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Abstract— In the last decade, research on vision-based robot
control has been concentrated on two main issues: the narrow
field of view of the conventional camera and the model de-
pendency of the standard visual servoing approaches. In this
paper, we propose a simple and elegant solution to these issues.
To enlarge the field of view of the cameras, we use omni-
directional cameras. And to overcome the model dependency
problem, we propose a new visual servoing method for omni-
directional cameras that does not need any measure of the 3D
structure of the observed target with respect to which the visual
servoing is performed. Only visual information measured from
the reference and the current images are needed in order to
compute a task function isomorphic to the camera pose and to
compute the control law to be applied to the robot. We provide
the theoretical proof of the existence of the isomorphism and the
theoretical proof of the local stability of the control law.

I. INTRODUCTION

Visual servoing is a robotic task that consists in controlling a
robot thanks to visual information acquired by one or multiple
cameras [14], [15]. This robotic task can be considered as the
regulation of a task function e(q, t) that depends on the robot
configuration q and the time t [23]. In the last decade, research
in this field has been concentrated on two main issues.

The first issue is the design of control laws that keep
as much as possible the target in the field of view of the
camera. This problem, has been extensively investigated since
standard perspective cameras have limited fields of view.
Several solutions have been proposed: “ad hoc” visual servoing
schemes [7], path planning [20], use of zooming camera [5]. In
addition, the use of omni-directional systems has considerably
enlarged the field of view of standard cameras.

The second issue concerns the design of control laws that
rely as less as possible on accurate calibration (e.g. the camera
intrinsic parameters) and as less as possible on measure of the
structure of the target (e.g. a 3D model). In the literature,
visual servoing schemes are generally classified as follows:

- 3D visual servoing: the task function e(q, t) is expressed
in the Cartesian space, i.e. the visual information acquired
from the two images (the reference and the current images) are
used to reconstruct explicitly the pose (the translation and the
rotation in the Cartesian space) of the camera (see for example
[4], [25], [17]). The advantage of an explicit estimation of
the error in the Cartesian space is the decoupling of the task
function, i.e. the camera rotation and the camera translation
can be controlled independently from each other. The camera

translation (up to a scale factor) and the camera rotation can
be estimated through the Essential matrix [16], [10], [24],
[12]. However, the Essential matrix degenerates (it can not
be estimated) when the target is planar or when the motion
done by the camera between the reference and the current pose
is a pure rotation. For these reasons, it is better to estimate
the camera translation (up to a scale factor) and the camera
rotation using a homography matrix [18], [13].

- 2D visual servoing: the task function e(q, t) is expressed
directly in the image, i.e. these visual servoing methods do
not need the explicit estimation of the pose error in the
Cartesian space (see for example [9], [3], [21]). A task function
isomorphic to the camera pose is built. As far as we know,
except for some special “ad hoc” target [8], the isomorphism
is generally believed true without any formal proof. The real
existence of the isomorphism avoids situations where the task
function is null and the camera is not well positioned [6]. In
general, the task function is built using simple image features
such as interest points coordinates. Since the control is done in
the image, the target has much more chance to remain visible
in the image.

- 2D 1/2 visual servoing: the task function e(q, t) is
expressed in the Cartesian space and in the image, i.e. the
rotation error is estimated explicitly from a homography
matrix and the translation error is expressed in the image
(see for example [17], [13]). These visual servoing approaches
make it possible not only to decouple the rotation and the
translation control but also to perform the control in the image.
It is possible with this approach to demonstrate the stability
and the robustness of the control law [17].

The common drawback of all approaches is that in any
case some information of the observed target is needed. In
the 2D 1/2 visual servoing and 3D visual servoing, the pose
reconstruction using the homography estimation is not unique
(2 different solutions are possible). In order to choose the
right solution, it is necessary to know an approximation of
the normal vector to the target plane (or obtaining it from a
cumbersome on-line estimation). In the 2D visual servoing,
some 3D information (e.g. the depths when the features are
points) is necessary to have a stable control law [19], [22].

In this paper, we present a new 2D visual servoing method
that makes it possible to control the robot by building a
task function isomorphic to the camera pose in the Cartesian
space. In order to introduce our approach, we consider in this



paper planar targets with unknown 3D information (i.e. the
normal vector to the target plane is unknown). In this case,
the projective transformation linking two images of a plane
is a homography. The method can be easily generalized to
non-planar targets since it is always possible to compute a
homography related to a virtual plane attached to the non-
planar targets [18]. We have demonstrated that it exists an
isomorphism between a task function e and the camera pose
in the Cartesian space (i.e. the task function e is null, if and
only if the camera is back to the reference pose). Contrarily
to the standard 2D visual servoing, we have demonstrated that
we do not need 3D information in order to guarantee the
stability of the control law. The computation of the control
law is quite simple (neither an interaction matrix estimation
nor a homography decomposition is needed) and does not need
any measure of the 3D structure of the observed target.

II. THEORETICAL BACKGROUND

As already mentioned in the introduction, we are interested
in the positioning task of a camera mounted on a robot. The
objective is to control the current camera frame F in order to
reach a reference frame F∗. To do that, we suppose to have
an image I∗ of the target, acquired in the reference pose,
and a current image I, acquired in the current pose, of same
target acquired in real-time.

A. Projection model

Let P be a 3D point having Cartesian coordinates X =
[X, Y, Z]� in the current frame F (see Figure 1). The point
can be projected on the unit sphere S in a 3D point having
coordinates X s = [Xs, Ys, Zs]�:

X s =
1
ρ
X (1)

where ρ = ‖X‖. Following the central catadioptric camera
projection models proposed in [1], [11] and [2], we can
describe all omnidirectional images by projecting the point
X s on the sphere from Cp to a point m = [x, y, 1]� on a
virtual plane:

m = �(X s) =
[

Xs

Zs − ξ

Ys

Zs − ξ
1

]�
(2)

where ξ is a positive parameter (0 ≤ ξ ≤ 1) defining the
geometry of the mirror (see TableI). Finally, the virtual point
is projected on the image plane into the point p = [u, v, 1]�:

p = Km (3)

where K is a triangular matrix containing the camera intrinsic
parameters and another mirror parameter η (see TableI):

K =


 f η f η s u0

0 f η r v0

0 0 1


 (4)

u0 and v0 are the coordinates of the principal point (in pixels),
f is the focal length measured in pixel, s is the skew and r is

the aspect ratio. As already mentioned, the parameters ξ and
η define the geometry of the mirror (see table I).

Equation ξ η
Parabolic ρ = Z + 2p 1 −2p

Hyperbolic
(Z+ d

2 )2

a2 − X2

b2
− Y 2

b2
= 1 d√

d2+4p2
−2p√

d2+4p2

Elliptic
(Z+ d

2 )2

a2 + X2

b2
+ Y 2

b2
= 1 d√

d2+4p2
2p√

d2+4p2

p and d are mirror parameters
a = 1/2(

p
d2 + 4p2 ± 2p), ’−’ for the hyperbola, ’+’ for the ellipse

b =

q
p(

p
d2 + 4p2 ± 2p), ’−’ for the hyperbola, ’+’ for the ellipse

TABLE I

MIRROR PARAMETERS.
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Fig. 1. Projection model for central catadioptric cameras

From a point p measured in the image, it is possible to
compute its projection on the virtual plane m = K−1p and
then its projection on the unit sphere:

X s = �
−1(m) = [γx, γy, γ + ξ]�

where γ = − ξ+
√

ξ2+(1−ξ2)‖m‖2

‖m‖2 = − ξ+
√

1+(1−ξ2)(x2+y2)

x2+y2+1 .

B. Homography from two spherical projections

Let R ∈ SO(3) and t ∈ R
3 be respectively the rotation and

the translation between the current frame F and the reference
frame F∗ (see Figure2). The coordinates of the point P are
X ∗ = [X∗, Y ∗, Z∗]� in the reference frame F∗ while in the
current frame F they are:

X = RX ∗ + t (5)
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Fig. 2. Homography from two spherical projections.

Let u = [ux, uy, uz]� be the unit vector corresponding
to the rotation R and let θ (θ ∈] − π, π[) be the angle of the
rotation R. The rotation R can be written as the exponential
matrix of an antisymmetric matrix:

R = exp(θ [u]×) (6)

where exp is the matrix exponential function and [u]× is the
antisymmetric matrix associated to the vector u.The point P
is projected on the reference unit sphere S∗ into the point
X ∗

s = [X∗
s , Y ∗

s , Z∗
s ]� where:

X ∗
s =

1
ρ∗

X ∗ (7)

and ρ∗ = ‖X ∗‖. Let us suppose that P belongs to a plane π.
Let d∗ be the distance between π and the center of the sphere.
Let n∗ be a normal vector to π such that ‖n∗‖ = 1

d∗ . Then,
we have:

n∗�X ∗ = 1 (8)

Using the equations (1), (5), (7) and (8), we can find the
relationship between X s and X ∗

s:
ρ

ρ∗
X s = HX ∗

s (9)

where the homography matrix H is:

H = R + tn∗� (10)

Note that det(H) > 0, otherwise the camera has moved
through the 3D plane and the target is not visible in the image
any more. It is possible to compute H from two images I
and I∗ of a planar target. At least four pairs of corresponding
points {X ∗

si, X si}, i ∈ {1, 2, 3, 4} are necessary to
compute H up to scale factor. The reconstruction of the camera
displacement (R and t from H) is not unique [10]. Generally,
four triplets {Ri, ti, n∗

i }, i ∈ {1, 2, 3, 4} are possible, two
of which are physically admissible. An approximation of the
normal vector n∗ allows to choose the right solution.

III. VISUAL SERVOING WITH OMNI-CAMERAS

The objective of this paper is to design a new visual servoing
method that does not need any measure of the structure of
the observed target. Thus, we need to define an isomorphism
between the information measure in the reference and current
images and the camera pose. Then, we build a control law that
depends on image information only.

A. A task function isomorphic to the camera pose

The two frames F et F∗ coincide if and only if the
matrix H is the identity matrix. We build, using H, a task
function e ∈ R

6 which is locally (since we have restricted
θ �= ±π) isomorphic to the camera pose. Thus, we have
that e is zero if and only if the camera is in the reference pose.

Theorem 1: Task function isomorphism.
Let X ∗

s be the coordinates of a certain point on the sphere
in the reference frame F∗. The following task function:

e =
[

eν

eω

]
with

{
eν = (H − I)X ∗

s

[eω]× = H − H� (11)

is isomorphic to the camera pose, i.e. e = 0, if and only if,
θ = 0 et t = 0.

The proof of this theorem is given in the Appendix. The
vector e can be computed completely from only the two
images I et I∗ , i.e. without measuring the model of the
target (n∗ and ρ∗) and without decomposing the homography
matrix. We can demonstrate that the task function vector can
also be written as follows:

e =
[

eν

eω

]
=

[
(t + (R − I)X ∗)/ρ∗

2 sin(θ)u + [n∗]× t

]
(12)

If we have eν = 0, then the two projections X ∗ and X of the
same 3D point P coincide with each other. And if we have
eω = 0, then the homography matrix H is symmetric.

B. The control law

The relationship between the derivative of the task function
ė and the camera translation velocity ν and the camera rotation
velocity ω is:

ė = L
[

ν
ω

]
(13)

where the (6 × 6) interaction matrix L can be written as
follows:

L =
[

1/ρ∗ − [eν + X ∗
s]×

[n∗]× − [n∗]× [t]× + 2Lω

]
(14)

and where the matrix Lω is:

Lω = I − sin(θ)
2

[u]× − sin2

(
θ

2

)
(2I + [u]2×) (15)

The computation of the interaction matrix is given in the
Appendix. In this paper, we propose a vision-based control
law which is locally stable as stated by the following theorem:



Theorem 2: Local stability.
The following control law:[

ν
ω

]
= −

[
λνeν

λωeω

]
(16)

with λν > 0 and λω > 0 is locally stable.

The proof of the theorem is given in the Appendix. The
control law depends only on the task function e and can
be completely computed from the two images I et I∗. The
interaction matrix L does not need to be estimated. It is only
useful to prove analytically the control law stability. With such
control law, the task function e converges exponentially to 0.
The local stability of the control law is guaranteed for all
n∗ and for all X s. By choosing λν > 0 and λω > 0 such
that λν �= λω , one can make eν and eω converge at different
speeds.

IV. SIMULATION RESULTS

We have simulated a positioning task with an omni-
directional camera mounted on a robot. In the first simulation,
the mirror is parabolic while in the second simulation the
mirror is hyperbolic. We consider 5 features points on a planar
target. A reference image is stored and the robot is moved to
its initial pose. We suppose to be able to match the current
features with the reference ones and to be able to track them
during the servoing. In both simulations, we apply the control
law in equation (16) with λν = λω = 1. Indeed, since the
homography matrix is computed from the points reprojected
on the sphere, the same control law can be applied whatever
mirror is used. It is important to notice again that we have not
used any knowledge on the plane (e.g. its normal vector) to
compute the control law in both simulations.

A. Parabolic mirror

In the first simulation, the displacement of the robot is t =
[−0.5, 1.0,−1.0]� (in meters) and r = [π/12, π/12,−π/6]�

(in radians). Figure 3 shows the results of the positioning
task. The trajectories of the points in the image are illustrated
in Figure 3(a). When the current points coincide with the
reference ones, the robot is back to the reference pose. The
control law is stable (see Figure 3(b)) and both translation
and rotation errors converge to zero (see Figures 3(c) and
Figures 3(d)).

B. Hyperbolic mirror

In the second simulation, the mirror is hyperbolic and the
initial displacement is much bigger than the initial displace-
ment in the previous simulation: t = [−1.0, 2.0,−2.0]� (in
meters) and r = [π/5,−π/6, π/3]� (in radians). Despite
Theorem 2 concerns only local stability (i.e. for small dis-
placements), we can see in these simulations that the control
law is stable even for large displacements (see Figure 4(b))
and the translation and rotation errors converge to zero again
(see Figures 4(c) and Figures 4(d)). Finally, Figure 4(a) shows
the trajectories of the points in the image.
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Fig. 3. Simulation: Positioning an omni-directional camera with a parabolic
mirror with respect to an unknown planar target without using any approxi-
mation on it 3D parameters.

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

  1   2 

  3   4 
  5 

  1 

  2 

  3 

  4 

  5 

(a) Trajectories in the image

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−1

−0.5

0

0.5

1

1.5

2

(b) Control law

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(c) Translation error

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−30

−20

−10

0

10

20

30

40

50

60

(d) Rotation error

Fig. 4. Simulation: Positioning an omni-directional camera with a hyperbolic
mirror with respect to an unknown planar target without using any approxi-
mation on it 3D parameters.

V. DISCUSSIONS ET CONCLUSIONS

In this paper, we have presented for the first time a new ap-
proach to visual servoing for omni-directional cameras that do



not need any measure of the 3D information on the observed
scene. Indeed, we have proven that it is possible to compute,
from image data only, a task function that is isomorphic to the
camera pose. We have also proposed a simple control law and
proven its local stability. The simulations have shown that the
stability region is very large (but unknown for the moment).
A deeper stability analysis will be necessary to theoretically
define the exact stability region. Meanwhile, we plan to use
trajectory planning for very large camera displacements.

VI. APPENDIX

A. The task function is isomorphic to the camera pose

In order to simplify the proof of Theorem (1), we proof
three simpler propositions.

Proposition 1:
The matrix HH� has one eigenvalue equal to 1. The

eigenvector corresponding to the eigenvalue is v = [Rn∗]× t.

Proof of proposition 1:
Using equation (10), we have:

HH� = (R + tn∗�)(R� + n∗t�)

Since we have R ∈ SO(3) then RR� = I. Thus, we have:

HH� = I + t(Rn∗)� + (Rn∗ + ‖n∗‖2t)t�

The matrix HH� is the sum of I and a rank 2 matrix. Thus,
one eigenvalue of HH� is equal to 1. Setting v = [Rn∗]× t,
we have:

(Rn∗)�v = 0 and t�v = 0

showing that v is an eigenvector of HH�:

HH�v = v
Proposition 2:

If H = H� and sin(θ) �= 0, then n∗� u = 0, t� u = 0 and
n∗� v = 0 (where v = [Rn∗]× t).

Proof of proposition 2:
If we have H = H�, then we have:

2 sin(θ)u + [n∗]× t = 0 (17)

By multiplying each side of the equation (17) by n∗�, we
obtain:

2 sin(θ)n∗�u = 0

Since we have supposed that sin(θ) �= 0, we have:

n∗�u = 0

Similarly, by multiplying each side of the equation (17) by
t�, we obtain:

t�u = 0

Finally, using the Rodriguez formula for the rotation matrix,
we have:

Rn∗ =
(
I + sin(θ) [u]× + 2 cos2

(
θ

2

)
[u]2×

)
n∗

= n∗ + sin(θ) [u]× n∗ + 2 cos2
(

θ

2

)
[u]2× n∗

= n∗ + sin(θ) [u]× n∗ + 2 cos2
(

θ

2

) (
uu� − I

)
n∗

If we have n∗�u = 0, then we have:

Rn∗ = n∗ + sin(θ) [u]× n∗ − 2 cos2
(

θ

2

)
n∗ (18)

The antisymmetric matrix associated to the vector Rn∗ is:

[Rn∗]× = [n∗]× + sin(θ)
[
[u]× n∗]

× − 2 cos2
(

θ

2

)
[n∗]×

and since
[
[u]× n∗]

× = n∗u� − un∗�, we can write:

[Rn∗]× = [n∗]×+sin(θ)
(
n∗u� − un∗�)−2 cos2

(
θ

2

)
[n∗]×

By multiplying both sides of the equation by n∗�, we obtain:

n∗� [Rn∗]× = ‖n∗‖2 sin(θ)u� (19)

By multiplying both sides of the equation by t, we obtain:

n∗� [Rn∗]× t = ‖n∗‖2 sin(θ)u�t

Since u�t = 0, then we prove that:

n∗�v = 0
Proposition 3:

If H = H�, v = [Rn∗]× t = 0 and sin(θ) �= 0 then
det(H) = −1.

Proof of proposition 3:
If v = [Rn∗]× t = 0 then it exists α ∈ R

∗ such that:

t = αRn∗

From equation (19), we obtain:

[n∗]× Rn∗ =
(
n∗� [Rn∗]×

)�
= ‖n∗‖2 sin(θ)u (20)

Then, from equation (17) and equation (20), we obtain:

2 sin(θ)u = − [n∗]× t = −α [n∗]× Rn∗ = −α‖n∗‖2 sin(θ)u

By multiplying both sides of this equation by u�, we obtain:

2 sin(θ) = −α sin(θ)‖n∗‖2

Since we supposed sin(θ) �= 0, then we can write:

α = − 2
‖n∗‖2

and finally the determinant of the matrix H verifies:

det(H) = 1 + n∗�R�t = 1 + α‖n∗‖2 = −1

Having a matrix H with negative determinant means that
current frame F is on the opposite side of the target plane.



This is impossible since it means that we cannot see the target
in the image any more. This is the reason why det(H) > 0.

Proof of theorem 1:

It is evident that if θ = 0 and t = 0 then e = 0. We
must prove now that if e = 0, then θ = 0 and t = 0. Let us
suppose that e = 0. It is evident that if θ = 0 then t = 0
and if t = 0 then θ = 0. Now, let us suppose that e = 0 and
t �= 0 and θ �= 0. If eν = 0 then HX ∗

s = X ∗
s . Thus, H has an

eigenvalue equal to 1 and the vector X ∗
s is the corresponding

eigenvector. The vector X ∗
s is also eigenvector corresponding

to the eigenvalue 1 of the matrix H2. Since eω = 0 then
H = H� and H2 = HH�. Given Proposition 1, X ∗

s is then
collinear to the vector v = [Rn∗]× t. Since det(H) > 0, this
vector is different from zeros (see Proposition 3). On the other
hand, Proposition 2 shows that in this case n∗�X ∗

s = ρ∗ = 0.
This is impossible since by definition ρ∗ > 0. Thus, it is
impossible that e = 0 and t �= 0, θ �= 0.

B. The interaction matrix

Using equation (12), we have:

ėν = (ṫ + ṘX ∗)/ρ∗

= (ν + [ω]× t + [ω]× RX ∗)/ρ∗

= ν/ρ∗ + [ω]× (t + RX ∗)/ρ∗

= ν/ρ∗ + [ω]× (eν + X ∗
s)

= ν/ρ∗ − [eν + X ∗
s]× ω

and:

ėω = 2
d sin(θ)u

dt
+ [n]× ṫ

= 2Lω + [n]× (ν + [ω]× t)
= [n]× ν + (2Lω − [n]× [t]×)ω

Finally, we obtain equation (13) and the interaction matrix in
equation (14).

C. Proof of the local stability of the control law

Proof of theorem 2:

After linearizing equation (13) about e = 0, we obtain
the following linear system:

ė = −
[

λν/ρ∗ −λω [X ∗
s]×

λν [n∗]× 2λωI

]
e = −L0e

The eigenvectors of the constant matrix L0 are: 2λ,
4ρ∗, 2ρ∗ + λ +

√
λ2 + 4ρ∗2 (twice), 2ρ∗ + λ −

√
λ2 + 4ρ∗2

(twice). where λ = λν/λω . Since λ > 0 and ρ∗ > 0, the
eigenvalues of matrix L0 are always positives. Consequently,
the control law defined in equation (16) is always locally stable
for any n∗ and any X ∗

s .
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