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Exploiting the Information at the Loop Closure in SLAM

A. Martinelli and R. Siegwart

Abstract— This paper presents two methods able to exploit
the information at the loop closure in the SLAM problem.
Both methods have three fundamental advantages. The first
one is that to apply the loop closure constraint they do not
require to compute any correlation among the features which
are not observed simultaneously. The second advantage is that
the loop closure constraint can be applied only once at the
end (even after more than one loop) in a single step with low
computational complexity. Hence, the computational complexity
during the robot exploration is independent of the number of
features. Finally, the third advantage is that the linearization
does not affect the estimation process. This especially holds for
the second method, which is based on the Levenberg-Marquardt
algorithm. The first method is based on the Extended Kalman
Filter. Simulations show that these approaches significantly
outperform the conventional EKF based SLAM both in the
computational cost and in the map precision.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) requires

a mobile robot to autonomously explore the environment

with its on-board sensors, gain knowledge about it, interpret

the scene, build an appropriate map and localize itself relative

to this map. Many approaches have been proposed both in

the framework of metric and topological navigation. A very

successful metric method is the stochastic map [19] where

early experiments [4] [11] have shown the quality of fully

metric SLAM.

Currently, the SLAM has two contrasting problems to be

solved, which are often faced with a trade-off:

• The map precision;

• The computational requirement for real-time/real-world

implementation

Dissanayake et al. [7], proved the convergence of an

algorithm based on the Kalman filter theoretically. However,

the proof is based on the strong hypothesis of a linear ob-

servation. Julier and Uhlmann [10] and Castellanos et al. [3]

proved that the conventional EKF based SLAM (from now

on EKF−SLAM ) yields an inconsistent map (in particular,

in [10] was shown that this happens even for the special

case of a stationary vehicle with no process noise). The

map inconsistency arises from the linearization introduced

by the Extended Kalman Filter (EKF ) as clearly pointed

out by Castellanos et al. [3]. Indeed, this approximation

only holds if the difference between the estimated state and

the ground truth is small. Now, in any map representation,

the corresponding vehicle location will drift (if no loop is
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closed). This is a consequence of the fact that the absolute

location is derived from a composition of many relative

measurements. Therefore, when the drift is large enough,

the linearization is not a possible approximation. To solve

this big inconvenient there are two options: adopting an

optimal filter which accounts the non linearity (e.g. the

one introduced by Germani, Manes and Palumbo [8]); or

maintaining the estimation process local.

The first option has the inconvenience that the computa-

tional complexity will explode. This is an important problem

even by adopting the simple EKF (i.e. the EKF−SLAM )

where it is required to update a full covariance matrix

resulting in a complexity which scales quadratically with

the number of features. To reduce the computational burden,

Csorba, Uhlmann and Durrant-Whyte [5] and Deans and

Hebert [6] introduced a relative map based on quantities

invariant to the robot pose (i.e. to shift and rotation). They

estimate the distance between two features, which is shift and

rotation invariant. However, their algorithms do not consider

the dependency among the distances. In particular, they

did not consider this dependency to gain the huge amount

of information coming when a loop is closed. Newman

introduced a relative map and he used two filters in the

estimation, called the relative map filter and the geometric

projection filter ([15] and [16]). The second one provides a

mean to produce a geometrically consistent map from the

relative map, by solving a set of linear constraints. Both

filters are based on the Kalman Filter. However, the elements

used in this approach are invariant for shift only, not for

rotation and therefore the estimation process cannot be local

(it becomes local only if the robot orientation is a priori

known, as assumed in [15]). The approach adopted in [14],

[17] is to take invariant elements for both shift and rotation

and to perform the estimation through a Kalman Filter. In

[14], [13] the equations of this filter are provided. They

can be adopted to estimate the invariants among any kind

of features (e.g. points, corners). In [17] the dependency

among these invariant elements is considered to improve

the precision. However, it is not exploited to gain the huge

amount of information when a loop is closed.

In this paper we introduce two simple and very powerful

methods able to exploit the information contained in the

dependencies among the elements belonging to the relative

state, which is shift and rotation invariant. In particular, the

dependencies created by closing a loop are fully considered.

The proposed methods have three key advantages. The first

one is that to apply the loop closure constraint it is not

required to compute the correlations among the elements

of the estimated state which refer to features not observed
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simultaneously. Hence, the computational complexity dur-

ing the robot exploration is independent of the number of

features. The second advantage is that the loop closure

constraint can be applied only once at the end (even after

more than one loop) in a single step, without loosing infor-

mation. Finally, the third advantage is that the linearization

does not affect the estimation process. This especially holds

for the second method, which is based on the Levenberg-

Marquardt algorithm (LMA). The first method is based

on the EKF . Therefore, the final estimation accuracy is

significantly better than in the EKF − SLAM . Indeed,

the EKF − SLAM needs the correlations among the

features in order to exploit the information at the loop

closure. Their computation not only is very expensive but

also approximated since affected by the linearization and

by an approximated knowledge of the sensor error model.

In contrast, the proposed methods exploit geometrical con-

straints directly and simply derived from the structure of

the environment. In the next section we quickly remind

some basic concepts in relative mapping (more details can

be found in [13], [14]). The methods are introduced in

section III. In section IV simulations show that both methods

significantly outperform the EKF − SLAM both for the

computational cost and for the map precision. As expected,

the method based on the LMA is able to correct the map

even when the map precision before the loop closure is very

low. Conclusions are presented in section V.

II. BASIC CONCEPTS IN RELATIVE MAPPING

In the relative map approach to SLAM it is estimated a

state I , which contains relative quantities among the features

invariant under shift and rotation (e.g. distances, angles).

Once the relative map has been estimated and the absolute

location of a set of features is known (the seeding features,

whose location could be obtained through the first observa-

tions) it is possible to build the absolute map. Therefore, the

entire method contains two algorithms. The former estimates

the relative map, the latter builds the absolute map. The

computational complexity required to build the absolute map

from the relative state scales linearly with the number of

features (O(N)). We remark that it is not necessary to

compute the absolute map at each step starting from the

seeding features since the relative map estimation is carried

out locally. Therefore, the absolute map (if needed) can be

in general updated step by step. As we will see in the next

section, when a loop is closed it is possible to significantly

improve the estimation of the map in a single step. In this

case, if needed, the absolute map has to be re-computed

starting from the seeding features.

In the estimation of the relative map, the inverse of the

covariance matrix (the information matrix) is block diagonal

and therefore its computational complexity is independent

of the number of features. This reflects the fact that the

estimation process is local, which is a consequence of the

shift and rotation invariance of the estimated state. From a

mathematical point of view, the block diagonal structure can

be easily deduced starting from the basic equations of the

information filter [20] and by noting that the state is not

subjected to any dynamics and the observation consists of a

part of the state.

In order to avoid redundancy, only independent invariants

are selected from a single observation. For instance, in the

case of point features, if a single observation consists of

Nobs features, the dimension of the observation vector is

2Nobs − 3 (i.e. containing all the independent distances

among the observed point features). Obviously, this does

not imply that the elements in I are independent since

the independency only regards the invariants in a single

observation. In particular, when the robot closes a loop, the

invariants among the last and the initial observed features are

dependent on the ones stored in I before the loop closure.

The methods introduced in the next section are able to exploit

the information contained in all the dependencies among the

invariants in I .

III. HOW TO EXPLOIT THE INFORMATION CONTAINED IN

THE RELATIVE MAP DEPENDENCIES

As previously mentioned, the state I in general contains

elements which are dependent. In particular, when a loop is

closed, the robot observes again the same features observed

at the beginning of the loop. The invariants introduced in the

state I at this step depend on almost all the other invariants

previously introduced in I . Exploiting this dependency is

a powerful method to correct the entire relative map. The

problem is that, a part a few special cases (for instance if

the robot orientation is a priori known), it is impossible to

derive these analytical dependencies. The idea is to proceed

numerically.

The methods we describe here will apply not necessar-

ily for the dependencies arising at the loop closure. The

procedures are very general. After their application, the

invariants will be correlated. However, this is not a problem

for the computational requirement (e.g. the map dependency

constraint can be imposed only once at the end). In the next

two subsections we introduce the two methods: the first one

is based on the EKF , the second one on the LMA.

A. EKF based Approach

This method is very simple. With respect to the method

based on the LMA it is less expensive. However, when the

global map precision is very low before the loop closure, the

second method performs better.

First of all, we select from I a state Ii satisfying the

following properties:

• Its elements are independent;

• It allows us to compute the absolute map starting from

the absolute location of the seeding features.

The second property allows us to write

X = A (Ii) (1)

where X is a vector containing the absolute map and A

is a function that can be easily implemented.
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We stuck all the elements of I , which do not belong to Ii,

in to a separate state, Io. Let us indicate with Pi and Po the

covariance matrices of Ii and Io, respectively. The state Io

depends on Ii, for construction. Therefore, it is possible to

predict Io by knowing Ii. Let us indicate this prediction with

Ipred
o . The computation of Ipred

o is carried out by computing

first of all the absolute map through (1), starting from Ii and

the knowledge of the seeding features. Then, each element

of Ipred
o is computed by selecting the two features defining

it. By indicating this functional dependency with B, we can

write:

Ipred
o = B(Ii) (2)

We exploit the information contained in Io to improve the

estimation of Ii by applying an EKF . In particular, the state

estimated by this EKF is Ii and the observation is Io.

The equations to update Ii and its covariance matrix are

[1]

Inew
i = Ii + PiH

T
(

HPiH
T + Po

)

−1 (

Io − Ipred
o

)

(3)

Pnew
i = Pi − PiH

T
(

HPiH
T + Po

)

−1
HPi (4)

where H is the Jacobian of the function B introduced in

(2) with respect to Ii.

The computation of all the elements of Ipred
o requires

to derive the absolute map only once, and therefore the

complexity is O(N).
Regarding the Jacobian we proceed numerically. Let us

consider the kl element of this Jacobian. By definition we

have:

Hkl = lim
δ→0

B(I l+
i )k − B(I l−

i )k

2δ
(5)

where I l+
i and I l−

i are the vectors obtained from Ii by in-

creasing and decreasing its lth component by δ, respectively.

The numerical computation of Hkl can be performed by

implementing several robust algorithms (see for instance

[18]). The simplest approach uses the definition of the deriva-

tive in (5) for some small numerical value of δ (δ << (Ii)l).

In order to do this, it is required to compute the equation

(2) for 2Nd values of Ii, where Nd is the dimension of Ii

(Nd = 2N −3 in the case of point features). The complexity

of this computation is O(N2).
This strategy integrates the information coming from the

loop closure much better than in the EKF−SLAM . Indeed,

the EKF −SLAM requires to maintain all the correlations

among the features and the robot and their computation is

affected by the linearization introduced at each step and

by an unperfect knowledge about the sensor error model.

In contrast, this approach exploits the dependencies among

the invariants which reflect the structure (geometry) of the

environment (equation (2)).

The other advantage of this strategy is that this filter can be

applied only once at the end without any loss of information.

In contrast, the EKF − SLAM requires a very expensive

computation since the complexity of each step is O(N2).

B. LMA based Approach

This approach directly estimates the absolute map (i.e.

the vector X introduced in (1)) starting from the knowledge

of the seeding feature locations and the vector I estimated

from the relative map filter and which contains dependent

elements. The first step of this method is the initialization of

the absolute map (Xin). This is obtained through (1).

For a given absolute map X it is possible to compute the

observed invariants (Ic). We have

Ic = φ(X) (6)

where φ is a vector function, mapping the absolute feature

configurations into the adopted invariants. For instance, in the

case of point features, the components of the function φ are

the distances among the features which have been observed

at least once simultaneously during the robot motion. On

the other hand, the relative map filter provides the state I

containing the same invariants computed in (6). Starting from

the difference state Id ≡ I−Ic we introduce the cost function

c(X) =‖ Id ‖ (7)

The symbol ‖ . ‖ is adopted to indicate a suitable norm

function. We adopt the following norm:

‖ I − φ(X) ‖= (8)

=

N
∑

i=1

N
∑

j=1

[Ii − φi(X)]P−1

ij [Ij − φj(X)]

where P is the estimated covariance matrix of I .

Now the problem can be formulated as an optimization

problem. Starting from the initial absolute map estimation

Xin, the objective is to minimize the cost function in (7),

i.e.:

Xbest = argmin[c(X)] (9)

To this end, we adopt the Levenberg-Marquardt algorithm

[9].

This approach is more expensive than the one based on

the EKF . On the other hand, it is more robust with respect

to the non-linearities and therefore it performs better when

the map precision is very low before the loop closure.

IV. RESULTS

In order to carefully evaluate the proposed methods, we

compared their performance with the one obtained by imple-

menting the EKF −SLAM . Simulations are more suitable

for this comparison since the ground truth is known and the

comparison can be easily restricted to the estimation process,

which is considered in this paper. For data generation and

the EKF −SLAM we adopted the code provided in [21].

In fig 1 the environment adopted in our simulations is

displayed. The adopted unit is meter for both axes. The
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Fig. 1. The considered environment with the actual landmark locations

stars represent the actual landmark locations. The data as-

sociations were given. The robot accomplished two loops in

counter clockwise direction.

The simulated exteroceptive sensor provides the bearings

and the ranges of the landmarks from the robot whose dis-

tance does not exceed 30m. Furthermore, only the landmarks

in front of the robot can be seen (i.e. the sensor angle of

view is 180deg). Both the bearings and the distances were

generated as Gaussian quantities with variances equal to σ2
B

and (0.5m)2, respectively. We performed many simulations

by varying the value of σB in the range [1, 10]deg. The

frequency was 5Hz. The robot speed was set to 3m
s .

Regarding the odometry, which is only required in the

case of EKF−SLAM , we considered the differential drive.

In particular, we modified the code in [21] by introducing

an odometry sensor satisfying the model introduced in [2].

According to this model, the translation of the right/left

wheel as estimated by the odometry sensors was generated as

a Gaussian random quantity satisfying the following relation:

δρR/L = δρ
R/L

+ νR/L δρ
R/L

= δρaR/LδR/L (10)

νR/L ∼ N(0, K|δρaR/L|)

In other words, both δρR and δρL were assumed Gaussian

random variables, whose mean values were given by the

actual values (respectively, δρaR and δρaL) corrected for the

systematic errors (which were assumed to increase linearly

with the distance travelled by each wheel), and whose

variances also increased linearly with the travelled distance.

In our simulation we set K = 0.0001m, which corresponds

to an indoor environment [12] (i.e. where the odometry is

very accurate). Furthermore, we assumed an odometry sensor

perfectly calibrated (i.e. δR = δL = 1 and perfectly known

distance between the wheels).

Figs 2-5 show the results obtained for a given simulation

with σB = 3deg.

Fig. 2. The estimated landmark locations obtained by implementing
EKF − SLAMwith an odometry sensor perfectly calibrated.

In fig 2 we display the results obtained by implementing

the EKF − SLAM . The mean error on the estimated

landmark locations, defined as the distance between the

estimated landmark positions and true landmark positions

averaged on all the landmarks, is Em = 4.42m. The total

computation time needed for the estimation process is Tc =
61.7s. We note that the results get significantly worse as

soon as a systematic component is introduced. In particular,

we obtained Em = 14.6m by setting δL = 1.001, which still

corresponds to an odometry sensor very well calibrated [12].

Fig. 3 shows the results obtained through the relative map

filter before applying the loop closure constraint. In this

case Em = 2.56m. The computation time needed for the

estimation process is much smaller in this case: Tc = 0.042s.

The results after applying the first proposed method based on

the EKF are displayed in fig. 4. In this case Em = 0.83m.

The time needed for the computation is Tc = 1.21s. Finally,

in fig. 6 the results obtained from the second method based

on the LMA are shown. The precision is even better than in

the previous case, being Em = 0.38m. The computational

time increases (Tc = 4.76s).

We remark that in our simulations we adopted a very

accurate odometry, which is definitely unrealistic especially

for an outdoor environment. This significantly improved the

performance of the EKF − SLAM .

We performed many simulations and we found that the

value of Em can change a little bit in contrast with the value

of Tc which is almost constant. This especially holds for

the EKF − SLAM and the relative map approach (before

imposing the loop constraint). For this reason, we performed

for each value of σB in the range [1, 10]deg, 20 independent

simulations. In fig 6 we plot the values of Em averaged on

these simulations. We display the results for σB ≤ 5deg.

For larger values, the first method sometimes diverges, since

the error before the loop closure is too big. In contrast, the
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Fig. 3. The estimated landmark locations (red ×) obtained by implementing
the relative map filter before exploiting the information at the loop closure

Fig. 4. The estimated landmark locations (red ×) obtained by implementing
the relative map filter after exploiting the information at the loop closure
by means of the first method based on the EKF .

method based on the LMA, performs very well. In particular,

the error still grows linearly as in the range σB ∈ [0, 5]deg.

V. CONCLUSIONS

We introduced and discussed two methods able to exploit

the information at the loop closure. The methods apply to

a relative map approach to SLAM and are able to exploit

the information contained in all the dependencies among the

elements belonging to the relative state, which is shift and

rotation invariant.

The methods have three fundamental advantages:

1) they do not require to compute any correlation among

the features which are not observed simultaneously to

apply the loop closure constraint;

Fig. 5. The estimated landmark locations (red ×) obtained by implementing
the relative map filter after exploiting the information at the loop closure
by means of the second method based on the LMA.

Fig. 6. Values of Em averaged on 20 simulations vs the bearing standard
deviation σB . Green line refers to the EKF − SLAM , blue line to the
relative map filter without the loop constraint, red line to the first method
based on the EKF and black line to the second method based on the
LMA.

2) the loop closure constraint can be applied only once

at the end (even after more than one loop) in a single

step;

3) the linearization does not affect the estimation process

(this especially holds for the second method which is

based on the Levenberg-Marquardt algorithm).

The first two advantages make the complexity of the

methods during the robot exploration independent of the

number of features. The third one makes the final estimation

precision significantly better than the one achievable by

implementing the conventional EKF based SLAM . Indeed,

ThB1.4

2059



EKF − SLAM needs correlations among the features in

order to exploit the information at loop closure. The com-

putation not only is very expensive but also approximated

since affected by the linearization and by an approximated

knowledge of the sensor error model. In contrast, the pro-

posed methods exploit geometrical constraints directly and

simply derived from the structure of the environment.

The methods can be used with any kind of features.

Simulations show that both methods outperform signifi-

cantly the conventional EKF based SLAM both in com-

putational cost and accuracy.

We are currently implementing both methods in real

experiments.
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