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Abstract— This paper presents a generic kinematic modeling
approach for articulated multi-monocycle mobile robots. The
formulation proposed to deduce the input/output velocity
equations for such kinematic structures is an extension of the
reciprocal screw based method of asymmetrical and constrained
parallel mechanisms. The efficiency of this methodology for
setting up the differential kinematic model is illustrated through
a application : the robuROC6 mobile robot. Its complex
kinematic structure is first transformed into a spatial parallel
mechanism which encapsulates the differential driving wheels
system. Then, the analytical form of the reciproqual screw
system which corresponds to the actively controlled wrenches
applied on the controlled body is established. Reciprocally, it
describes the way the wheel velocities are transfered to the
output body. It also provides a geometrical information for
an exhaustive singularity analysis and traction distribution
optimization during the evolution of the system on highly
irregular surfaces. From the differential kinematic model,
the concept of traction ellipsoid is introduced for evaluating
quantitatively the obstacle clearance capabilities when the
configuration of the system and the contact conditions are highly
variable.

I. INTRODUCTION

RobuROC6 (shown in figure 1) has been designed in
a collaboration between the ROBOSOFT Inc [1] and the
Laboboratoire de Robotique de Paris in response to a Re-
search Program launched in 2004 by the French Defense
Agency (DGA - Délégation Générale l’Armement) called
MiniRoc whose aim is to develop and evaluate experimentally
several semi-autonomous system serving as an extension of
the human soldier. RobuROC6 belongs to this class of robot
vehicle named Tactical Mobile Robot (TMR). TMRs are
basically high mobility small vehicles supposed to operate
in highly uncertain urban outdoor/indoor environments. TMR
development did not truly begin until the early 1990s. Until
then, the military’s primary focus for ground robotics was
on the development of Unmanned Ground Vehicles (UGVs).
Nevertheless, various families of TMRs have been developed
during the last decade. Their design is more compact and
robust than exploration robotics vehicles and have to satisfy
specific operational requirements (see [2]). One of the main
features of robuROC6 is its ability to operate in extremely
rough terrain and negotiating stairs (circular stairs) or clear
obstacles with height greater than its wheel radius. Moreover,
its concept was designed to offer reconfiguration capabilities

Fig. 1. The RobuRoc mobile robot climbing a stair

for providing either a maximum of ground adaptation for
traction optimization or a high manoeuvrability. RobuROC6
kinematics can be considered as a series of 3 unicycle modules
linked together by two orthogonal rotoid passive joints (a roll
and a pitch motion in between the modules). It has been
optimized for stair-climbing as well as several typical bumps
and jumps clearance.

The differential kinematic model plays a fundamental role
in the robot performance analysis (mobility, input/output ve-
locity transmission, singularities, traction transmission, etc ...),
odometry and trajectory tracking control. The method for
deriving the input/output velocity relationship, which is widely
employed for wheeled mobile robots, consists of introduc-
ing geometrical transformations between the moving bodies
and their derivative to obtain equation of motion both by
assuming ideal rolling conditions as closed-loop constraints
[3]. Systematic formulations have been developed for various
combinations of driving and steering wheels [4] [5]. Realistic
sliding models in the soil/wheel interaction have also be
introduced for developing more complete models [6] [7] [8].
For eliminating the passive joint variables in the kinematic
equations and obtain the closed form of the input/output
velocity relationship, a particular procedure which is generally
system dependent has to be found.
The particular contribution of the paper is a generic and effi-
cient method for obtaining very efficient kinematic model for
complex articulated locomotion systems such as robuROC6.



The proposed method is based on the use of reciproqual
screws. Screw-based approaches have been employed as a
general framework for the mobility analysis of various types
of simple planar mobile robots [9]. Here, we consider pas-
sively articulated multi-monocycle mobile robots evolving on
3D surfaces. An equivalent kinematic model which encap-
sulate monocycle sub-system kinematics is defined. Hence,
the articulated multi-monocycle structure is represented as a
constrained asymmetric parallel system. A reciproqual screw-
based approach can be then developed to obtain the in-
put/output instantaneous velocities equations. Moreover, this
approach gives a better geometrical insight into the problem
of singularities and more generally into motion and force
transmission characteristics of the system. The concept of
traction ellipsoid is introduced for evaluating quantitatively the
obstacle clearance capabilities when the configuration of the
system and the contact conditions are constantly changing.

II. KINEMATIC MODELING AND ANALYSIS

A. Kinematic description

RobuROC6 is an articulated wheeled robot vehicle designed
for use in urban environments (open spaces such as city
streets and building interiors). It must have the ability to
overcome obstacles such as rubble piles, pipes, railroad tracks,
etc . . . and to climb up straight and circular stairs. RobuROC6
is composed of a multi-monocycle whose kinematic structure
as depicted in figure 4. It consists of a central pod1 and two
identical pods. Each pod is steered and driven by two actuated
conventional wheels on which a lateral slippage may occur.
The rear and the front pods are symmetrically arranged about
the central pod. They are attached to this later one by two
orthogonal passive rotoid joints providing a roll/pitch relative
motion for keeping the wheels on the ground to maintain
traction of the pod while traversing irregular surfaces. This
kinematic design permits to transform robuROC6 in a 4-wheel
configuration as shown in figure 2.

Fig. 2. RobuROC6 in a 4-wheel and 6-wheel configurations and details of
its articulations

1term introduced to define a monocycle element

B. Kinematic modeling

Kinematics plays a fundamental role in design, dynamic
modeling, and control. In this section, we illustrate a
methodology for modeling and analysis of articulated
multi-monocycle mobile robots. The relationship between
the central pod velocity in a reference frame and wheel
velocity vector can be greatly simplified by extending
the methodology used for parallel mechanisms [10] to
asymmetric constrained mechanisms. A parallel manipulator
typically consists of several limbs, made up of an open
loop mechanism, connecting a moving platform to the
ground. Here, the body S0 of central module can be seen
as the moving platform. It is connected to the ground by
a differential steering system as well as by the rear and
the front modules via two passive revolute joints which
can be seen as 2 others ”limbs” connecting S0 to the
ground. Hence, the whole mechanism is assimilable to an
asymmetric constrained mechanism with a mobility equal to 4.

Jacobian of a module: Each individual module j (j = 0 for
the central, j = 1, 2 for the others) can be modeled as an
equivalent serial open-chain mechanism (see figure 3).

Fig. 3. The differential driving wheels mechanism (left) and its equivalent
open-chain mechanism (right)

The jth differential driving wheels mechanism kinematics
can be represented by a set of four unit instantaneous twists
$̂j

i = (sj
i , s

∗
0
j
i = rj

i × sj
i + µj

is
j
i )

t i = 1, 4 where sj
i is a

unit vector along the direction of the screw axis, rj
i is the

position vector of any point of the screw axis with respect
to a reference point 0 and µi is the pitch of the screw. The
normalized Plucker coordinates of these screws written at the
axle middle point of the central axle Cj and in the basis of
the Rj local frame form the Jacobian of a monocycle Jj

m is
as follows :

Jj
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j
2, $̂

j
3, $̂

j
4

}
=


0 0 0 0
0 1 0 0
0 0 1 0
0 aj 0 1
1 0 0 0
0 0 0 0

 (1)



The reciprocal complement W j in se(3) of the system Jj
m has

a dimension 2. It represents the natural constraints acting on
the system due to the wheel/soil constraints :

W j =


0 0
0 0
0 1
1 0
0 0
0 0


For the module j, the amplitude ωzj and vxj of the screws $̂j

3

and $̂j
4 are related to left and right differentially driven wheel

velocities (θ̇j1, θ̇j2) by the relationship:(
ωzj

vzj

)
= 1/2

(
R/d −R/d
R R

) (
θ̇1j

θ̇2j

)
(2)

or in a compact matrix form:

q̇j = Jj
a θ̇j (3)

where R is the radius of the wheels and d is the half length
of the width of unicycle module. Jj

a is the Jacobian matrix of
the active part of the pod mechanism.

Fig. 4. The differential driving wheels mechanism (left) and its equivalent
open-chain mechanism (right) (front/rear module)

Reciprocal Screws of the 3 limbs
Using the notation introduced in figure 4, the instantaneous
twist $P of the central body (S0) with respect to the ground
can be expressed as a linear combination of the n actuated
and non-actuated joints screws of each j sub-chain:

$P =
n∑

i=1

q̇j
i $̂

j
i for j = 0, 1, 2

Fig. 5. Definition of αi, βi and γi angles.

where q̇j
i and $̂j

i denote the intensity and the unit screw
associated with the ith joint of the jth limb. By considering
alternatively the j = 0, 1, 2 (which denotes respectively the
labels for the central, front and rear pods), we obtain:

$P = q̇0
1 $̂0

1 + q̇0
2 $̂0

2 + ω0
z0

$̂0
3 + v0

x0
$̂0
4 (4)

$P = q̇1
1 $̂1

1 + q̇1
2 $̂1

2 + ω1
z1

$̂1
3 + v1

x1
$̂1
4 + q̇1

5 $̂1
5 + q̇1

6 $̂1
6 (5)

$P = q̇2
1 $̂2

1 + q̇2
2 $̂2

2 + ω2
z2

$̂2
3 + v2

x2
$̂2
4 + q̇2

5 $̂1
5 + q̇1

6 $̂1
6 (6)

Equations (4) (5) (6) contain many unactuated joint rates
(2 × 3 + 4) that must be eliminated to obtain a relationship
between the instantaneous screw which defines the absolute
motion $P of the central body and the wheel’s velocities vector
θ̇. This can be done very efficiently by using a set of reciprocal
screws $rj

i which is by definition reciproqual to all screws
of the jth limb except the actuated joint of order i in the
equivalent open chain. Two screws $̂1 and $̂2 are considered
to be reciprocal if they satisfy the condition:

s1.s
∗
02 + s2.s

∗
01 = 0

This reciprocity condition can be stated if the virtual work
between a wrench and a twist is equal to zero. A detailed
description of screw systems can be found in [11].

The Jacobian of the j = 1, 2 equivalent open chain formed
by a monocycle and the two passive revolute joints expressed
at the point C0 and in the local Rj (see figure 5) are (2):

Jj =


0 0 0 0 Cγj SβjSγj

0 1 0 0 0 Cβj

0 0 1 0 Sγj −SβjCγj

0 aj 0 1 bSβjSγj 0
1 0 hj 0 bCβj 0
0 −hj 0 0 −bSβjCγj 0


2C ≡ cos, S ≡ sin and T ≡ tan



These screws form a 6-system provided fixed so that they
are linearly independent. Hence, $̂rj

3 and $̂rj

4 that are recip-
rocal to all screws except for respectively $̂rj

3 and $̂rj

4 for
j = 1, 2 are unique. Their normalized Pluker coordinates
(uj

i , v
j
i , w

j
i , l

∗j
i ,m∗j

i , n∗ji )t are respectively :

$̂rj

3 =
[
0, 0, 1, l∗j3 , hj , n

∗j
3

]t

for j=1,2 (7)

with :
l∗j3 = bC2γjSβj − hjT

−1βjSγj

n∗j3 = Cγj

(
bSγjSβj + hjT

−1βj

)
$̂rj

3 is a non-null pitch reciproqual screw. The pitch µj
3 = n∗j3

which turns to infinity when βj = 0.

$̂rj

4 =
[
uj

4, 0, wj
4, l

∗j
4 ,m∗j

4 , 0
]t

for j=1,2 (8)

with :

uj
4 = U j

4

/[(
U j

4

)2

+
(
W j

4

)2
]1/2

wj
4 = W j

4

/[(
U j

4

)2

+
(
W j

4

)2
]1/2

l∗j4 = bCβjSβj(ajCγj − hjSγj)
/[(

U j
4

)2

+
(
W j

4

)2
]1/2

m∗j
4 = −bS2βjSγj(ajCγj − hjSγj)

/[(
U j

4

)2

+
(
W j

4

)2
]1/2

and
U j

4 = hjCβjCγj + bS2βjSγjCγj

W j
4 = ajCβjCγj + bS2βjS

2γj

$̂rj

4 is a force located in the plane (xj ,zj) passing through the
point C0 when βj = γj = 0.

The reciprocal screws $̂r0

3 and $̂r0

4 have to be determined by
considering the n=4-system

{
$̂0
1, $̂

0
2, $̂

0
3, $̂

0
4

}
of feasible mo-

tions. To treat constrained mechanisms (n < 6), as mentioned
in [12] the screw-based approach have to be adapted. An
”actively” applicable wrench basis for the constrained system
can be first determined by using a projection of any reciproqual
screw coordinate vector (the screw of the wrench) onto the
orthogonal complement (W j)⊥ of the natural constraints 2-
system (W j):

(W j)⊥ =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1


Then, the reciproqual screws will always have two of its
components equal to zero :

(fx, fy, 0, 0,my,mz)t = (W j)⊥(fx, fy, fz,mx,my,mz)t

In this reduced wrench space, the reciproqual screws $̂r0

3

and $̂r0

4 are unique since the columns of J0
m are linearly

independent. In C0, h0 = 0 and their expression reduced to :

$̂r
0

3 = [0, 0, 0, 0, 0, 1]t

$̂r
0

4 = [1, 0, 0, 0, a0, 0]t

The coordinates of these reciprocal screws can be directly
computed by multiplying (7) and (8) in the R0 frame by using
the block matrix:

E0j =
(

Rt
j0 03×3

03×3 Rt
j0

)
(9)

with :

Rj0 =

(
CαjCγj − SαjCβjSγj SβjSγj −SαjCγj − CαjCβjSγj

SαjSβj Cβj CαjSβj

CαjSγj + SαjCβjCγj −SβjCγj −SαjSγj + CαjCβjCγj

)
Input/Output velocity equation
By multiplying (via the reciprocal screw product) each side of
the equations (4) (5) (6) with the associated reciprocal screws,
it produces a set of equations which can be written in a matrix
form as follows:

Bq̇a = DẊ

with q̇a =
(
ω1

z1
, v1

x1
, ω0

z0
, v0

x0
, ω2

z2
, v2

x2

)t
, ωj

zj
and vj

xj
denoting

respectively the linear and angular velocities produced by the
differential steering system of the pod j along xj and about
zj , Ẋ = (w̄x0, w̄y0, w̄z0, v̄x0, v̄y0, v̄z0)

t
B, the (6× 6) matrix

which multiply the active joint rates is a diagonal matrix whose
components are:

B = diag
(
$̂r1
3 .$̂1

3, $̂
r1
4 .$̂1

4, $̂
r0
3 .$̂0

3, $̂
r0
4 .$̂0

4, $̂
r2
3 .$̂2

3, $̂
r2
4 .$̂2

4

)
B = diag

(
n1

3, u
1
4, n

0
3, u

0
4, n

2
3, u

2
4

)
and D is a (6×6) matrix whose lines are the reciprocal screws
coordinates in the frame R0:

D =


(0 0 1 l∗13 h1 n∗13 )Et

01

(u1
4 0 w1

4 l∗14 m∗1
4 0)Et

01

(0 0 0 0 0 1)
(1 0 0 0 a0 0)
(0 0 1 l∗23 h2 n∗23 )Et

02

(u2
4 0 w2

4 l∗24 m∗2
4 0)Et

02

 (10)

By observation of matrix D it can be deduced that the lateral
velocity of the system is not controlled kinematically.
By introducing the block matrix Ja (3):

Ja =

 Ja1 0 0
0 Ja0 0
0 0 Ja2


we obtain the kinematic control model of the vehicle :

Jaθ̇ = DẊ

where
θ̇ =

(
θ̇11, θ̇12, θ̇01, θ̇02, θ̇21, θ̇22

)t



III. OBSTACLE CLEARANCE CAPACITIES

For simplicity, we will restrict the analysis to the two
dimensional case of the obstacle clearance : βj = 0. The
reciprocal screws become :

$̂j
3 =

[
0 0 0 0 0 1

]t

$̂j
4 =

[
Cλj 0 Sλj 0 0 0

]t

with :
Cλj = hj

/√
a2

j + h2
j

Sλj = aj

/√
a2

j + h2
j

B = diag (1, Cλ1, 1, 1, 1, Cλ2)

D =


0 0 0 0 0 1

Cϕ1 0 Sϕ1 0 0 0
0 0 0 0 0 1
1 0 0 0 a0 0
0 0 0 0 0 1

Cϕ2 0 Sϕ2 0 0 0


with ϕj = αj + λj + γj .

This model clearly shows that the degree of mobility of the
system in this particular case is equal to 4. The lateral velocity
of the system is not controlled kinematically as well as the
rotation about the x0 axis. It also describes how a vertical
motion (v̄z0) of the central pod can be achieved to transform
the system in a 4-wheel configuration. We obtain the kinematic
control model of the vehicle :

Jaθ̇ =


0 0 0 1
1 tgϕ1 0 0
0 0 0 1
1 0 a0 0
0 0 0 1
1 tgϕ2 0 0




v̄x0

v̄z0

ω̄x0

ω̄z0

 = DẊ (11)

On the other hand, force-moment transmission on the
central body is reflected by the D matrix. Its lines rep-
resent the elementary actions (here in the reduced wrench
space (fx0 , fz0 ,my0 ,mz0)) developed by the driving torques
(τ11, τ12, τ01, τ02, τ21, τ22)

t on the central body. Similarly as
when multiple robots exert forces or carry an object in
cooperative way, D is equivalent to Gt, G representing the
grasp matrix that contains the contact distribution and the
way the active forces are transmitted throughout the central
body. G can be partitioned into 2 blocks G = (Gf Gm)t, Gf

and Gm representing the force and the moment transmission
respectively. It is interesting to be able to compare the traction
capabilities for different contact conditions. Hence, the set of
forces and moments realizable by τ such ‖τ‖ ≤ 1 form an
ellipsoid. A representative measure σ of the traction derived
from the image of this unit ball of active joint torques:

σ =
[
det(Gt

fGf )
]1/2

(12)

When βj = 0 (j = 1, 2), the traction index σ is:

σ =
[
(Sϕ1Cϕ2 − Cϕ1Sϕ2)2 + Sϕ2

1 + Sϕ2
2

]1/2

This index is equal to zero when Gf is singular. Then the
force transmission in the vertical direction becomes null, this
happens in configurations where γj = 0 (j = 1, 2).

Fig. 6. Step clearance for robuROC6

To show the evolution of the manipulability index σ, we
have studied the case of a step clearance for robuROC6. Figure
6 illustrates the evolution of the system during a step clearance
while figure 7 shows the correlation between the geometry of
the system and the manipulability index. The two singular
values σ1 and σ2 correspond, in figure 7, to the traction along
the two principal axes of the manipulability ellipsoid. The
singular value σ1 represents the traction along the axis x0

and σ2 the traction along the axis z0 in the R′ local frame.
The curve is composed of three parts where each one contains
a peak. Each part represents the evolution of the central pod :



Fig. 7. Singular values σ1 and σ2 for step clearance

• the front and the rise of the step;
• on the step;
• the decrease and the rear of the step.
In all the simulation, the traction σ1 is most important than

σ2. Indeed, a velocity setting along the x0 axis is imposed. It
is interesting to observe the evolution of the traction σ2 during
the simulation of a step clearance on figure 7.
During the planar evolution of robuROC6 ([0s; 4s]), the par-
ticipation of σ2 is bare.
The time interval [4s; 8s] corresponds to the climbing of the
step (figure 6). In the first part of this period, the central pod is
pulled by the front one and pushed by the rear one (increase of
σ2). In the second part of the interval, the participation of the
front pod during the climbing decreases while σ1 increases.
The time interval [8s; 12s] corresponds to the configuration in
which the central pod is on the step (figure 6). In the same
time, the central pod is pushed by the rear one and pulled
by the front pod to produce an horizontal movement. These
actions produce, first, an increase of σ2 (the front pod is on
the step) and then its decrease (the rear pod is on the step).
Its maximum value represents a configuration in which the
central pod is on the top of the step and the two other pods
are located on each side of it.
The last time interval [12s; 14s] represents the descent of the
step. σ2 is very strong during the descent of the central pod
(figure 6). Then, when it is on the ground, σ2 slowly decreases
(figure 7), which means that the rear pod is in the phase of
descent (figure 6). σ1 takes again its maximum value after the
obstacle clearance.

IV. CONCLUSION

This paper presents a general framework for evaluating
wheeled modular vehicles composed of monocycles. We show
that by using an equivalent kinematic model of a monocycle
and the reciprocal screws theory, we derive easily the inverse
velocity model that could be used for control and trajectory
tracking. The force transmission in these systems is also in-
vestigated by making analogy to parallel manipulators and the

concept of the manipulability ellipsoid. This theoretical study
should be generalized to other vehicle kinematics including
those with wheels, legs or both. Future works should be
focused on minimization of torques and energy consumption
during manoeuvring or steering along curved trajectory.
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