
On the Control of Robots with Visco-Elastic Joints

Alessandro De Luca Riccardo Farina Pasquale Lucibello

Dipartimento di Informatica e Sistemistica
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Abstract—Feedback linearization is a viable nonlinear
control technique for solving trajectory tracking problems
in robots with (and without) elastic joints. However, the
additional presence of dissipative effects due to joint viscosity
destroys full state feedback linearizability. For robots with
visco-elastic joints, the use of a static state feedback can
achieve at most input-output linearization and decoupling,
since an internal nonlinear dynamics is left in the closed-loop
system. Although the stability properties of this unobservable
dynamics still guarantee perfect output tracking in nominal
conditions, control design based on static feedback becomes
ill-conditioned as joint viscosity decreases. Instead, resorting
to a nonlinear dynamic state feedback leads to the same
closed-loop properties, but with a regularized control effort
for any level of joint viscosity and elasticity. Static and
dynamic nonlinear feedback control designs are presented
for a reduced and a complete dynamic model of visco-
elastic joint robots. A numerical comparison on a simple
case study illustrates the benefits of the dynamic input-output
linearization approach.

Index Terms—Joint elasticity, dissipative effects, robot
tracking control, feedback linearization.

I. INTRODUCTION

When robots are required to execute trajectory tracking

tasks with high speed and precision, complete and accurate

dynamic models are necessary for a successful control

design.

Inclusion of a joint elasticity model has been found rel-

evant for industrial robots that use harmonic drives (where

the teflon teeth of the flexspline introduce small angular

displacement between the motor and the driven link), belts

(typically, in Scara-type arms), or long shafts (e.g., for

the last 3 dof of Puma robots) as reduction/transmission

elements [1].

More recently, special attention has been devoted to the

use of service robots for close human cooperation [2], [3].

The need to increase mechanical compliance and to reduce

apparent inertia for safety purposes has lead to different

elastic actuation/transmission arrangements in the robot

design, which include: relocation of actuators close to the

robot base and transmission of motion through steel cables

and pulleys, like in the 8R SM-Dexter arm [4], or through

tendons, like in the dextrous UBHand [5]; combination of

harmonic drives and lightweight link design, as in the 7R

DLR III arm [6]; use of parallel and distributed macro-

mini actuation with elastic couplings, pioneered in the

DECMMA project of Stanford University [7]; introduction

of actuators with intrinsic variable stiffness (double McK-

ibben muscles), as in the 3R SoftArm built at the University

of Pisa [8].

In all the above cases, compliant phenomena are reason-

ably captured by assuming a concentrated elasticity at the

robot joints. Dynamic modeling of elastic joint (EJ) robots

has been considered in [9], [10], [11]. In a Lagrangian for-

mulation, a doubling of generalized coordinates is needed

(for each joint, one for the motor and one for the link

positions) and a linear spring is introduced at each joint

with associated potential energy. However, the common

observation that relative motor/link internal oscillations

damp out quickly over time suggests to consider additional

dissipative effects. These are due to friction (of any type),

separately acting on the motor and on the link side of the

transmissions, and to the intrinsic viscosity associated to

elastic joints. Although possibly small, these terms may

affect static precision in positioning or dynamic accuracy

in trajectory tracking tasks.

From a control point of view, robots with joint elasticity

have challenged researchers for a long time. For regulation

tasks, Lyapunov arguments have been used to prove global

asymptotic stability of a desired equilibrium configuration

when using a PD control action with constant [10] or

on-line [12], [13] gravity compensation. These controllers

use only motor measurements. For trajectory tracking

tasks, exact linearization by static state feedback [9] and

passivity-based adaptive control [14] have been proposed

for a reduced dynamic model of EJ robots. When joint

stiffness is sufficiently large, a singular perturbation control

approach can also be followed [15]. When inertial cross-

couplings between motors and links are included in the

dynamic model of EJ robots, full linearization of the robot

equations can still be obtained through a dynamic state

feedback [16]. This holds true also in the case of robots

with mixed sequences of rigid and elastic joints [17], [18].

The additional presence of viscous friction and/or joint

viscosity does not affect the terminal behavior of regula-

tion controllers. In fact, such dissipative effects typically

improve the oscillatory transients of the control laws pre-

sented in [10], [12], [13], which need thus no modifications.

Moreover, it can be shown that viscous friction acting on

the motor and/or on the link side of an elastic joint can

be easily included in the design of nonlinear feedback

laws intended for trajectory tracking. Therefore, our main

interest here is to evaluate the impact of visco-elasticity

at the robot joints on the design of tracking controllers

based on feedback linearization [9], [16]. Although this
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class of nonlinear feedback laws is not the only available

for solving trajectory tracking problems (see, e.g., the

backstepping approach in [19]), it is certainly the best

performing one in nominal conditions.

After presenting the dynamic model of visco-elastic

joint (VEJ) robots (Sect. II), we detail first the synthesis

of static versus dynamic nonlinear feedback control laws

under the same simplifying modeling assumptions used

in [9] (Sect. III). Then, we consider the control design for

the more complete dynamic model including cross-inertial

terms (Sect. IV). Finally, simulation results are presented

in Sect. V to illustrate the theoretical findings and to assess

quantitatively the improved control behavior obtained with

the dynamic linearization approach.

II. DYNAMIC MODELING OF VEJ ROBOTS

Consider an open kinematic chain of N rigid links,

interconnected by N joints undergoing visco-elastic de-

formation. The robot is actuated by N electrical drives,

the i-th being located at the i-th joint or mounted on a
previous link of index j < i. Let q ∈ IRN be the link

position coordinates and θ ∈ IRN be the motor (i.e., rotor)

position coordinates, as reflected through the gear ratios.

We assume: i) small joint deformations, in the linear elastic

domain; ii) balanced motors, i.e., rotors are uniform bodies

with center of mass on their rotation axes. As a result,

inertia and gravity terms will not depend on θ.
Using a Lagrangian approach, the kinetic energy is

T =
1
2

[
q̇T θ̇ T

] [
M(q) S(q)
ST(q) J

] [
q̇

θ̇

]
,

where the N × N blocks in the overall inertia matrix

are the link inertia matrix M(q) > 0, the motor inertia
diagonal matrix J > 0, and the strictly upper triangular
matrix S(q) which takes into account the motor/link inertial
couplings [10]. The potential (gravitational plus elastic)

energy is

U = Ug(q) +
1
2
(q − θ)TK(q − θ),

with the joint stiffness diagonal matrix K > 0.
From the Euler-Lagrange equations for L = T − U , the

dynamic model of VEJ robots is expressed by a set of 2N
second-order differential equations[

M(q) S(q)
ST(q) J

] [
q̈

θ̈

]
+

[
C(q, q̇)q̇ + C1(q, q̇)θ̇

C2(q, q̇)q̇

]

+
[

g(q) + K(q − θ)
K(θ − q)

]
=

[
0
τ

]
−

[
τV,q

τV,θ

]
,

(1)

where Cq̇, C1θ̇, and C2q̇ are centrifugal and Coriolis terms,
g = (∂Ug/∂q)T are gravity terms, τ ∈ IRN are the torques

supplied by the motors, and the viscous dissipative terms

are [
τV,q

τV,θ

]
=

[
D(q̇ − θ̇) + Fq q̇

D(θ̇ − q̇) + Fθ θ̇

]
, (2)

with the joint viscosity diagonal matrix D > 0 and,

respectively, the link and motor viscous friction diagonal

matrices Fq > 0 and Fθ > 0. We refer to the first N
equations in (1) as the link equations, and to the last N as

the motor equations.

The simplifying assumption that angular kinetic energy

of the motors is due only to their own spinning [9] implies

S ≡ 0 in eq. (1), from which C1 = C2 = 0 also follow.
Using eq. (2), the reduced model of VEJ robots becomes

M(q)q̈ + C(q, q̇)q̇ + g(q)

+D(q̇ − θ̇) + K(q − θ) + Fq q̇ = 0 (3)

J θ̈ + D(θ̇ − q̇) + K(θ − q) + Fθ θ̇ = τ. (4)

III. INPUT-OUTPUT LINEARIZATION OF VEJ ROBOTS

For a VEJ robot, we consider the problem of tracking a

sufficiently smooth reference (output) trajectory q = qd(t)
defined in terms of link coordinates. Note that such a de-

sired link motion algebraically determines a unique carte-

sian trajectory of the robot end-effector via the standard

direct kinematics. On the other hand, the motor trajectory

θd(t) associated to qd(t) has to be determined dynamically.
For the sake of simplicity, ideal operative conditions are

assumed, i.e., measures of the full state and an accurate

dynamic model are available for feedback control design.

Therefore, we suppose to have a sensor for each of the

four variables q, θ (link and motor position) and q̇, θ̇ (link
and motor velocity) and to have identified the ‘rigid’ robot

dynamic coefficients as well as the friction and visco-elastic

joint parameters.

If joint viscosity were not present (D ≡ 0), the reduced
model (3–4) of EJ robots would be exactly linearizable

via nonlinear static state feedback [9], whereas the same

result would hold for the complete model (1) by resorting

to a nonlinear dynamic state feedback [16]. The trajectory

tracking problem can be easily solved by completing the

stabilizing control design on the linear and decoupled

side of the obtained system, similarly to the well-known

computed torque method for rigid robots [20].

Unfortunately, the above full state linearization proper-

ties are lost for VEJ robots. Therefore, we shall pursue

the approach of designing a nonlinear control law that

maximizes the dimension of the linear part of the closed-

loop dynamics, either by static or by dynamic state feed-

back. This linear part will be described in terms of the

link output q and its derivatives. We shall first consider
the reduced model (3–4), handling then the complete one

in Sect. IV. Preliminarily, note that by neglecting the

(presumably small) joint viscosity in the control design,

exact tracking capabilities would be destroyed even in the

assumed ideal conditions.

A. Static state feedback design

Rewrite the link equation (3) as

M(q)q̈ + α(q, q̇) − Dθ̇ − Kθ = 0, (5)
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where α = C(q, q̇)q̇ + g(q) + (D + Fq)q̇ + Kq. Differen-
tiating once, we obtain1

M(q)q[3] + β(q, q̇, q̈) − Dθ̈ − K θ̇ = 0,

with β = α̇(q, q̇) + Ṁ(q)q̈. Substituting θ̈ from motor

equation (4) and imposing q[3] = v, where v ∈ IRN is

the new control input, leads to the static state feedback

τ =JD−1
[
M(q)v + β(q, q̇, q̈) − K θ̇

]
+ γ(q, θ, q̇, θ̇), (6)

with the linear function γ = D(θ̇ − q̇) + K(θ − q) + Fθ θ̇.
Note that z = (q, q̇, q̈, θ̇) = T1(q, q̇, θ, θ̇) defines a global
change of coordinates, by virtue of the invertibility ofM(q)
in eq. (5). Therefore, the implementation of the control

law (6) does not require acceleration measurements: link

acceleration q̈ is computed from eq. (5) using the model

and the available measures of the robot state. On the other

hand, wishing to avoid the associated inversion of the link

inertia matrix M(q), link acceleration in eq. (6) could be
also estimated by numerical differentiation of link velocity.

The resulting closed-loop system is described by

q[3] = v

θ̈ = D−1
[
M(q)v + β(q, q̇, q̈) − K θ̇

]
.

(7)

The input-output behavior between v and q is linear and
decoupled, while an additional internal nonlinear dynamics

has appeared in eq. (7). In order to complete the control

design, the new control input v is synthetized as a linear
exponentially stabilizer (e.g., by pole placement) of the

tracking error e = qd − q. The stability of the resulting
overall closed-loop system has to be verified. For this, it is

sufficient that the zero dynamics associated to the output

y = q − q0 ≡ 0 is asymptotically stable [21]. It is easy to
see that the zero dynamics for system (7) is

ż4 = −D−1Kz4,

i.e., linear, first order, asympotically stable, and arbitrarily

fast for D → 0.
Although the obtained closed-loop characteristics are

certainly satisfactory, we note that the static control law (6)

for τ is ill-conditioned when D approaches zero. As a

matter of fact, input-output linearization has been achieved

by relying on (and inverting) a weak dissipative term. This

results in a low-authority control action that will be highly

sensitive to perturbations or disturbances.

B. Dynamic state feedback design

Define first a nonlinear feedback law for τ , in terms of
a new variable u ∈ IRN :

τ = Ju + γ(q, θ, q̇, θ̇).

The robot dynamics (3–4) becomes

M(q)q̈ + α(q, q̇) − Dθ̇ − Kθ = 0 (8)

θ̈ = u. (9)

1The compact differential notation x[i] = dix/dti is used throughout
the paper.

By differentiating twice eq. (8), we obtain

M(q)q[3] + β(q, q̇, q̈) − Du − K θ̇ = 0 (10)

M(q)q[4] + δ(q, q̇, q̈, q[3]) − Du̇ − Ku = 0, (11)

where δ = β̇(q, q̇, q̈) + Ṁ(q)q[3]. Imposing now q[4] = v
and solving for u̇ leads to the dynamic state feedback

τ = Ju + γ(q, θ, q̇, θ̇)

u̇ = D−1
[
M(q)v + δ(q, q̇, q̈, q[3]) − Ku

]
,

(12)

where u ∈ IRN is the state of the obtained dynamic com-

pensator. The change of coordinates z = (q, q̇, q̈, q[3], u) =
T2(q, q̇, θ, θ̇, u) is globally defined, thanks to the invert-
ibility of M(q) in eqs. (8) and (10). Once again, the
implementation of the control law (12) does not require

acceleration or jerk measurements: link acceleration q̈ and
link jerk q[3] are computed, respectively, from eq. (8) and

eq. (10), using the model and the available measures of the

robot state.

The resulting closed-loop system is

q[4] = v

u̇ = D−1
[
M(q)v + δ(q, q̇, q̈, q[3]) − Ku

]
.

(13)

The structure of eqs. (13) is similar to that of eqs. (7),

although the input-output relation is now of fourth-order.

Control design for v is successfully completed as in

Sect. III-A (now for the decoupled chains of four input-

output integrators), since the zero dynamics associated to

system (13),

ż5 = −D−1Kz5,

is the same as before.

The basic difference, however, stands in the fact that

the dynamic control law (12) is now well-defined even for

vanishing D. Stated differently, the ill-conditioning of the
static feedback law (6) has been transformed in a singularly

perturbed dynamic compensator. The notable consequence

is that, in the limit case of D → 0, the compensator
dynamics can be always considered to have already reached

its steady-state. By setting then u̇ = 0 in eq. (12) and

solving for u, yields the following control torque

τ = JK−1
[
M(q)v + δ(q, q̇, q̈, q[3])

]
+ γ(q, θ, q̇, θ̇),

i.e., the same expression of the static feedback linearizing

law for EJ robots derived in [9]. This shows the numerical

stability of the dynamic feedback design for any value of

the joint viscosity D, as opposed to the static controller (6).

IV. INCLUDING COMPLETE INERTIAL COUPLINGS

Consider now the complete model (1) of VEJ robots

and assume, for the sake of a simpler presentation, that the

matrix S is constant (though non-zero). This happens, e.g.,
in planar robotic structures and implies that the velocity

matrices C1 and C2 vanish in the model. We recall that

EJ robots are not static feedback linearizable as soon

as S �= 0 [16], and this is indeed true also for VEJ

robots. Therefore, the only feasible choice in this case is
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to consider a dynamic state feedback design. The purpose

of this section is to show that the constructive three-step

algorithm that achieves full state linearization via dynamic

feedback for EJ robots [16] can be suitably modified so as

to provide input-output linearization of the complete model

of VEJ robots.

At step 1, the motor equations in (1) are feedback

linearized by means of the following globally defined static

control law

τ =
[
J − ST M−1(q)S

]
u + τV,θ + K(θ − q)

−ST M−1(q) [τV,q + K(q − θ) + g(q) + C(q, q̇)q̇] ,

where u ∈ IRN is a new input variable. The resulting robot

equations are conveniently rewritten as

f(q, q̇, q̈) + Sθ̈ − Dθ̇ − Kθ = 0 (14)

θ̈ = u, (15)

with f = M(q)q̈ + C(q, q̇)q̇ + g(q) + (D + Fq)q̇ + Kq.
Note that eq. (14) differs from eq. (8) by the presence of

matrix S, which brings the motor acceleration θ̈ into the
picture. Moreover, the structural singularity of S (a strictly
upper triangular matrix) is the reason for the failure of

static feedback as an input-output decoupling scheme.

At step 2, input-output decoupling is performed w.r.t.

the ficticious output f . For this, differentiate twice eq. (14)

f̈ + Sü − Du̇ − Ku = 0

and add a dynamic extension of 2(i − 1) integrators (with
state φij) on the i-th input channel, for i = 1, . . . , N , so
as to avoid input differentiation (because now S �= 0, as
well as D �= 0).
For illustration, consider a VEJ robot with N = 2 joints.

The dynamic extension is

u1 = w̄1

u2 = φ21 φ̇21 = φ22 φ̇22 = w̄2,
(16)

where w̄i, i = 1, 2, are the temporary inputs to the

integrator chains. Since S is strictly upper triangular, this

leads to

f̈1 + s12w̄2 − d1 ˙̄w1 − k1w̄1 = 0 (17)

f̈2 − d2φ22 − k2φ21 = 0. (18)

In order to avoid ill-conditioned operations for a vanishing

joint viscosity coefficient d2, differentiate twice eq. (18)

f
[4]
2 − d2 ˙̄w2 − k2w̄2 = 0,

and apply the additional dynamic feedback

˙̄w1 =
1
d1

[−k1w̄1 + s12w̄2 + w1]

˙̄w2 =
1
d2

[−k2w̄2 + w2] .
(19)

The combination of eqs. (16) and (19) leads to the same

input-output linear and decoupled result (for step 2) of the

case of no joint viscosity, namely

f̈1 = w1 f
[4]
2 = w2.

Note that an internal unobservable dynamics of dimension

N = 2 has been left. The associated zero-dynamics (i.e.,
constraining the output f ≡ 0) is

˙̄w1 = − k1

d1
w̄1 +

s12

d1
w̄2

˙̄w2 = − k2

d2
w̄2

i.e., linear, first order, asympotically stable, and arbitrarily

fast for vanishing d1 and d2. Furthermore, following an

analysis similar to the one at the end of Sect. III, for

d1, d2 → 0 the dynamics (19) smoothly reduces to a static
transformation (as in EJ robots).

More in general, for VEJ robots with N dofs, N
additional compensator states (compare with eq. (19)) are

introduced in step 2 of the algorithm, beside the original

N(N − 1) states of the dynamic extension needed for EJ
robots (compare with eq. (16)).

At step 3, the algorithm resumes without changes with

respect to [16]. Linearization and decoupling of the link

position output q is obtained using a further dynamic

extension of dimension N(N − 1).

For robots with N visco-elastic joints, the obtained result

is summarized in the following

Proposition: A dynamic controller of dimension

N(2N −1) achieves input-output linearization of a general
VEJ robot. The resulting input-output system is composed

of N decoupled chains of 2(N + 1) integrators each. The
closed-loop system contains also an exponentially stable

zero dynamics of dimension N .

V. SIMULATION RESULTS

In order to compare the performance of the static and

dynamic controllers of Sect. III, we have simulated a trajec-

tory tracking task for the simplest VEJ robot, consisting of

a single link (N = 1) moving in the vertical plane without
friction. In this case, S = 0 and the (scalar) parameters in
eqs. (3–4) have been chosen as:

M = 0.66 J = 0.10 mg0lc = 9.81 K = 100.

To show the effects of a small joint viscosity, its coefficient

is fixed at D = 0.01.
The reference trajectory qd(t) for the link is a 9th-order

rest-to-rest polynomial of T = 1 s (with zero boundary
conditions up to the fourth derivative) from the downward

equilibrium (q = 0) to the horizontal position. For the
trajectory error stabilization, closed-loop poles have been

set to (−10,−10,−100) in association to the controller (6),
with an additional pole in −100 for the dynamic feedback
design.

Figures 1–2 refer to the exact output tracking situation,

i.e., for matched initial conditions, with the robot at rest

in the initial configuration and without joint deformation.

The two torque profiles are practically identical, while the

dynamic compensator state shows a bounded rest-to-rest

behavior.
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Fig. 1. Exact tracking – evolution of the dynamic compensator state u
of eq. (12)
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Fig. 2. Exact tracking – static (top, red) and dynamic (bottom, blue)
control torques [Nm]

Asymptotic tracking results for an initial off-trajectory

configuration (q(0) = 5◦) are presented in Figs. 3–4.
Actuator saturation has been also introduced as a typical

non-ideal condition. The initial error is recovered within

≈ 0.3 s and the output performance is indistinguishable
with the two controllers. However, a more jerky behavior

has been observed in the deformation of the robot joint

in the case of static feedback (not reported here). A large

difference is instead present in the control effort, with a

much smoother torque profile obtained in the dynamic case.
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Fig. 3. Asymptotic tracking – link position (solid, blue) and its reference
(dashed, red) with dynamic control law (similar with static law) [deg]
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Fig. 4. Asymptotic tracking – static (top, red) and dynamic (bottom,
blue) control torques [Nm]

VI. CONCLUSIONS

We have considered modeling and control issues for

robots with visco-elastic joints. Accurate trajectory control

can be obtained by input-output model-based linearization

techniques, using either static or dynamic state feedback. In

case of common applicability of the static and dynamic de-

signs, output performance is identical in nominal conditions

but control sensitivity to tracking errors and unmodeled

dynamics is quite different. In fact, dynamic feedback

‘regularizes’ the problem for vanishing joint viscosity,
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generating smoother control torques and recovering in the

limit case the same control laws that are valid in the

absence of viscosity, namely dynamic or, respectively, static

feedback linearization of the full robot state, depending on

the presence or absence of cross-coupling inertial terms in

the model. In all cases, no link acceleration or higher-order

derivatives are needed for the computation of the control

laws.

We have considered in this paper only issues related to

tracking accuracy and control effort for motion tasks in free

space. When interacting with the environment, e.g., with a

human user, the presented control designs can be modified

accordingly, or simpler cartesian impedance schemes [4],

[22] may be used for the purpose of safe operation. There is

indeed a natural trade-off between the accuracy achievable

during free motion and a safe/compliant behavior during

interaction.

Finally, we mention that in the case of EJ or VEJ

robots having variable stiffness transmissions, dynamic

feedback is instrumental for obtaining simultaneous and

decoupled control of the robot motion (in terms of the

link position output q) and of its compliance (in terms
of the joint stiffness output K). This feature, which is
relevant for minimizing expected injuries for accidental

collisions between robots and humans, is the subject of

current research.
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