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Legs Interference Checking of Parallel Robots over a Given
Workspace or Trajectory

Abstract— We are considering a 6 d.o.f. Gough platform
that has to move within a given workspace or on a trajectory.
The legs of the robot are assumed to be constituted of a set
of finite cylindrical elements and we address the problem
of determining if any pair of such element will intersect
during the robot motion. Collision conditions may be written
mathematically according to various equivalent formulations.
We show however that these formulations are not numerically
equivalent and exhibit an efficient interference checking
algorithm based on interval analysis that allows to check
6D workspace or arbitrary time-function trajectories for
interference.

I. INTRODUCTION

One of the drawbacks of parallel robots is their usually
limited workspace. The constraints that enforce the limita-
tion on the workspace are:

1) joints limits (either for actuated or passive joints):
for example the leg lengths of a Gough platform
(figure 1) are restricted to lie within some ranges
while the motion of the U, S joints that are placed at
the end of the legs may also be limited

2) singularity: usually parallel robots cannot cross a
singularity and consequently singular varieties may
split the workspace into different components. The
robot motion will be restricted to lie within the
components corresponding to the initial assembly
mode of the robot

3) self-collision: collision between the legs of the robot
and eventually with the platform or base may also
limit the workspace

Limitations related to point 1 have been extensively studied
and efficient algorithms for computing the corresponding
workspace are available [3], [6]. Limitations due to point 2
are still an open problem although algorithms are available
to check if a given workspace is singularity-free or to
find the largest singularity-free cube, sphere or cylinder
included in the workspace [7]. Interference between the
legs have been considered for planar robot [1], [8], for wire
robots [5] (which is a simpler problem as the legs can be
assimilated to line segments) or for specific small trajecto-
ries within a global motion planner [2]. But to the best of
our knowledge for spatial robots workspace determination
taking interference into account has been proposed only for
a constant orientation of the platform [4]. Still experiences
on the Gough platform shows that interference between
legs of complex shape is a highly limiting factor for the
workspace, especially because of interference between the
elements close to the base. As there was up to now no
known algorithm to check this interference many designers

of prototypes and industrial robots uses a limitation on
the stroke of the actuator as a safety measure, thereby
limiting the workspace of their robots as this limitation
may go up to 60 % of the available stroke of the actuator.
Hence interference checking may play an important role to
improve the size of the workspace.

In this paper we will consider a Gough platform (fig-
ure 1) but any other type of parallel robot may be consid-
ered as well. The fixed frame (O,x,y, z) will be called the
base frame while a mobile frame (C,xr,yr, zr) attached
to the platform will be called the platform frame. The pose
of the platform will be parametrized by the location of
C in the base frame and 3 angles will be used to define
the orientation of the mobile frame with respect to the base
frame. We will assume that the robot is constituted of finite
cylinders with circular section (a common shape for sensors
and actuators). The circular sections on top and bottom of
the cylinder will be called the top and bottom sections.
Different types of cylinder will be considered, figure 1:

• base cylinder (BC): a cylinder connected to the base
with constant length, radius and a fixed axis

• platform cylinder (PC): a cylinder connected to the
platform whose axis in the platform frame is known
and whose length and radius are known

• base mobile cylinder (BMC): a cylinder of constant
radius with the center of its bottom section having a
fixed location in the base frame, but with varying axis
direction and length, which can be determined being
given the pose of the platform

• platform mobile cylinder (PMC): a cylinder of con-
stant radius with the center of its top section having a
fixed location in the platform frame, but with varying
axis direction and length, which can be determined
being given the pose of the platform.

The purpose of this paper is to describe an algorithm that
check if any pair of cylindrical elements of the robot may
intersect for a prescribed motion of the platform. This
prescribed motion may be either

• a trajectory defined by arbitrary time-functions for the
pose parameters

• a workspace defined by ranges for the coordinates of
C (but we will see that other workspace shape may
be defined as well) and ranges for the 3 orientation
angles

II. TWO CYLINDERS INTERSECTION CONDITIONS

We consider 2 finite cylinders C1, C2 which are fully
defined by the coordinates of the centers of their top and
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Fig. 1. A Gough platform and its various cylinder elements

bottom sections (P1, Q1), (P2, Q2) together with their radii
r1, r2.

A. First approach

A first approach to determine if C1, C2 intersect is to
define a distance d between 2 lines segments ls1 = P1Q1,
ls2 = P2Q2. The projection of a point Fi of a line segment
lsi on the line associated to the line segment lsj will be
denoted F j

i . The distance d12 between the lines associated
to ls1, ls2 is equal to:

d12 =
|P1P2.P1Q1 ×P2Q2|

||P1Q1 ×P2Q2||
(1)

Let M1,M2 be the points belonging to the lines associated
to ls1, ls2 and to their common perpendicular and define
l1, l2 such that P1M1 = l1P1Q1, P2M2 = l2P2Q2. We
have

l1 =
P1P2.(P2Q2 × (P1Q1 ×P2Q2))

||P1Q1 ×P2Q2||2

l2 =
P1P2.(P1Q1 × (P1Q1 ×P2Q2))

||P1Q1 ×P2Q2||2

We define the set of points S1 = {P1, Q1} to which we
add P 1

2
, Q1

2
if they belong to ls1. Similarly we construct

the set S2 = {P2, Q2} to which may be added P 2

1
, Q2

1
if

they belong to ls2. We define then d as

d =

{

d12 if l1, l2 ∈ [0, 1]
Min(||Y1Y2||) ∀ Y1 ∈ S1, Y2 ∈ S2

(2)

The following results hold: if d > r1 + r2, then there is no
collision between the cylinders, if d ≤ r1 +r2 and d = d12

then the two cylinders intersect. If d ≤ r1+r2 and d 6= d12,
then the definition of d does not allow to determine if the
cylinders intersect and we have to check the intersection
between the top and bottom section of the cylinders.

B. Second approach

Let n2 be the unit vector of the line associated to ls2
and two mutually orthogonal vectors v2,w2 that are also
perpendicular to n2. We consider a point M2 on the axis of
the cylinder C2 so that P2M2 = l2P2Q2. A point M on
the circular section of the cylinder whose center is M2 is
such that M2M = r2 cos θv2 + r2 sin θw2. Consequently
the coordinates of M in the base frame are obtained as:

OM = OP2 + l2P2Q2 + r2 cos θv2 + r2 sin θw2 (3)

Let M1 be a point on the axis of the cylinder C1 such that
P1M1 = l1P1Q1. The following results hold:

• if ||M1M|| > r1 for all l1, l2 ∈ [0, 1] and θ ∈ [0, 2π],
then the cylinders do not intersect

• if ||M1M|| ≤ r1 and P1M.P1Q1 ≥ 0,
Q1M.P1Q1 ≤ 0, then the cylinders intersect.

This approach provides a full interference check and is
therefore more complete than the first approach.

C. Third approach

A point M belong to the cylinder C1 if

||P1M×P1Q1||

||P1Q1||
≤ r1 0 ≤

P1M.P1Q1

||P1Q1||
≤ 1 (4)

The first equation indicates that the distance of M to the
line associated to ls1 is less than the cylinder radius while
the inequalities implies that the projection of M on this
line should belong to ls1. A similar set of three inequalities
may be established to indicate that M belong to C2. If there
is a M for which all 6 inequalities are satisfied, then the
cylinders intersect, otherwise they do not intersect. This
approach, like the second one, provides a full interference
check but involve 6 inequalities instead of the 3 inequalities
of the second approach.

III. CYLINDRICAL ELEMENTS INTERSECTION

A. Intersection in a pose

Being given a pose of the robot it is possible to calculate
the location of the center of the top and bottom sections of
any cylindrical elements i.e. the points P1, Q1, P2, Q2. Us-
ing the above approaches it is then possible to determine if
a pair of cylindrical elements intersect using the following
procedures:

• for the first approach: compute l1, l2. If l1, l2 ∈ [0, 1]
and d12 ≤ (>)r1 + r2, then the cylindrical elements
do (not) intersect. If d > r1 +r2, then the elements do
not intersect. If d 6= d12 < r1 + r2 it is necessary to
check the intersection of the top and bottom sections
of the cylinders

• for the second approach: ||M1M||2 is a function
of l1, l2, θ. To respect the constraints on l1, l2 we
define new variables a1, a2 such that li = (1 −
sin(ai))/2. To get the extrema of ||M1M||2 we
calculate its derivative with respect to a1, a2, θ, which
are trigonometric functions of these variables. Using
the Weierstrass substitution we transform these 3
equations into 3 polynomial equations in the variables



T1 = tan(a1/2), T2 = tan(a2/2), T = tan(θ/2).
Using the resultant between each pair of equation
we first eliminate T1. It remains then 2 equations in
T2, T whose resultant in T2 is an univariate 4th order
polynomial in T . Solving this polynomial and back-
substituting for T1, T2 allows one to get the minimum
of ||M1M||2 and the corresponding coordinates for
M . If the minimum is lower than r1 we may then
compute P1M.P1Q1 and Q1M.P1Q1 to verify if
the cylinders intersect.

• for the third approach: we define b1, b2 such that
PiM.PiQi = (1 − sin(bi))||PiQi||/2. If (X,Y, Z)
are the coordinates of M , then this two equations are
linear in X,Y . After solving this system the distance
of M to the line 2 is now a function of X, b1, b2.
We look at the minimum of this distance by solving
the system of derivatives equations. These derivatives
are linear in Z. After using one of these equations to
determine Z we get a system of 2 equations in b1, b2.
The first equation may be written as the product of
cos(b1) by a term which is linear in sin(b1), sin(b2).
The second equation is the product of cos(b2) by
the same term in sin(b1), sin(b2) than for the first
equation. The cancellation of this term corresponds
to the case where M lies on line 2. We may thus
affect a value to b1 (or b2). The distance from to the
line 1 is then a second order polynomial in sin(b2).
Solving this equation for r1 allows to determine if the
distance between M and line 1 may be lower than r1.

B. Numerical complexity and sensitivity for a varying pose
For a given set of poses (defined as a workspace or

a trajectory) it will usually not be possible to verify
analytically the intersection constraints, whatever is the
chosen approach. A numerical procedure must thus be
used and it is necessary to check the complexity and the
numerical conditioning of each intersection approach.

In term of complexity for the intersection test of two
cylindrical elements we have

• for the first approach: the unknowns are the 6 poses
parameters while up to 19 inequalities must be
checked.

• for the second approach: the total number of un-
knowns is 9 (6 poses parameters, l1, l2, θ) with at
most 3 inequalities to verify

• for the third approach there is also 9 unknowns (6 pose
parameters and the coordinates of M ) and a total of
6 inequalities.

In term of numerical sensitivity there is a major problem
with the first approach: the calculation of d12, l1, l2 involves
the ratio of 2 quantities including the term ||P1Q1 ×
P2Q2|| which will be 0 or close to it if the lines associated
to ls1, ls2 are parallel or nearly parallel, a case that occurs
frequently for the legs of parallel robots. Hence the first
approach will be numerically sensitive and although it
involves less unknowns will be discarded.

The second and third approach have the same number
of unknowns while the number of inequalities to verify is

less for the second approach. Furthermore all unknowns in
the second approach are naturally bounded (l1, l2 should
be in the range [0,1] while θ has to lie in [0, 2π]). For the
third approach we will see that bounds may be found for
the coordinates of M but that these bounds will usually
be quite large. But the second approach involves also the
orthogonal vector basis n2,v2,w2 that is varying for a
set of poses if the cylindrical element is a PC, a BMC
or a PMC. In summary there may some advantage to use
the second approach, although the third one may also have
to be considered, while the first approach may usually be
discarded in view of numerical robustness.

IV. VERIFICATION OF INTERFERENCE OVER A
WORKSPACE

For a set of poses (e.g. defined by a set of ranges for
the pose parameters) it appears that there is little hope to
be able to determine analytically if interference may occur,
whatever is the chosen approach. Hence we will have to
rely on a numerical procedure but one which ensure a
reliable result. Collision detection may be formulated as
a constrained optimization problem in which we minimize
a distance between the cylindrical elements although we
are not interested in finding the exact minimum but just
to show that it is lower or greater than a given value.
As in the past interval analysis has been able to solve
many difficult robotics problems we have investigated this
method. A basic concept of interval analysis is the interval
evaluation of a multi-variate function F (x1, . . . , xn). Be-
ing given ranges [xi, xi] for each unknown xi the interval
evaluation of F is a range [a, b] such that the value of
F for any instance xr

i of the xi’s in their ranges verifies
a ≤ F (xr

1
, . . . , xr

n) ≤ b. In other words the interval
evaluation of a function gives bounds for the minimal and
maximal values of the function over the unknowns ranges.
A drawback of interval analysis is that a, b are usually
only bounds for the minimal and maximal values of the
function and are usually overestimating the minimum and
maximum. But the level of overestimation is decreasing
with the width of the unknowns ranges.

An interval evaluation may be calculated as soon as F
is constituted of any classical mathematical function. Fur-
thermore the calculation of an interval evaluation may take
into account round-off errors i.e. the result is guaranteed.
For example if a > 0, then we are sure that for any instance
of the xi F will always be positive.

A. Algorithm

The principle of an interval analysis based algorithm is
always the same (although there are many different ways
to implement it and to add heuristics that may change
drastically the computation time). This principle will be
illustrated on the second approach for the intersection of
a base cylinder C2 and a base mobile cylinder. C1. In that
case the coordinates of the centers P2, Q2 of the bottom
and top sections of C2 are fixed in the base frame. For C1

the center P1 of the bottom section is fixed in the base



frame while the coordinates of the center Q1 of the top
section are functions of the pose parameters.

Let n2 = (nx
2
, ny

2
, nz

2
) be the known unit vector of the

axis of C2. Let v2 be the unit vector with components

(0, nz
2
/u,−ny

2
/u) with u =

√

ny
2

2
+ nz

2

2 and w2 =
n2×v2. Clearly v2,w2,n2 is an orthonormal vector basis.
Using equation (3) it may be seen that OM is a function of
the unknown l2, θ. Let M1 be a point on the axis of C1 such
that OM1 = OP1 +P1M1 with P1M1 = l1P1Q1. The
components of OM1 are functions of the pose parameters
(through the coordinates of Q1) and of l1. Consequently
the components of the vector M1M are functions of the
following unknowns X : the pose parameters, l1, l2, θ.

Let us now assume that all the unknowns in X are
constrained to lie in some range. A set of ranges for the
9 unknowns define a 9-dimensional box and we will use
the term box for a set of ranges for the 9 unknowns. We
will here first assume that the range for l1, l2 is [0,1] and
[0, 2π] for θ. The set of range for the pose parameters are
obtained from the workspace W definition. Hence we are
considering a box B1 and by using interval analysis we are
able to calculate an interval evaluation of the components
of M1M and then an interval evaluation [a, b] of ||M1M||.
Three different cases may occur:

1) if a > r1, then C1, C2 never intersect for any pose in
W

2) if b ≤ r1, then C1, C2 may intersect, provided that
the conditions on P1M.P1Q1, Q1M.P1Q1 are
satisfied

3) if a ≤ r1, b ≥ r1, then we are not able to determine
the position of ||M1M|| with respect to r1.

In case 3 we will choose one variable xi, bisect its range
Ii = [xi, xi] and create 2 new boxes B2, B3 by keeping
the same ranges than in B1 for all variables except for the
variable xi for which the range will be [xi, (xi +xi)/2] for
B2 and [(xi + xi)/2, xi] for B3. These 2 boxes are stored
in a list L. The algorithm will then process all the boxes
in the list, starting with B2. As soon as a box has been
considered the algorithm will process the next box in L.

For case 2 we will compute the interval evaluation
[p1, q1], [r1, s1] of P1M.P1Q1, Q1M.P1Q1. If p1 > 0,
s1 < 0 then the cylinders intersect, if q1 < 0 or r1 > 0,
then the cylinders will not intersect for this set of ranges.
If p1, r1 < 0 and s1, q1 > 0, then we will proceed as in
case 3 by creating 2 new boxes that will be added to the
list L.

The algorithm will stop either when it has been deter-
mined that the two cylinders intersect or when all the boxes
in the list have been processed, in which case the cylinders
do not intersect.

B. Possible workspace definition

As for the workspace in which is constrained to lie the
platform, the algorithm is highly flexible and allows to deal
with many cases:

• the workspace may be a trajectory with the pose
parameters being almost arbitrary functions of the

time T , that we may suppose to be in the range
[0,1]. Note that in that case a small change in the
algorithm allows to determine the lowest time at which
an interference occurs. It is also possible to add
bounded perturbations on the trajectory representing
uncertainties, for example due to control error

• the algorithm is able to deal with 6D workspace,
described as a set of ranges for the pose parameters
(a box in the 6D space). But we may also deal with
more complex workspace for the location of C as
soon as we are able to find a bounding box of the
workspace and design a test to determine if a given
box is fully inside or outside the workspace. For
example if the workspace is a sphere we use the
box algorithm, initialized with the bounding box of
the sphere, and we use the test before processing a
box. If the test indicates that a box is outside the
sphere we just skip this box. If the box is only partly
inside the sphere, then we check the intersection of the
elements but if there is an intersection we still bisect
the box. We may also introduce additional constraints
to restrict the workspace. For example mechanical
limits on the motion of the passive joints may be
added. Assume that the S joints located on the base
may rotate by at most an angle µ around a vector r.
Hence at a given pose the constraint will be satisfied
if AB.r/||AB|| ≥ cos(µ), an inequality that may be
easily incorporated in the algorithm.
Note also that symmetry in the robot and in the
workspace may be used to decrease the computation
time.

C. Intersection cases

We will now summarize how the previous algorithm will
be used at best for each pair of basic cylindrical elements.
Indeed an appropriate choice of which is cylinder 1 and 2 of
section II-B will play an important role in the computation
time. Using the notation of section II-B we will indicate
by a superscript which elements are affected to C1 and
C2. For example 21 will indicate that the cylinder 2 of
section II-B will be C1. If no superscript is present, then
we may use indifferently C1 or C2 in the calculation of
section II-B. We will use the notation 1(X) to indicate
that the elements of cylinder 1 are a function of the pose
parameters. A × symbol will be used to indicate that for
this pair interference does not depend upon the pose. The
best combination are indicated in Table I.

V. IMPLEMENTATION AND TEST

A. Implementation

To test the interference algorithm we have used the
C++ interval analysis library ALIAS which is interfaced
with the symbolic software Maple. The inequalities that
must be verified for the interference check are obtained
through Maple: this allow to modify at will the robot
geometry or even its mechanical structure. As soon as
the inequalities have been established a specific Maple
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TABLE I
BEST CHOICE OF CYLINDERS NUMBERING FOR THE POSSIBLE

COMBINATION OF BASIC CYLINDRICAL ELEMENTS.

procedure is called that allows to use a C++ solving method
of ALIAS to determine if there is at least one solution to
the inequalities test (in most cases the solution will be a box
and for any value of the unknowns in this box there will be
interference). This Maple procedure generates a C++ code
that is run and whose result is returned to Maple. It must
be understood that the algorithm proposed in section IV-A
describes only the basic of the method. To be efficient the
implementation requires some expertise in interval analysis.
For example in the test implementation we use:

• a recursive interval evaluation of the inequalities based
on the interval evaluation of its derivatives. As soon as
one of these interval evaluations has a constant sign,
then the calculation of the lower and upper bound
of the interval evaluation may be done with a fixed
value of one unknown, leading to a sharper interval
evaluation

• a simplification procedure such that the interval eval-
uation of terms that appear multiple time in the
inequalities are interval evaluated only once (this is es-
pecially useful for interval evaluation of trigonometric
functions that are relatively computer intensive)

• filtering strategies that allow either to determine that
a box cannot satisfy the inequalities or reduce the size
of the box.

A drawback of this approach is that in its current
version ALIAS is able to deal only with one given set of
inequalities at a time. Hence a program has to be generated
for each check of the intersection of each pair of elements,
while it will have been more efficient to design a single
program that check the intersection of each pair in a single
step.

For using this procedure it is necessary to indicate range
for each unknown. This is not a problem for the first and
second approach as all the unknowns for these approaches
are naturally bounded. For the third approach we write
OM = OP1 + αP1Q1, where α lie in the range [0,1].
For a given box we can compute an interval evaluation of
the coordinates of OM and thus get the initial box.

B. Test

To test the algorithm we have considered a wire robot
with a base radius of 100 mm and a platform radius of
70 mm. The wires may be considered as a set of BMC

{W1, . . . ,W6} with a diameter of 2 mm. Furthermore the
platform has a PC P1 centered at (0,0,0) with height 52
mm and radius 46 mm. On the base we have a BC B1 also
centered at (0,0,0) with height 52 mm and radius 46 mm.
The cylindrical elements P1 and B1 are connected through
a BMC F1. This robot has hence a total of 9 cylindrical
elements that may intersect. We have to perform a total
of 33 interference check: 15 for the intersection between
the Wi and 6 for the intersection between the Wi and
P1,B1,F1 (we assume no intersection between P1,B1).

We have considered that the platform has to move in 2
different types of 6D workspace:

1) workspace G1: a 6D box defined by the ranges
x, y ∈ [−40, 40], z ∈ [130, 210] and a range [-10,10]
degrees for the yaw, pitch, roll angles

2) workspace G2: a sphere centered at (0,0,170) and of
radius 40 for C and a range [-10,10] degrees for the
yaw, pitch, roll angles

3) trajectory T1: a circular trajectory in the x − y
plane centered at (0,0,170) with radius 20 (i.e. x =
20 sin(2πT ), y = 20 cos(2πT ) with the Euler angles
equal to 0

4) trajectory T2: the same circular trajectory but with
ψ = 2πT , θ = 5 degree and φ = −ψ. This
correspond to the case where the normal of the
platform is oriented toward the center of the circle
with a constant 5 degree tilt

5) trajectory T3: the same circular trajectory but with
ψ = 2πT , θ = 5 degree and φ = 0

The computation for the various interference checks,
using the second approach, are presented in Table II. The
lower computation time for Wi ∩ P1, Wi ∩ F1 for the
workspace G1 occurs because an interference is detected
(see figure 2) while there is no interference for G2, T1, T2.
Note also that the times obtained for Wi ∩ F1 have
been obtained by using a distributed implementation with
16 computers. It is important to emphasize that if the

Wi ∩Wj Wi ∩ B1 Wi ∩ P1 Wi ∩ F1 Total
G1 19.9 15.6 498 2833 3366.5
G2 21 16.4 528 1389 1954.4
T1 5.3 1.9 4.1 3.1 14.4
T2 7.25 4.5 9.8 6 27.55

TABLE II
COMPUTATION TIME IN SECOND FOR THE INTERFERENCE CHECK ON A

DELL D400 LAPTOP, FOR VARIOUS TYPES OF WORKSPACE.

interference check was performed in a single program the
computation time will be slightly reduced. At each step
of the bisection process we will check individually each
set of inequalities. But a remember flag allows to avoid
evaluating inequalities which have already been verified
for the box from which is issued the current box. Hence
the computation time will be almost reduced to the pair
that has the worst computation time. For example for G1

the worst pair is W5 ∩ F1 with a computation time of



2988s. Consequently the whole check of G1 will have a
computation time of about 3000 seconds.

Fig. 2. An interference case that is detected for workspace G1. Leg 5
collides with a PC.

For trajectory T3 collision between cables are detected
on the trajectory for all pairs of cables, in a computation
time of 7.3s (roughly 0.5s if all the test were performed
in a single step). Figure 3 presents examples of collision
between the legs. It can be established that the first collision
between the legs occurs at time 0.3808 between leg 2 and
6.

Our test have shown that the first and third approach
are usually much less efficient than the second approach
(except for Wi ∩ Wj for which the third approach is
approximately 10% faster than the second approach).

VI. CONCLUSION

We have shown in this paper that the difficult problem of
interference between the bodies of a parallel robot over a
6D workspace or a trajectory may be solved for cylindrical
shape of the bodies. Although different formulations are
available to test interference not all of them are equivalent
in term of efficiency. However it is necessary to extend the
possible shape of the bodies to other cases, such as spheres,
parallelepiped, which may be more difficult to deal with.

Other difficult problems will be the maximal workspace
and appropriate design one. The proposed algorithm allows
to detect an interference but we may also be interested
to determine the maximal interference-free workspace or
to be able to determine the design parameters so that a
given workspace will be interference free. The proposed
interference algorithm may be extended to deal with the
maximal workspace problem but the design problem is
much more difficult.

REFERENCES

[1] Chablat D. and Wenger P. Moveability and collision analysis for
fully-parallel manipulators. In 12th RoManSy, pages 61–68, Paris,
July, 6-9, 1998.
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