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I. ABSTRACT

Search and rescue robots often use tethers to provide power
and communication, but tethers get caught on debris and small
robots have difficulty with the added drag of the tether. This
work investigates a self-actuating tether capable of remaining
free while traversing obstacles. We present a physical model
of the pressure transients actuated tether. The model relates
forward motion of the tether (independent of a dragging
force) to the relevant design parameters of hose stiffness, flow
diameter, tether length, applied pressure, and valve selection.
We present an experiment to test and validate our model. The
experimental results correspond within 15% to the expected
values from our analysis and also validate the functional
dependence of our model on the design parameters.

II. INTRODUCTION

Mobile robots are used to aid humans in environments
that are too hazardous or inaccessible. This is especially true
in post-disaster search-and-rescue sites where victims might
be buried beneath unstable pileup. Rescue robots can make
rescuers’ jobs safer and easier by extending their reach in
such severe conditions. After the World Trade Center (WTC)
disaster on September 11, 2001, the limitations of rescue
robots in such a chaotic environment became clear. The Center
for Robotic Assisted Search and Rescue (CRASAR) deployed
radio-controlled and tethered rescue robots eight times into the
debris. CRASAR technicians named radio transmission failure
[3] [4], poor maneuverability [2], and tether locking [3] as
three of the most restrictive limitations they encountered.

Untethered, tele-operated robots were among the models
used by CRASAR at the WTC site. Temporary loss of commu-
nication with these robots presented a problem for CRASAR
technicians. Thick pieces of concrete and steel debris ob-
structing radio communication between robot and operator [4]
were the likely cause of failure. In general tethered robots
do not require batteries and telecommunications equipment.
Therefore they can be built small, enabling them to penetrate
further than their tethered counterparts into constricted search
areas. The cost of using tethers is increase drag and a tendency
to catch on obstacles, limiting the reach and path of the robot.

In [8] we investigated a novel solution to the problem of
tether management, allowing search-and-rescue teams to take
advantage of the benefits of tethering robots without the added

obstruction to exploration. We proposed a solution involving
flowing water through a hose within the tether and repeatedly
closing a valve mounted on the robot. When the valve is
closed the fluid rapidly decelerates, transferring energy to
the valve and hose—an effect known as waterhammer. This
energy transfer induces a forward motion of the tether and
allows forward motion of the robot. Experiments with initial
prototypes showed the solution works—allowing the robot to
move forward in conditions where it would otherwise be stuck.

While the waterhammer phenomenon is well studied [5],
the underlying mechanics of the tether motion in a flexible
hose is unclear. The goal of this work is to relate the
tether’s performance (forward acceleration of the tether) to the
relevant design parameters (e.g. tube material, flow diameter,
tether length, applied pressure, valve selection). We begin our
analysis by exploring the fundamental connection between the
waterhammer and the motion of the tether. We then present
an initial experiment that focuses our analysis on the dynamic
interaction between the waterhammer wave and the flexible
tube. Next, we develop a set of equations that relate the
forward motion of the tether to the design parameters. Finally,
we present experimental data for four different tethers to verify
our mathematical model.

III. INITIAL HYPOTHESIS

A waterhammer-actuated tether is a complex system involv-
ing a coupled fluid-solid interaction. When a flow is rapidly
arrested, the momentum of the fluid that is in motion is
transferred to the parts of the system that are at rest (e.g.
the valve, the tube, and the fluid that is already at rest). The
momentum transfer from the decelerating fluid to the fluid
that is at rest compresses the fluid and causes a substantial
increase in pressure. The increase in pressure causes stress
and deformation of the elastic tube.

We hypothesize that the waterhammer wave interacts with
the wall of the elastic tube to directly accelerate the tether.
Therefore tether motion would not be due only to a dragging
force.

IV. OBSERVATIONS ON PINNING

To test this we conducted an experiment where the valve
was clamped at a fixed location (Fig. 1). We then placed an
external mass on the tether. The mass was constrained only
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Fig. 1. Schematic of Experimental Setup

to move in the vertical direction with no friction. When the
valve was actuated, the tether moved forward under the mass.
We therefore can focus on this dynamic interaction between
the waterhammer pressure wave and the elastic tether as an
isolated (although possibly not the only) mechanism for tether
motion.

V. PHYSICAL MODEL

We now present an analysis of the waterhammer-actuated
tether to relate the performance of the system to the salient
design parameters. We approach this problem by separating
the analysis of the solid mechanics and the fluid mechanics.
Throughout the analysis we assume that the tube is thin-walled
and perfectly elastic. We also neglect the shear stress on the
internal surface of the tube, i.e. we assume the viscosity of the
fluid is negligible. First, we apply Newton’s Law to the tube
to relate the motion of the tube to the internal pressure. Then
we analyze the fluid dynamics to relate the internal pressure
to the design parameters.

A. Momentum Balance

We start with a free-body diagram of the small length of
tube shown in Fig. 2, where σx is the axial stress in the tube
wall, R is the radius of the tube, T is the tube wall thickness
assuming T << R,fr is the frictional force per unit length, t
is time, and positive x is taken in the direction of fluid flow.
We are considering an acceleration in the positive x direction.
The momentum balance on the differential element is

2πRT · [σx(x + dx)− σx(x)]− fr · dx = m · dx · ∂
2x

∂t2
(1)

Dividing by dx and noting the definition of ∂
∂x we have

2πRT · ∂σx(x)
∂x

− fr = m · ∂
2x

∂t2
(2)

This equation reveals that, if the force from the gradient of
the axial stress is greater than the frictional force, the element
of the tube will accelerate in the positive x direction. This
relates the performance of the tether (forward acceleration and
motion) to the axial stress. We now need to relate the axial
stress to the design parameters.

Following the classic analysis for a thin-walled cylindrical
pressure vessel, we consider the momentum balance on the
face of the tube in Fig. 3. Equating the axial stress σx in the

σx(x)

fr = friction/length

m = mass/length

dx

+x

σx(x + dx)

Fig. 2. Forces on a small element of tube
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Fig. 3. Forces on cross-section of tube

tube wall and the pressure on the internal cross-section P , and
solving for the axial stress, we find

2πRT ·σx = πR2P (3)

σx =
RP

2T
(4)

If we assume the tube is purely elastic, i.e. assume the tube
responds immediately to a given load, then Eqn. 4 is valid if
both the axial stress and internal pressure are dependent on
time and space

σx(x, t) =
RP (x, t)

2T
(5)

Substituting Eqn. 5 into Eqn. 2, we relate the acceleration to
the internal pressure

πR2 · ∂P (x, t)
∂x

− fr = m · ∂
2x

∂t2
(6)

B. Waterhammer Theory

To relate the internal pressure to the design parameters,
we need to investigate the pressure waves induced by a
waterhammer. We will first examine the waterhammer effect
by inspecting the Navier-Stokes equations and then with a
closer look at a small element of fluid.



To determine the equation for the velocity of a waterhammer
wave, it is necessary to consider a small element of fluid in
the pipe. The fluid is assumed to be elastic: between time t
and time t + δt the element has compressed in length and
expanded in cross section and has not necessarily maintained
constant volume. Considering the change in volume of the
tube due to deformation and the change in volume of the
fluid due to the compressibility of water, the conditions of
dynamic equilibrium and continuity yield the fundamental
waterhammer equations, relating fluid pressure to flow velocity
(from [7])

∆PWH = −ρcwave∆u (7)

∂PWH

∂x
= −ρ

∂u

∂t
(8)

∂PWH

∂t
= −c2

waveρ
∂u

∂x
(9)

cwave =

√
K

ρ

(
1 +

DsK

ET

)− 1
2

(10)

where cwave is the wave speed, K is the bulk modulus of the
fluid, D,E, and T are the diameter, Young’s modulus, and
thickness of the tube, and s is a constant determined by the
constraints on the deformation of the pipe in a longitudinal
direction (if the pipe is free to expand, s = 5

4 − ν, where ν
is Poisson’s ratio for the pipe material). Eqns. 8 and 9 can be
solved simultaneously to give

PWH − Po = f

(
t− x

cwave

)
+ F

(
t +

x

cwave

)
(11)

u− uo =
1

ρcwave

[
f

(
t− x

cwave

)
− F

(
t +

x

cwave

)]
(12)

Here f describes a pressure wave propagating in the positive
x direction (the flow direction) and F describes a wave
propagating in the negative x direction (opposite the flow
direction). Therefore at any time t, the pressure at any position
x is given by the sum of the two waves propagating in
opposite directions. Because the waterhammer equations still
depend on the fluid velocity flowing through the tube, we now
consider the relation between the flow velocity and the design
parameters.

C. Macroscopic Mechanical Energy Balance

If we consider a system with one entrance and one exit, the
general form of this macroscopic mechanical energy balance
is (

P

ρg
+

α〈u〉2

2g
+ z

)∣∣∣∣exit

entrance

= hpump − hlosses (13)

where P is the pressure, ρ is the fluid density, g is the
acceleration due to gravity, 〈u〉 is the average velocity over
a given cross section, z is the vertical height, hpump is the
pump head, hlosses is the head loss due to viscous losses and
restrictions, and α is a constant determined by the velocity
profile (for fully developed turbulent flow α ≈ 1). This
equation (the engineering Bernoulli equation) represents the
conservation of mechanical energy for a general piping system.

In our situation we assume that there is no change in
velocity or height between the entrance and the exit and that
hpump = 0. The energy balance then reduces to:(

P

ρg

)∣∣∣∣entrance

exit

= hlosses (14)

where hlosses = htube + hvalve. The viscous loss due to the
valve is expressed as:

hvalve =
1
2
u2kvalve (15)

where kvalve is the friction loss factor for the valve. It
is necessary to relate the friction loss factor for the valve
(as defined in Eqn. 15) to the relevant design specification
for solenoid valves. The viscous loss for solenoid valves is
typically given as the coefficient of volume, Cv , relating the
volume flow rate through the valve to the pressure differential
across the valve:

Volume flow rate = Cv

√
∆P

specific gravity of fluid

To solve for the friction loss factor, we relate the volume flow
rate to the linear flow rate and note the specific gravity of
water is 1:

uπR2 = Cv

√
∆Papplied

and

u2 =
C2

v∆Papplied

π2R4

Considering the valve as the entire system, the energy balance
(Eqn. 14) gives:

∆Papplied

ρg
= hvalve =

1
2
u2kvalve

∆Papplied

ρg
=

1
2

C2
v∆Papplied

π2R4
kvalve

and solving for kvalve:

kvalve =
2π2R4

ρgC2
v

We can express the viscous losses in the tube, htube, using the
Moody friction factor[6], fm, as

htube =
1
2
fm

L

D

u2

g
(16)

Given the Reynolds number R = uD
νvisc

(where νvisc = µ
ρ is

the dynamic viscosity), and assuming a hydraulically smooth
tube, the Blasius approximation for the friction factor ([1] valid
for 2.1× 103 < R < 105) is:

fm =
0.3164
R 1

4
=

0.3164ν
1
4
visc

u
1
4 D

1
4

Substituting into Eqn. 16, we express htube as

htube =
0.1582ν

1
4
viscL

gD
5
4

u
7
4



We can now write the energy balance for the system as:

∆Papplied

ρg
=

1
2
fm

L

D

u2

g
+

1
2
kvalveu

2

∆Papplied

ρ
=

0.1582ν
1
4
viscL

D
5
4

u
7
4 +

π2R4

ρC2
v

u2 (17)

This final equation relates the flow velocity to the relevant
design parameters (flow diameter D and radius R, tether length
L, applied pressure ∆Papplied, and the valve’s coefficient of
volume Cv).

D. Summary

The following equations derived above relate the forward
acceleration of a waterhammer-actuated tether to the rele-
vant design parameters (flow diameter, tether material, tether
length, applied pressure, and valve specifications).

Momentum Balance dynamic force balance on a differential
element of the tether relates acceleration to change in pressure

πR2 · ∂P (x, t)
∂x

− fr = m · ∂
2x

∂t2
(18)

Waterhammer Equations relates the fluid pressure to flow
velocity

∆PWH = −ρcwave∆u (19)

cwave =

√
K

ρ

(
1 +

DsK

Et

)− 1
2

(20)

Engineering Bernoulli Equation macroscopic mechanical
energy balance on the tether system relates velocity to tether
parameters

∆Papplied

ρ
=

0.1582ν
1
4
viscL

D
5
4

u
7
4 +

π2R4

ρC2
v

u2 (21)

VI. METHODS AND MATERIALS

To verify the preceding theoretical analysis, we instru-
mented an actuated tether system with force and pressure
sensors. All experiments used a total inflow length of 3 m
(1 m between the valve and force sensor and 2 m between the
force sensor and source) and an outflow length of 3 m. We
selected four tubes, varying material stiffness, flow diameter,
and wall thickness across trials (Table I). The tubes were made
of either linear low-density polyethylene (LLDPE) or semi-
rigid polypropylene. The typical range of Young’s modulus
for each material is listed in Table I; for both materials we
assume a Poisson’s ratio of 0.4. Water was supplied from a
20 gallon holding tank (Model ELSF-20, A.O.Smith, max.
working pressure: 150 psi) pressurized with compressed air
at 70 psi. All experiments used a direct-acting normally-
open solenoid valve (model 71295SN2KNJ1, Parker Valves)
to control the fluid flow.

We measured the linear flow velocity by noting the time
to fill a 10 L container and dividing the volume flow rate by
the cross-sectional area. We measured the force in the axial
direction and pressure in the line using a custom mounting
plate (Fig. 4) attached a force sensor with a resolution of
0.025 N (Gamma model, ATI Industrial Automation Inc). The

TABLE I
TUBES USED IN EXPERIMENTS

Tube Material Modulus ID OD Wall
(MPa) (in) (in) Thickness (in)

1 LLDPE 200 – 500 1
8

1
4

1
16

2 LLDPE 200 – 500 1
8

3
8

1
8

3 LLDPE 200 – 500 1
4

3
8

1
16

4 Polypropylene 700 – 1200 1
4

3
8

1
16

TABLE II
FLOW VELOCITY

Tube Theoretical Measured Percent Reynolds
Velocity (m/s) Velocity (m/s) Error Number

1 3.81 4.13 8.4% 13,100
2 3.81 4.28 12.3% 13,600
3 2.31 2.59 12.1% 16,400
4 2.31 2.57 11.2% 16,300

fluid pressure was measured with a silicon pressure transducer
(Model ST250PG1SPRF, Honeywell Sensing, resolution =
2.5 psi) capable of sensing changes of 225 psi in less than
500 µs. We recorded the force and pressure data using a
data acquisition board at a sampling rate of 1000 Hz with
a resolution of 3.2 bits per volt. We recorded three trials for
both valve closing and valve opening for each tube material.
In addition, we measured the frictional dead band (when an
applied force less than the static frictional force results in no
motion) for the four tubes for a pinning mass of 670 g.

VII. RESULTS

A. Flow Velocity

The measured flow velocity for each tube is given in Table
II. We predicted the theoretical velocity using Eqn. 21, where
the percent error is given in terms of deviation from the
theoretical flow. All flow velocities are for a 3 m inflow and
3 m outflow hose. The Reynolds numbers for the measured
flows are within the range (2.1×103 < (R) < 105), validating
our use of the Blasius approximation for the friction factor.
The measured flow velocities are approximately 10% above
the theoretical prediction, however the ratio of flow velocities
between the two different cross-sections correspond well to the
theoretical ratio, producing a measured decrease in velocity
of 38.6% versus an expected decrease of 39.4%. In our
approximation of the friction factor, we assume a hydraulically
smooth tube. Using this assumption, we would expect to have
slower velocities than the prediction, not faster. The error in
our prediction is more likely due to an error or variability in
the coefficient of volume specification for the valve. Despite
this error, Eqn. 21 is still useful for tether design, providing an
accurate prediction for how flow velocity changes as the result
of increasing or decreasing different tether parameters. In our
experiment, the flow velocities decrease with the increase in
cross-sectional area between Tubes #1 and #2 and Tubes #3
and #4.

B. Force-Pressure Plots

The force in the direction of the valve and pressure plots for
valve closing for Tube #2 are shown in Fig. 5. The valve was
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Fig. 5. Force and Pressure Plots for Valve Closing (left) and Opening (right)
for Tube #2

initially open with a fully developed flow, the valve was then
closed for the remainder of the trial. Pressure was measured
halfway between the reservoir and the valve (Fig. 4). Forward
motion of the tether is dependent on a number of variables. In
one example with a 670 gram pining mass the tether moved
4.5mm toward the valve with each valve closure (pulse).

When the valve is closed a positive pressure wave propa-
gates from the valve.This wave bounces between the reservoir
and the valve until the pressure everywhere in the tube is equal
to the pressure in the reservoir. The reflection of these waves
is evident from the oscillation of the pressure signals in the
plots in Fig. 5.

The force plots show an initial increase in the force in the
direction of the valve, then an oscillation and decay similar
to the pressure signals. The frictional dead band is shown on
the same plots for a pinning mass of 670 g. The force must
exceed the dead band in order to cause motion.

The valve was initially closed with no flow, then the valve
was opened for the remainder of the trial. When the valve is
opened, flow develops across the valve and a negative pressure
wave propagates opposite the direction of flow. The magnitude
of the pressure wave and the force for valve opening is less

TABLE III
MAGNITUDE OF PRESSURE WAVE FOR VALVE CLOSING

Tube Measured Calculated Theoretical
∆Pmax (psi) ∆Pmax (psi) ∆Pmax(psi)

1 159.3 132.7 151.6 – 233.8
2 186.8 158.6 184.2 – 280.7
3 96.3 105.0 71.9 – 111.7
4 166.9 149.5 131.1 – 184.0

than for valve closing. For valve closing, there is a fully
developed flow—when the valve is closed the flow velocity
goes to zero in the time it takes the solenoid to actuate. For
valve opening, the flow develops as the valve opens. The
combination of the valve opening slower than closing, and
the added time to develop a flow for valve opening account
for the reduced magnitude of the waterhammer wave.

C. Magnitude of Pressure Wave

Table III compares the maximum magnitudes of the mea-
sured pressure to the expected pressure magnitudes. The
measured magnitude is the average pressure change for the
first pressure peak across the three trials for each tube. The
calculated magnitude is computed from Eqn. 19 using the
measured values for flow rate (Table II) and wave speed
(from Fourier analysis of the pressure signal). The theoretical
magnitude is calculated using the theoretical values for flow
rate and wave speed from Eqns. 20 and 21. The measured
experimental results correspond reasonably well to the calcu-
lated magnitudes (within 20%) and fall within the range of
theoretical values.

D. Magnitude of Force Wave

For all four tubes, the initial force peak is greater than the
friction dead band, resulting in forward motion for pinning
mass of 670 g. The initial peak is above the dead band for
15–20 ms, the same amount of time that we observed forward
motion of the tether using high-speed video. From Eqn. 18,
the force resulting from the waterhammer wave is:

Fwaterhammer(x = x∗, t) = πR2 · ∂P (x, t)
∂x

∣∣∣∣
x∗

We estimate the pressure gradient as:

∂P (x, t)
∂x

∣∣∣∣
x∗
≈ ∆P

∆x
=

∆P

∆t

∆t

∆x
=

∆P

∆t

1
cwave

(22)

where ∆P is the measured ∆Pmax from Table III, ∆t is the
rise time corresponding to ∆Pmax, and cwave is the measured
wave speed. The average values calculated from Eqn. 22 for
the four tubes are shown in Table IV, along with the measured
experimental maximum force for each tube. The force peak
increases substantially when we increase cross-sectional area,
despite a smaller ∆Pmax for Tube #3 and Tube #4. This
observed dependence and the correlation of measured and
expected values in Table IV validate using Eqn. 18 in tether
design.



TABLE IV
MAGNITUDE OF FORCE FOR VALVE CLOSING

Tube Measured ∆Fmax Calculated ∆Fmax

(N) (N)

1 6.98 7.39
2 8.19 7.81
3 16.15 13.17
4 23.30 22.66

VIII. DISCUSSION

This paper presents a theoretical framework to explain
part of the mechanism used for actuation waterhammer-driven
tethers. Our goal was to investigate a waterhammer actuated
tether system for rescue robots in order to determine the
fundamental relationship between the performance of the
tether system and the salient design parameters. Optimizing
the design parameters in Eqns. 18–21 is not a trivial task.
The equations are non-linear and interrelated. However we
can provide an initial intuition for design based on these four
equations.

Valve Properties: It is important to have a fast-closing
valve to maximize the change in velocity of the fluid and
the magnitude of the waterhammer wave. In order to prevent
motion in the reverse direction, depending on the frictional
forces encountered and the pulling capabilities of a given
robot, it may be important to have a valve that opens slowly.
In our experiments, the frictional dead band provided a motion
bias in the forward direction without a force bias on the valve.
In a realistic environment, the forward force provided by the
robot and the frictional forces would both bias the motion of
the tether. A normally-open solenoid valve closes when the
solenoid is actuated, creating a magnetic force to close the
orifice. When the solenoid is not powered, a spring acts to
open the orifice.

It is also important for the valve to have a large coefficient
of volume. A larger coefficient of volume increases the volume
flow rate for a given pressure differential, increasing the linear
flow rate and the magnitude of the waterhammer wave.

Hose Diameter: Increasing the cross-sectional area of the
hose will increase the force due to the waterhammer wave and
therefore increase the performance of the system. Increasing
the diameter will also cause a decrease in the waterhammer
wave speed, although this is a weak relation and was not ver-
ified by the experimental results. Increasing the flow diameter
decreases the viscous loss in the tube, allowing for a faster
flow rate. However, increasing the flow diameter increases
the viscous loss in the valve. The valve can only handle
a given volume flow rate for a given pressure differential.
Increasing the flow diameter will reduce the viscous loss in
the tube, increasing the pressure differential across the valve.
However, this is not sufficient to accommodate the increase
in volume flow rate and therefore the linear flow velocity
will decrease. The decrease in flow velocity will decrease the
magnitude of the waterhammer pressure wave. It is necessary
to choose a flow diameter that maximizes the force due to
the waterhammer wave without decreasing the flow velocity

to the point where the decreased magnitude of the pressure
wave cancels out the increase in cross-sectional area.

Hose Thickness: Hose thickness does not have a strong
effect on the performance of the tether system. As our ex-
periment shows, an increase in hose thickness will cause
a slight increase in waterhammer wave speed. However, it
is important to have a hose thick enough to withstand the
pressures associated with a given system configuration, and it
may be beneficial to embed power and communications wires
in the tube wall.

Applied Pressure: Increasing the applied pressure will in-
crease the linear flow velocity therefore increasing the magni-
tude of the waterhammer wave. However, the pressure ratings
on the valve and hose limit the maximum applied pressure.

Tether Length: Increasing the length of the tether will
increase the viscous losses in the tube, decreasing the flow
rate and the magnitude of the waterhammer wave.

Tube Material: A stiffer hose material will increase the
waterhammer wave velocity and therefore increase the mag-
nitude of the waterhammer pressure wave. A stiffer hose will
also decrease the decay of the waterhammer wave, as seen
in Fig. 5. Depending on the tension provided by the robot
and the frictional forces, this effect may cause motion in
both the forward and reverse directions. However, the motion
in the reverse direction can be eliminated by arresting the
waterhammer wave at the reservoir.
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