up such that the robot could always
obtain measurements te at least one. The. third experiment was
designed such that there were periods in which the robot could
not see any landmarks and must therefore rely totally on its
odometry at those points. The results can be seen in Figures
6a, 6b, and 6¢. The final position for all three experiments
was designed 1o be fifty feet away from where the robot
started and the Tobot arrived within five inches of this point
at the conclusion of each experiment. At the conclusion of
the first experiment, the robot had the least uncertainty of
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Fig. 5. A picure of the robot, 50 feet away, during an outdoor run,
The landmarks are pink golfballs tossed in the grass. Several golf balls are
highlighted in the picture.
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(c) Qutdoor experiment with two clusters of landmarks. The
uncertainty of the robot is so large due o the distance that the
robot had to travel without seeing any landmarks,

Fig. 6. A series of outdoor experiments. The black ellipses represent the
uncertainty of the landmark estimates. The slightly lighter ellipse at the right
side of each figure represents the uncertainty of the robot at the end of the
experiment.

all the trials, the Frobenius norm of the robot’s covariance
matrix was 7.05 in? (45.48 em?®). The covariance matrix at
the conclusion of the second experiment had a Frobenius norm
of 153.2 in® (988.4 cm?), and the covariance matrix at the
end of the third experiment was 206.5 in® (1332.3 cm?). This
result is expected. As the robot had to rely on its odometry
outside more frequently, the robot’s certainty at the end of the
experiment decreased.

Fig. 7. One corridor of Wean Hall at Camegie Mellon University. The
top figure shows results from an earlier experimment using both bearing and
range information to the landmarks. The bottom figure contains results from
the bearing-only SLAM implementation discussed in this paper (processed
offline) in black superimposed on the results from the top figure in gray.

B. Indoor Mapping

The indoor experiment was conducted on a Nomadic Scout
robot equipped with a firewire camera and overhead omni-
directional mirror. Again encoders were used for odometric
reasons and the camera-mirror combination was used to obtain
bearing information to landmarks. The indoor experiment
was conducted in Wean Hall at Carnegie Mellon University.
The bearing-only SLAM results presented in Figure 7 were
processed offline. The only reason for this was that the data
had been gathered previously for a different experiment.

In Figure 7, the ellipses and crosses in the top figure
correspond to the landmark estimates and their corresponding
2% ¢ uncertainty ellipses. These results are from a SLAM im-
plementation that uses both bearing and range measurements
to the landmarks. Simitarly, the black ellipses and crosses in
the bottom figure correspond to a different set of landmark
estimates and their corresponding uncertainty ellipses. These
are the result of the method for landmark initialization and
SLAM discussed in this paper. The bearing-range implemen-
tation yiekds a set of landmarks with less uncertainty than the
bearing-only method. This is to be expected; the bearing-range
implementation has access Lo more information regarding each
landmark at a given step. Using the bearing-range SLAM
algorithm, the robot also arrives at the final destination with
less uncertainty than it did with the bearing-only SLAM
algorithm, in fact the Frobenius norm of the robot’s covariance
matrix due to the bearing-range information was 14.9 in? (96.1
em?) while the norm due to the bearing-only information was
45.2 in? (291.3 em?).

V1. CONCLUSION

This paper presented an iterative approach to solving the
landmark initialization problem found in bearing-only SLAM.
The method does not require a solution for data association
or require any sort of batch process to be run.

However, as the method is presented, it does have diffi-
culties initializing landmarks in a few circumstances. Since
the landmarks are being initialized with noisy measurements,
if the angle between the intersecting measurements is small,
the error in calculating the intersection point gets large.
Consider the case of nearly paraliel measurements; calculating
an accurate intersection point for them is nearly impossible in
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the presence of the measurement noise as well as numerical
errors in the caleulation. This can be solved by simply ignoring
measurements that do not intersect at a large enough angle,
While this approach would potentially take longer to initialize
the landmarks, it would yield a more robust approach to the
initialization process.

This also brings up the issue that taking a straight line path
may yield a situation in which one or more landmarks can
never be initialized. So if the goal of the application is to
generate a complete (or near complete) map, the navigational
algorithm or planner must generate paths that take this con-
clusion into consideration. )

It is worth noting that bearing-only SLAM is generally no
beiter than a bearing-range implementation. The bearing-only
SLAM problem is faced with singularitics during the landmark
initialization process that the a bearing-range implementation
does not have. Furthermore, only one measurement per step is
taken to each landmark. This means that less information can
be gathered per step. Despite this, bearing-only SLLAM has its
uses. If a sensor is incapable of gathering range information or
if the range information is extremely unreliable, then using a
" bearing-only landmark initialization method may be desirable
if not essential. - - .

Our experimental results, both indoors and outdoors, show
that this iterative approach to landmark initialization is cer-
tainly a practical and computationally efficient method if there
is no means of disambiguating landmarks and having the data
association problem solved or if only a low frame rate is
obtainable from a vision sensor. This method will be useful for
scenarios in which -bearing-only SLAM is desirable, but may
prove essential when batch estimation becomes intractable or
initial conditions are hard to determine as weil as when feature
tracking is not possible due to low frame rates or other such
restrictions.
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