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Abstract— In this paper, we present a complete system for
car platooning using visual tracking. The visual tracking is
achieved by directly estimating the projective transformation
(in our case a homography) between a selected reference
template attached to the leading vehicle and the correspond-
ing area in the current image. The relative position and
orientation of the servoed car with regard to the leading one
is computed by decomposing the homography. The control
objective is stated in terms of path following task in order to
cope with the non-holonomic constraints of the vehicles.

Index Terms— Car platooning, vision-based control, real-
time visual tracking, non-holonomic vehicles.

|. INTRODUCTION

Many researches on automatic driving are currently done
in the laboratories working on Intelligent \ehicles. Among
these researches, a major issue is devoted to studying the
platooning problem. A key point to be addressed is the
robust detection and tracking of the ahead vehicle. At the
present time, the most operational systems are based on
distance sensors such as radar or lidar. This kind of sensors
has the advantage of providing a measurement which can
be directly exploited in the feedback control. Alternative or
complementary sensors could be linear [4], standard [2] or
omnidirectional [3] cameras. Although they are sensitive
to weather and lighting conditions during an outdoor use,
they provide a richer information which can be exploited
to make the algorithms more robust. Moreover, recent
developments on high dynamic range CMOS cameras
[6] specifically dedicated to automotive applications could
provide real solutions in terms of robustness with regard
to the lighting changing conditions.

In this paper, we present a complete vision-based pla-
tooning approach running in an outdoor environment. The
visual tracking is achieved by directly estimating the pro-
jective transformation (in our case a homography) between
a selected reference template attached to the leading vehicle
and the corresponding area in the current image [1]. The
relative position and orientation of the servoed car with
regard to the leading one, is computed by decomposing
the homography [5]. The control objective is stated in
terms of path following task in order to cope with the
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non-holonomic constraints of the vehicles. A virtual frame
rigidly linked to the leading vehicle is defined and the path
tracking error is expressed in this Cartesian space using
the relative pose computed through the data given by the
camera at video rate.

The paper is organized as follows. A first part deals
with the modeling and the control aspects. A second and
a third parts are dedicated to the visual tracking. Finally,
experimental results are presented and discussed.

Il. CONTROL ASPECTS

A. Kinematic modeling

Let us consider a car-like vehicle with a pure rolling
without slippage assumption (i.e. the velocity vector is
always perpendicular to the rear wheels axis, as depicted
in fig. 1). The kinematic model of the vehicle is given by :

|,

Fig. 1
ABSOLUTE (GROUND) AND LOCAL (VEHICLE) FRAMES

& = U cos (v)
j = Usin (1) &)
¢ = Y tan (6)

where (z,y) are the absolute Cartesian coordinates, U is
the longitudinal velocity, ¢ is the heading angle, and ¢ is
the steering angle. The state of the system is represented
by the (3x1) vector (z,y, ).



B. Path tracking

Consider the problem of tracking a moving reference
frame F*, attached to a leading car, by a servoed car.
The origin of the reference frame F* is the moving point
q* = (z*,y*), while the point q = (z,y) is the origin of
the current frame F (see figure 2). The reference frame
is moving along a given trajectory. The z* axis is always
tangent to the curve (i.e. y* = 0). Let &* = U* be the
longitudinal velocity of the reference frame. The angular
velocity ¢* is linked to the steering angle §* of the leading
car. The path tracking error e = (e, e,) is the difference

y

Fig. 2
PATH TRACKING

between the current position g and the desired position q*
of the vehicle, and it is defined in the reference frame as
follows:

—R].(q- *:RT*V—%:] 2
e Wb (a—q%) y—y (2
where R+ is the rotation of angle ¢*:
R, — cos(yp*) —sin (¢*)
v sin (¢¥*)  cos (¢*)

The error in the orientation between the current and the
reference frames is e, = ¢ —«*. Computing the derivative
of the equation (2) around the origin (z* =0, y* = 0 and
¥* = 0) yields:

@] [ éw—vre, +U*
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Using the equations (1) and (3), a local kinematic model
can be deduced:

ey = U (Y — ") =Uey

For the vehicle dynamics, a simplified first-order model can
be used for the control design:

{ i= (U~ U)/7,
§ = (5, — 8)/rs

{ b, U—-U*=u

where (U,, d..) are the vehicle inputs, respectively the longi-
tudinal speed and steering angle commands and (7, 75) are

positive scalars. The linearized 5th order dynamic model
used for the control design is:

ey =1u
éy = er
€y =US/L
= U.—U)/r
0= (0 —0) /75

This model appears indeed decoupled into a longitudinal
model, with state (e,,u) and a lateral model, with state
(ey,ey,0), and a simple feedback, computed with the
standard LQR tool, leads to:

UC:U*_kI[exil

€y 4)
5C =0* — kg— €
o —o*

where k, = (kul,k‘ug) and ks = (k‘gl,kgg,k(sg) and
ku1, kuo, ks1, kso, kgz are positive scalars.

C. Distance-based lateral tracking

As an alternative more robust solution, a distance-based
design was used for the lateral path tracking. The approach
is based on the assumptions that no slippage occurs and
that the actuator loop time-rate is shorter than the overall
closed-loop time-rate. Thus, the path tracking problem
can be formulated as a “speed-independent” problem. The
curvilinear distance s is related to the vehicle speed by:

ds
U=
We perform a change of variables in order to consider the
curvilinear distance s as the independent variable (instead
of the time variable t):

dr dx dti 1 dx

ds dids U dt ©)
Using equation (5), the kinematic expression (equation (1))
can be reformulated:

a’ = cos (¢)
y' =sin(y)
¢ = 1 tan (9)

where 2/, 3/ and ¢’ are the notations for the derivatives
dz 4y and 9. The new distance-based model is formally
similar to the previous one, with the advantage of having
the lateral model independent to the vehicle longitudinal
speed U. Since the controller is a pure feedback gain,
without dynamics, a classical tool can be used for the
control design. The lateral model with state (e,,eq,0), is

independent on the velocity U:

=
€y =4/L
§= (8. —9) /75

We use again the control law (4) for controlling the vehicle.



D. Platooning

In order to adapt the previous control approach for a
platooning application, a new control objective is defined
in terms of tracking a virtual reference frame F* rigidly
linked to the leading vehicle as shown in the figure 3.
The virtual reference frame is obtained by translating the

Fig. 3
VEHICLE TRACKING

frame of the leading vehicle by a distance d*. In practice,
the virtual reference frame and the camera frame of the
follower vehicle coincide at the beginning of the tracking.
The errors e = (e,,e,) and e, measured by the vision
system are the relative positions of the reference and
current frames expressed in the virtual reference frame. The
relative position of the leader vehicle can be measured at
video rate by decomposing a homography matrix which
defines the projective transformation of a plane attached
to the leader vehicle. The distance-based lateral tracking
described in the previous section is applied to control the
measured error. The longitudinal speed U* of the leader
vehicle is estimated on-line from vision data.

I1l. CARTESIAN STATE RECONSTRUCTION

We suppose that we observe a planar object and we
suppose that a reference template corresponding to the
frame F* has been selected during an off-line step. The
current image acquired at each iteration of the control
scheme corresponds to frame F. The reference template
is related to the current image by a homography matrix
G. Indeed, a point in the reference template, with homo-
geneous coordinates p*, is projected onto a point in the
current image by p o« Gp*. Knowing the upper triangular
matrix K containing the camera intrinsic parameters, we
can extract the camera displacement by decomposing the
homography matrix:

t
d*
where R € SO(3) and t € R? are respectively the rotation
matrix and the translation vector between the frames F and
F*, n* is the unit vector normal to the plane expressed
in 7* and d* is the distance between the plane and
the center of the frame F*. In general, there are two

G=KR+—-n"" )K"

possible solutions to the homography decomposition [5].
In order to distinguish the right solution, an estimation of
the normal n* should be known. The relative position and
orientation of the leader needed for the control law can
be extracted from R and t. The homography matrix G
can be estimated using the template-based visual tracking
technique described in the next section.

IV. VISUAL TRACKING

We consider an on-board camera mounted on the servoed
vehicle looking at a planar target attached on the back of
the leading vehicle. The visual tracking can be achieved
by directly estimating the projective transformation (in our
case a homography) between a selected reference template
and the corresponding area in the current image. The core
of the visual tracking method is the Efficient Second-
order Minimization (ESM) algorithm proposed in [7]. The
application of the ESM algorithm to the visual tracking
allows an efficient real-time homography estimation and
a template-based tracking with high inter-frame displace-
ments. The figure 4 gives a general overview of the method.
A detailed description of the tracking method can be found
in [1].

Since the homography matrix G is defined up to a
scalar factor, without loss of generality, it can always be
considered as an element of the SL(3) group (i.e. the group
of (3x3) matrices with the determinant equal to 1). Indeed,
if det(G) = 0 then the plane passes through the optical
center and all the points on the plane project on a line.
Starting from an initial prediction of the homography, we
iteratively estimate the optimal homography which mini-
mizes the SSD (the sum of squared differences) between a
reference pattern T and the current pattern W' reprojected
using the current homography G. If an initial prediction
of the homography is not available, we start with G equal
to the identity matrix. Both the image derivatives of the
template VT and the image derivatives of the current
pattern VW are used to obtain an efficient second-order
update. It is an efficient algorithm since only first image
derivatives are used and the Hessians are not explicitly
computed.

In order to improve the tracking algorithm, we use a
multiresolution method which makes it possible to deal
with large motion [8]. A change of the resolution of the
image can be obtained by an affine transformation and thus
by a homography. Let ‘S, be the homography matrix
which allows to warp the image from resolution j to
resolution i. When the reference pattern T, is selected
in the reference image at full resolution, we warp it n
times (using the homographies 'Sy, 2Sg, ..., "Sp) until we
reach a minimum resolution (e.g. the size of the pattern
at resolution n should be greater than 20x20 pixels). We
obtain once and for all n + 1 reference patterns T, T4,...,
T,,. If the homography transforming an area of the current
image in the reference template at scale j is /G, then the
homography transforming that area of the current image in
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Fig. 4

VISUAL TRACKING BASED ON AN EFFICIENT SECOND-ORDER
MINIMIZATION METHOD.

the reference template at scale i is:
‘G="'S;'G

The multiresolution ESM tracking is started at the scale n
using an initial estimation homography "G (if a prediction
is not available, we set "G equal to the matrix "S;). Once
the ESM algorithm has computed the homography "G,
we simply obtain the homography "~ 'G by changing the
scale ""1G = "~1!S,, "G. The ESM algorithm is repeated
n+ 1 times and at the scale 0, we obtain the homography
9G. The loop is repeated by rescaling the homography
at the higher scale "G = "S, °G. The algorithm can
also be stopped at scale k£ > 0 of the pyramid (e.g. if the
computation time is limited) by rescaling the homography
G = 9S;, *G. The multiresolution approach improves the
visual tracking a lot since it permits to have a coarse-to-fine
strategy.

V. EXPERIMENTAL RESULTS

In this experiment, a vision-based car platooning is
performed in a real outdoor environment. Two electric
vehicles of type “Cycab” (see the figure 5) are used one as a
leading car and the other as the servoed car. The leading car
is manually driven. The servoed car, in automatic control
mode, is equipped with a camera mounted on a pan-tilt
turret situated behind its front windshield (see the figure 6)
and with two computers (Pentium Il 700 MHz). The first
one is used for the vision, the control law computations
and the pan-tilt turret control which is done via a serial
communication RS232. The second computer is devoted
for the low-level control of the “Cycab” velocity and the
wheel steering. An internal network is set between the
two computers and the data transfer is done thanks to a
TCP/IP socket communication process. The control scheme
presented in the previous sections takes into account that
the vehicle is non-holonomic and tries to keep the distance
between the two vehicles constant and equal to the initial
distance. The relative position is computed from the vision
at video rate. The pan-tilt turret is controlled in order to

keep the leading car in the field of view of the camera
during the experiment.

Fig. 5
THE ROBOTIC SYSTEM USED IN OUR EXPERIMENTS.

Fig. 6
THE PAN-TILT TURRET SITUATED BEHIND THE FRONT WINDSHIELD OF
THE SERVOED “CYCAB”.

Since the leading car back windshield is transparent,
a poster is sticked on it in order to be used as a target
for the visual tracker. In the starting situation, when the
leading car is in front of the servoed car, a window of
(100 x 100) pixels is selected to be the reference pattern. In
order to have a metric reconstruction and reasonable gains,
the camera has been roughly calibrated and the distance
between the two cars is given to the control process. All
of the vision sensor, the image tracking, the pan control
and the position estimation act as a unique sensor that
provides the displacement (e, e, e,;) between the current
vehicle frame and the virtual reference frame. The visual
tracking algorithm computes the displacement (z, y; and
1) between the current camera frame and the virtual



reference frame. After measuring the pan angle ¢, the
displacement (., ¥, 1, ) Of the vision frame is computed

as follows:
Ty Tt
=R
[ Yo ] ¢ [ ve }

v — Pt —
The vision frame does not coincide with the vehicle frame.

Thus, the error between the virtual reference frame and the
current vehicle frame is obtained as follows:

s

Cy = —1%

Finally, we apply the control described in section II.

Filtering vision measurements : The vision sensor is
characterized by some specific issues:

1) sampling rate reduced to 25Hz or 40ms, with a
further delay around 40ms due to image processing
and position computing;

2) a pan device was introduced in the vision system,
regulating the position x, and allowing to keep the
target inside the image, but the speed limitation of
this pan device limited the range of the allowable
angular speed during the visual tracking process;

3) intrinsic noise, reduced in static conditions, but in-
creasing with speed;

4) isolated noise peaks, probably when vision hasn’t
fully finished its optimization process;

5) high sensitivity to the lighting conditions;

6) oscillations due to possible *“ambiguity” between
the real physical position solution and an erroneous
second solution when decomposing the homography.

In order to reduce the effects of issues 3 and 4, a filtering
was introduced with a non-linear part, limiting the mea-
surement rate of change:

|xv,k - xv7k71| < jjvgma:r
|yv,k - yv,k—l‘ < y_v,maz-

|wv,k - wv,k—1| < wv,max

and a linear part, consisting of a simple first-order low-pass
filter:

Ty = CTy k-1 + (1 =) Ty

Yv,k = CYv k-1 + (1 - C) Yo,k

d)v,k’ = va,k—l + (1 - C) w’u,k

with ¢ = 0.6, corresponding to a time of constant 20ms.

Figure 7 shows the experimental results of a car platooning
application. The top-right curve exhibits the relative posi-
tion measurement as produced by the vision system, show-
ing a longitudinal distance (in green) smoothly regulated
around 3m. This distance is reduced during the first part
of the turn, due to the tracking kinematics, and then at the
end, when the vehicle slows down and stops. The bottom-
right curve shows the filtering effect on the vision output.
Finally, the bottom-left curve shows the control variables:
in the speed demand (in blue) a component of noise is
clearly present, and the 1m/s saturation is reached at the

Fig. 7
CAR PLATOONING EXPERIMENT. TOP-LEFT: HORIZONTAL PATH, WITH
ODOMETRY (GREEN) AND VIEWED TARGET (BLUE); TOP-RIGHT:
VISION OUTPUT WITH z,, (BLUE), ¥, (GREEN) AND %), (RED);
BOTTOM-LEFT: CONTROL, WITH SPEED DEMAND (BLUE) AND
STEERING ANGLE (GREEN); BOTTOM-RIGHT: VISION FILTERING, WITH
Yy ABOVE AND 1), BELOW.

end of the turn (this saturation level is very low and should
be put at 2m/s by instance in future experiments). The
steering angle (in green) is less noisy.

The figure 8 illustrates another experiment where the
leading car is driven in a 100 meter long closed loop. In
the first and the third rows, the relative position between the
leading car and the servoed car can be seen. In the second
and the fourth rows, the corresponding images grabbed
during the experiment and used as input for the ESM visual
tracking algorithm are shown. The blue square indicates
the tracked region. Thanks to the pan-tilt turret servoing,
the pattern tracked remains in the center of the image
during the experiment. The tracking algorithm performs
well although the experiment takes place outdoor and sun
reflection on the tracked region occurs.

V1. CONCLUSION

The vision-based control system presented in this paper
is able to perform car platooning in an outdoor environ-
ment. The control of the follower vehicle is achieved by
reconstructing the position of the leading vehicle using
an on-board camera. The non-holonomic constraints are
taken into account in the control law. The visual tracking
algorithm is able to track a target without any particular tex-
ture or evident features. Thanks to its flexibility, the visual
tracking system can be modified in order to track directly
the back of the leading vehicle. Indeed, a robust estimation
algorithm (e.g. M-estimators) can be used instead of the
standard least square minimization. Robust algorithms can
also help to handle illumination changes.
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Fig. 8
IMAGES OF A CAR PLATOONING APPLICATION. THE IMAGES IN THE FIRST AND THE THIRD ROWS ARE TAKEN WITH AN EXTERNAL CAMERA. THE
IMAGES IN THE SECOND AND THE FOURTH ROWS ARE TAKEN WITH THE CAMERA ON-BOARD AND SHOW THE REGION TRACKED IN THE CURRENT
IMAGE (SEE THE BLUE SQUARES).
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