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Abslracl-I1 is essential in many applications that mobde 
robots localize themselves with respect to an unknown envi- 
ronmenL This means that the robot must build a map of its 
environment and then localize using the map. This pmeess 
is called simultaneous Iodization and mapping (SLAM). This 
paper presents an iterative solution to the landmark initialization 
problem inherent in a bearing-only implementation of SLAM. No 
prior knowledge of the environment is required, and furthermore, 
there (up no requirements ahout having Qe data association 
problem solved. Once landmarks are initialized, they are inserted 
into an extended Kalman Filter (Em) lo solve the SLAM 
problem. Both indoor and outdoor experiments are presented 
to validate the method. 

I. INTRODUCTION 

Here we discuss two major problems that must be addressed 
in any implementation of simultaneous localization and map- 
ping (SLAM): data association and landmark initialization. 
The data association problem deals with matching measure- 
ments to the appropriate landmark, or similarly, matching 
measurements from the current step to measurements from 
prior steps. If the landmark locations are known, then the 
data association problem is fairly straightforward to solve 
121. The landmark initialization problem deals with using the 
measurements to determine a spatial estimate for the landmark. 
These problems are particularly important in the case where 
available sensors provide only bearing information. While 
a single range and bearing measurement is usually enough 
to initialize a landmark relative to the robot, two or more 
measurements are required if only bearing information is 
available [I]. 

This paper presents a new method of dealing with the land- 
mark initialization problem in bearing-only SLAM. Bearing- 
only SLAM allows for SLAM algorithms to be run on mobile 
platforms with inexpensive sensors such as low resolution 
monocular cameras. Furthermore, this aids in SLAM im- 
plementations in which a camera is used to detect natural 
landmarks such as edges. 

p e  approach presented in this paper is an iterative method 
for initializing landmarks given only bearing measurements. 
The iterative nature of the algorithm allows it to be incorpo- 
rated into an extended Kalrnan filter (EKF) in a straightforward 
manner. This method makes no assumptions about having 
the data association problem solved or that disambiguating 
between any subset of the landmarks is possible. 

11. BACKGROUND 

Leonard and Durrant-Whyte [2] first coined the term simul- 
taneous localization and mapping or SLAM. This field has 
received considerable attention in the past five years. Con- 
ventional SLAM involves fusing observations of landmarks 
with dead-reckoning information in order to track the location 
of the robot and build a map of the landmark locations. 
Implementations of SLAM are usually done using Kalman 
Filters [31 [4] (51 [6] or particle filters [7] [8 ] .  The EKF 
[91 [31 141 uses a linear approximation of the system in 
order to maintain a state vector that contains the locations 
of the robot and landmarks. In  addition to this, it maintains a 
covariance matrix that contains an approximation of correlated 
uncertainty. 

The problem of conducting SLAM using only bearing mea- 
surements has also been discussed in the recent literature. The 
nonlinear nature of the bearing-only SLAM problem has led to 
some difficulties in estimating the location of the landmarks 
given a series of robot poses and measurements from those 
poses. Techniques have been developed to determine when 
the problem is well-conditioned for landmark initialization 
[IO] [I]. These methods ignore the data association problem, 
i.e., they assume it is known as to which measurements 
correspond to which landmarks. This is important in that 
it allows for merging measurements from the current pose 
with the appropriate measurements from prior poses. A fast, 
accurate, and robust method for running SLAM algorithms on 
a bearing-onlyproblem was also considered 11 I]. This method 
employs a batch technique in order to initialize the landmarks. 

Monocular vision cameras are an increasingly popular sen- 
sor for SLAM in light of the developments in bearing-only 
SLAM. As this is the case, various methods from the vision 
community have been applied to SLAM, such as color-based 
feature tracking [I21 and structure from motion (SFM) [I31 
[141. Feature tracking-based approaches, as well as the SFM 
methods, have solved the data association problem; landmarks 
are tracked from one frame to another so the measurements 
are automatically associated. Additionally, batch optimization 
techniques do not directly require that the landmarks be 
initialized; however, they are sensitive to the initial conditions 
used in the optimization process. The work presented here 
goes beyond these results by presenting a method of landmark 
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initialization that does not rely on feature lracking or hatch 
optimization. 

111. LANDMARK INITIALIZATION 
The bearing-only SLAM landmark initialization methods 

mentioned in Section Il all assume that the data association 
is known a pion'; however, if a system is to be used in 
an unknown environment with landmarks that are not easily 
distinguishable from each other, then it is unlikely that such 
an assumption about the data association would be reasonable. 
similarly, if a robot needs to reach its goal in a of 
time, it becomes harder to obtain frames that are close together 

Fig. 1. Two measurements are obtained fmrn each of the two p. These 
two measurements can be modeled as tines and intersected resulting in four 
intersection points. Of these four intenection points, only hvo comspnd to 
the actual landmark locations (denoted bv the sotid black ~ircte~). 

causing feature tracking to fail. In this section, a method is 
presented for initializing landmarks without any a priori data - ~. 
association or requirements about the distance the robot can 
travel between frames. In the presence of positioning and sensing uncertainties, 

this process is not as straightfonvard, hut can still serve 
A. Determining Spatial Estimntesfor the Landmark Locations as a guideline for landmark initialization. A set of possible 

The locations of the robot and landmarks are maintained in 
a state vector, X, with an associated covariance matrix, E', 

T x = [ Xr, v ~ ,  e,, zfl ,  Y l l ,  . .., zfnr yLn 1 , 
(1) 

where [x,,y,,B,] are the position and orientation of the robot, 
and [qi, yfi] are the location of the i th  landmark. 

The bearing measuremenls are maintained in a vector Z, 

z = [  0 1 ,  ..., a,]=,  (2) 
where aj is the j th  measurement from the current robot pose. 

Consider an ideal system with perfect positioning and no 
sensing uncertainty. Note that a single measurement corre- 
sponds to a ray eminating from the robot position at which 
the measurement was laken. For measurements taken from 
a sequence of robot positions, a landmark that has been 
seen from multiple locations will lie at the point where rays 
eminating from those locations intersect. Without a method for 
determining the data association, it is unknown which rays to 
intersect (Figure I ) .  So the only option is to consider every 
possible intersection. Only some of these calculated intersec- 
tions correspond to actual landmark locations. The remaining 
intersection points are due to intersecting measurements that 
do not correspond to the same landmark (i.e. a misassociation). 
Some intersections can be eliminated by ensuring that the point 
lies in the detectable range of the robot at the poses from 
which the measurements originated. Storing the number of 
times that a given point has been calculated as an intersection 
will yield some measure of persistence of that landmark pose 
estimate as a possibility. As additional measurements are taken 
from new robot locations, the persisterice of an intersection 
can be tracked. As the intersection's persistence increases, the 
probability of that intersection corresponding to a landmark 
increases'. Once the probability reaches an acceptable range, 
the landmark can be initialized. 

'ms is only qualitative. We have not yet derived a fonnal relationship 
beween perristence and probability. 

landmark locations must still be generated by intersecting 
measurements. and this set can be further reduced by taking 
into consideration the sensing range limitations of the robot. 
The difficulty due to sensing and positioning error arises in  
determining the persistence of the landmarks. Some measure 
of the uncertainty of the intersection point due to the robot's 
positioning and sensing errors must be determined, therefore, 
as each intersection is determined, so is a corresponding 
covariance matrix. The choice of Gaussian representations for 
this uncertainty follows naturally from the Kalman filtering- 
based solution to the SLAM problem since the robot's posi- 
tioning and sensing uncertainties are already represented as 
Gaussian distributions and stored in covariance matrices. 

B. Creating Gaussian Representations 

In order to represent the uncertainty of the calculated 
intersection point of two measurements, several pieces of 
information need to he fused. We opt to perform this fusion 
in the plane, which means that we must project measurements 
from sensor space onto the plane. To accomplish this, we 
present a technique of approximating the projection of a mea- 
surement as a bivariate Gaussian distribution in the plane. In 
order to create the Gaussian then, three pieces of information 
are needed: a major and minor axis, a1 and a2 respectively, for 
the ellipse and an angle of rotation, 4 = (e, +a) where 8,. is 
the orientation of the robot and 0 is the bearing measurement 
to a landmark. Since the measurements are relative bearings 
to the landmarks, bearing is a natural selection for one of 
the axes of the ellipse. While the uncertainty of the bearing 
measurement is constant, the spatial uncertainty of the estimate 
increases as the distance to the estimate increases. Therefore, 
this axis of the ellipse can be given by 

a2 = Dsino,,  (3) 

where U- is the standard deviation of the measurement and D 
is the distance from the robot's pose to the intersection point 
(Figure 2). If the standard deviation of the measurement is suf- 
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ficiently small, then the following small angle approximation 
can be made, 

a? =Do,. (4) 

To create the other axis, of the ellipse, some notion of uncer- 
tainty in the direction perpendicular to the hearing is necessary. 
Since the sensor does not return any range information, the 
best that can be done is to create a very large uncertainty in 
this direction (e.g. some constant times the distance lo the 
intersection). The ellipse is now given by 

where a1 is some large uncertainty and a2 is given by Equation 
4. All that remains is to rotate the ellipse such that the range 
axis is normal to the robot and the bearing axis lies in a 
tangential direction (Figure 2): 

c2 = R E R ~ ,  (6)  

where R is given by 

] (7) 
cos (e,. + a) - sin (0, + a) 
sin (e, + a) cos (0, + a)  ’ 

R =  [ 
. .  

This covariance matrix, C2, represents the uncertainty of 
the landmark estimate given only sensor noise; it does not take 
into consideration the uncertainty of the robot’s pose, C1. In 
order to combine the newly calculated sensor uncertainty with 
the roboi’s position uncertainty, compounding from 1151 is 
used. Compounding is a method of determining the uncertainty 
of an estimate due to a measurement from another uncertain 
location. This method requires functions, f and g, that describe 
the transformation from the robot frame to the intersection 
frame, and also the Jacobian, J, of these functions (for more 
details see [15]). Specifically, the new covariance matrix is: 

c3 = T C ~ T ~  + c2, (8)  

where the transformation matrix, T, that translates the 
robot’s pose uncepinty, C1, to the intersection point, X3, 
is given by: , ~ ’ 

where [ ~ i , y l ]  is the location of the landmark estimate and 
[xr,yr] is the robot’s location. C3 contains the uncertainty of 
the robot’s pose at the time of the measurement, C1, and the 
uncertainty of the pose due to measurement noise, C2. 

The landmark pose estimate, XJ, and its covariance matrix, 
C3, represent the landmark estimate due to a single mea- 
surement, but two measurements formed the intersection. This 
means that a second estimate, X4 and Cq, must be created in a 
similar fashion for the other measurement. At the intersection 
point, there are now two estimates that need to be combined to 
yield a single estimate for the intersection. In order to combine 

Fig. 2. Two rays corresponding to inea~ureiiients from WO distinct poses 
intersect at a point. a2 is determined using rhe standard deviation of the 
E ~ E O T ‘ S  uncenainry 01 is chosen 10 be large, and the ellipse created using 
01 and a? is rotated to iu proper orientation. 

the estimates, the merging method discussed in [ 151 will he 
used. The merging equations are 

K = C3[C3+C4]-1 (10) 
C,,t = C3 -KC3 (1 1) 
Xint = Xs + K (X4 - X3), (12) 

where K is the Kalman gain factor, Cint is the covariance 
matrix of the intersection, and Xint is the resulting landmark 
pose estimate (Figure 4). 

Now that an estimate of each intersection as well as a repre- 
senation of its uncertainty have been obtained, the persistence 
of each estimate can be determined. 

C. Clustering and Combining Intersections 
The next step in the process is to group the intersections 

into clusters. In order io d o  this a notion of closeness is 
needed. Therefore, the distance between intersections must be 
determined. The representation of an intersection was chosen 
to be a mean value and corresponding Gaussian distribution, 
and numerous distance metrics between such distributions can 
he found in Statistics literature. One such distance metric is 
the Bhattacharyya distance metric [16]. The Bhattacharyya 
distance between two multivariate Gaussian distributions is 
given by 
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Fig. 3. An intersstion is found from a pose with some uncertainty, CI. The 
uncenainiy of the robot i s  (ranslated to the intersection point. Ex uncerrainty 
due 10 sensing noire, Cz, i s  detemined. The huo Sources of uncenainty M 

compounded. 

Fig. 4. Merging Ca and C4 yields C,,t 

where ml and m2 are the means of the estimates and similarly 
E1 and E2 are the corresponding covariance matrices. If 
the distance between two estimates is close enough for the 
given system, then the two estimates should he combined and 
the persistence count should be increased. This is done for 
subsequent estimates as well. This method doesn’t explicitly 
cluster, but it does use estimates from several steps in order to 
determine a better estimate. In order to combine the estimates, 
the merging method mentioned above (Equations IO - 12) is 
used. 

As the persistence count increases, the certainty of the 
estimate corresponding to a landmark also increases. Once this 

certainty is sufficiently large, the landmark can be initialized 
with the intersection’s mean vector being appended to the sys- 
tem’s state vector, and the covariance matrix being appended 
to the covariance matrix of the system. 

IV. BEARING-ONLY SLAM 

Section III discussed initializing a landmark given only the 
robot’s pose and bearing measurements to the landmark. This 
section discusses how this initialization can be included into an 
EKF implementation of SLAM. Section IV-A summarizes the 
EKF and how it is used in SLAM. Section IV-B discusses data 
association for previously initialized landmarks. And Section 
N - C  discusses how the aforementioned landmark initialization 
method can be included in the EKF. 

A. EKF 

The locations of the robot and the’landmarks are stored in 
a state vector, X, as given in Equation I with a corresponding 
covariance matrix, P. Linearizing about the current robot pose 
estimate in a fashion similar to a first order Taylor series ap- 
proximation allows the EKF to compute estimates despite the 
systems nonlinearities. The EKF consists of two major steps, 
the time update or propogation step and the measurement 
update step. During the time update, the odometry information 
obtained from the robot is treated as an input, uk, to generate 
an estimate of the robot’s new position and uncertainty 

(14) 
~- 

Xk = f(Xk-1,Uk) 

P; = AkPk-iAZ + WkQk-iWl, (15) 

where f is a nonlinear function that describes how the state of 
the system propogates as a function of the previous state and 
the current inputs, Q is the process noise covariance matrix, 
and A and W are the Jacobians of the state propogation func- 
tion, f,  with respect to the state and process noise respectively, 
i.e. 

If any landmarks are detected, the SLAM algorithm tries to 
associate the new measurement with landmarks contained in 
the state vector (see Section N-B). If any measurements are 
associated, then a measurement update is run. The measure- 
ment update calculates what it would expect the measurements 
to be given the current estimate of the robot’s and landmarks’ 
locations 

’& = h (XL) . (18) 

The Kalman gain, K, and posterior estimates of the state 
and covariance matrix can be determined by 
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C. Landmark inirializarion 

In order for the bearing-only SLAM algorithm to be com- 
plete, it must be able to initialize landmarks and add them to 
the state of the system. In Section III, a method for initializing 
landmarks with only bearing information was presented. For 
this method to be used in conjunction with the EKF presented 
here, it must be added after the data association step. This 
means that the robot takes a step and propogates its odometry 
and error covariance matrix. Then a measurement is taken, 
and data association is attempted. If there are unassociated 
measurements, they are used in the landmark initialization 
algorithm along with the current estimate of the robot’s 
position, k; . If any new landmarks are initialized as a result 
of these new measurements, the state vector and covariance 
matrix need to have the new information added: 

K~ = P;H: (H~PI;H% + V ~ R ~ V ; ) - ~  (19) 
xk = x i  +Kk (zy - 2 k )  (20) 
PI. = (I-KkHe)P;, (21) 

where R is the sensor noise covariance matrix, and H and V 
are the Jacobians of the sensor model, h, with respect to the 
state and sensor noise respectively, i.e. 

ah H = - 1  i)x (.=e;) 

If no landmarks are associated, then 

(24) Xk Pa = 

Pk = P;. (25)  

This means that in the absence of any measurements, the 
best estimate that can he determined comes simply from 
propogating the odometry. 

- -  

B. Data associarion 

Data association between a measurement and a previously 
initialized landmark is typically done using a Chi-squared test. 
The Chi-squared test is given by 

where U is the innovation, U = [adserved - aeStlmate], and S 
is the innovation covariance given by 

s k  = HkP;HT + VkRkVz. (27) 

The value of x can be obtained from a Chi-squared table. 
The observation has 1-degree-of-freedom, and if the system 
was to associate measurements to landmarks with a confidence 
of 95%, then the value of x would be 3.84. 

If a given measurement passes the Chi-squared test, it 
is added as a possible match for the landmark. If multiple 
measurements are associated to the same landmark, or multiple 
landmarks are associated with the same measurement, several 
options are available. The measurement could simply be dis- 
regarded to avoid a possible misassociation, the measurement- 
landmark combination with the lowest ch ikpared  value could 
be associated since it will have the largest probability of 
being correct, or as done in 1121, the set of measurement- 
landmark combinations that yields the highest number of 
jointly-compatible matchei can be selected. 

In this manner, each new landmark can be added as it is 
initialized. And the EKF can be  run with no other modifica- 
tions. 

V. EXPERIMENTS 
Current tests of the EKF and landmark initialization method 

consist of simple outdoor SLAM experiments where the robot 
was driven for fifty feet, Section V-A, and also an indoor 
mapping experiment where the robot was driven for over one 
hundred feet, Section V-B. 

A. Outdoor SLAM 
The outdoor experiments were conducted on a differential 

drive robot built at the Sensor Based Planning Lab, Camegie 
Mellon University. The robot was equipped with encoders 
attached to the two motors used for determining the robot’s 
odometry and a monocular camera used to measure bearings 
to pink golf balls that were used as landmarks. A picture of the 
robot during a run can be seen in Figure 5. The robot drove 
for about fifty feet (fifteen meters) while gathering bearing 
measurements to several landmarks during three seperate ex- 
periments. In the first experiment, there were eight landmarks 
spread out in order to allow the robot to see at least one 
landmark at all times. The second experiment was set up 
such that there were fewer landmarks (only five landmarks), 
but they were still set up such that the robot could always 
obtain measurements to at least one. The thud experiment was 
designed such that there were periods in which the robot could 
not see any landmarks and must therefore rely totally on its 
odometry at those points. The results can he seen in Figures 
6a, 6b, and 6c. The final position for all three experiments 
was designed to be fifty feet away from where the robot 
started and the robot anived within five inches of this point 
at the conclusion of each experiment. At the conclusion of 
the first experiment, the robot had the least uncertainty of 
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Fig. 5. A picture of die robot, 50 feet away. during an outdoor run. 
The landnlarb are pink golf%dls tossed in the grass. Seven1 golf balls are 
highlighted in the picture. 

(a) Outdoor experiment with eight landmarks 

............... : ................................... .....,... .................... 3 .  .. ! 
,:: 2:; '.̂  ."., -.7 "h 

L*,.$.%s 

(b) Outdoor expe"menf with five lanbnxb. 

(c) Outdoor experiment with WO cluaterr of landmarks. The 
unceltainty of the robot is so large due IO the distance that the 
robot hod IO rravel without seeing any landmarb. 

Fig. 6. A series of outdoor experinients. The black ellipses represent the 
uncertainty of die landmark estinmtes. The slighUy lighter ellipse at the fight 
side of each figure represents the uncenainty of the robot at the end of the 
experiment. 

all the trials, the Frobenius norm of the robot's covariance 
matrix was 7.05 in2 (45.48 onz). The covariance matrix at 
the conclusion of the second experiment had a Frobenius norm 
of 153.2 in2 (988.4 cm2), and the covariance matrix at the 
end of the third experiment was 206.5 in2 (1332.3 on2).  This 
result is expected. As the robot had to rely on its odometry 
outside more frequently, the robot's certainty at the end of the 
experiment decreased. 

Fig. 7. One conidor of Wean Hall at Camegie Mellon Univeniry me 
top figure shows mdts from an earlier experiment using both W o g  and 
range information IO the landniarks. The bottom figure contains results from 
the bearing-only SLAM iniplenientauan discussed in this paper (prmessed 
ominel in black superimpxed on the results from the tap figure in gray. 

B. Indoor Mapping 
The indoor experiment was conducted on a Nomadic Scout 

robot equipped with a firewire camera and overhead omni- 
directional mirror. Again encoders were used for odometric 
reasons and the camera-mirror combination was used to obtain 
bearing information to landmarks. The indoor experiment 
was conducted in Wean Hall at Camegie Mellon University. 
The bearing-only SLAM results presented in Figure 7 were 
processed offline. The only reason for this was that the data 
had been gathered previously for a different experiment. 

In Figure 7, the ellipses and crosses in the top figure 
correspond to the landmark estimates and their corresponding 
2 * a  uncertainty ellipses. These results are from a SLAM im- 
plementation that uses both bearing and range measurements 
to the landmarks. Similarly, the black ellipses and crosses in 
the bottom figure correspond to a different set of landmark 
estimates and their corresponding uncertainty ellipses. These 
are the result of the method for landmark initialization and 
SLAM discussed in this paper. 'The bearing-range implemen- 
tation yields a set of landmarks with less uncertainty than the 
hearing-only method. This is to he expected; the bearing-range 
implementation has access to more information regarding each 
landmark at a given step. Using the bearing-range SLAM 
algorithm, the robot also arrives at the final destination with 
less uncertainty than it did with the bearing-only SLAM 
algorithm, in fact the Frobenius norm of the robot's covariance 
matrix due to the bearing-range information was 14.9 in? (96.1 
cm?) while the norm due to the bearing-only information was 
45.2 in2 (291.3 m2). 

VI. CONCLUSION 
This paper presented an iterative approach to solving the 

landmark initialization problem found in bearing-only SLAM. 
The method does not require a solution for data association 
or require any son of batch process to be run. 

However, as the method is presented, it does have diffi- 
culties initializing landmarks in a few circumstances. Since 
the landmarks are being initialized with noisy measurements, 
i f  the angle between the intersecting measurements is small, 
the error in calculating the intersection point gets large. 
Consider the case of nearly parallel measurements; calculating 
an accurate intersection point for them is nearly impossible in 
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the presence of the measurement noise as well as numerical 
errors in  the calculation. This can be solved by simply ignoring 
measurements that do not intersect at a large enough angle. 
While this approach would potentially take longer to initialize 
the landmarks, it would yield a more robust approach to the 
initialization process. 

This also brings up the issue that taking a straight line path 
may yield a situation in which one or more landmarks can 
never be initialized. So if the goal of the application is to 
generate a complete (or near complete) map, the navigational 
algorithm or planner must generate paths that take this con- 
clusion into consideration. 

It is wonh noting that bearing-only SLAM is generally no 
better than a bearing-range implementation. The bearing-only 
SLAM problem is faced with singularities during the landmark 
initialization process that the a bearing-range implementation 
does not have. Furthermore, only one measurement per step is 
taken to each landmark. This means that less information can 
be gathered per step. Despite this, bearing-only SLAM has its 
uses. If a sensor is incapable of gathering range information or 
if the range information is extremely unreliable, then using a 
bearing-only landmark initialization method may be desirable 
if not essential. . 

Our experimental results, both indoors and outdoors, show 
that this iterative approach to landmark initialization is cer- 
tainly a practical and computationally efficient method if there 
is no means of disambiguating landmarks and having the data 
association problem solved or if only a low frame rate is 
obtainable from a vision sensor. This method will be useful for 
scenarios in which bearing-only SLAM is desirable, but may 
prove essential when batch estimation becomes intractable or 
initial conditions are hard to determine as well as when feature 
tracking is not possible due to low frame rates or other such 
restrictions. 
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