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Context Estimation and Learning Control through Latent Var iable
Extraction: From discrete to continuous contexts

Georgios Petkos and Sethu Vijayakumar

Abstract— Recent advances in machine learning and adaptive ~ Our approach will formulate a proper probabilistic model
motor control have enabled efficient techniques for online that represents the context as a latent (switching or con-
learning of stationary plant dynamics and it's use for robust  yin,6ys) variable. This model allows us to estimate the
predictive control. However, in realistic domains, systemdy- . . .
namics often change based on unobserved external contexts context On_“ne based o.nly Qn the learned inverse dyna_m'cs
such as work load or contact conditions with other objects. Models using a Markovian filtering. Further, an Expectation
Previous multiple model approaches to solving this problenrare  Maximization procedure is used to bootstrap the distimctio
restricted to finite, discrete contexts without any generatation  of contexts from context-unlabeled data. In Section I, we
and have been tested only on linear systems. We present ayjefly discuss single model learning and control under a
framework for estimation of context through hidden latent . . . . .
variable extraction — solely from experienced (non-lineay dy- single context using LWPR’ an efficient 9“"”9 algquthm. We
namics. This refines the multiple model formalism to bootstap ~ then talk about the multiple model paradigm and discuss con-
context separation from context-unlabeled data and realigs text estimation, control and data separation under maeltipl
simultaneous online context estimation, dynamics learning and  discrete contexts in Section Ill. We then show in Section 1V,
_control base_d on a consistent probabilistic form_ulatlon. Most using knowledge about analytical dynamics, that it is gesi
importantly, it extends the framework to a continuous latent . - .
model representation of context under specific assumptionsf to reformulate the d|scr§te context scenario t‘,’ a _contlauou
load distribution. latent model representation where the generalizationswo n

contexts (outwith the already learned models) holds under
. INTRODUCTION specific assumptions of the load distribution. To the best of

. our knowledge, this is the first work that deals with learning
The dynamics of a system often depend on an unobservggirol underconti nuously varying contexts.

external context. An example of unobserved external cantex
that results in non-stationary dynamics is the work load of I1. LEARNING DYNAMICS FOR CONTROL

a robot manipulator. The resultant dynamics of the robot ) ) ) )
arm change as it manipulates objects with different physica Anthropomorphic robotic systems have complex kinematic

properties, e.g. mass, shape or mass distribution. The stu@d dynamic structure, significant non-linearities anddhar
of adaptive control [8] has provided a multitude of method!® Model non-rigid body dynamics; hence, deriving reliable
that could be used in cases of non-stationary dynamicdnalytical models of their dynamics can be cumbersome
However, if the dynamics switch back and forth, e.g. iand/or inaccurate. We take the approach of learning dyrsa_m|c
manipulating a set of tools for executing various taskssita O control from movement data (see Fig. 1 for a graphical
adaptive control methods are inadequate since they resultT'0del representation); typically thaverse dynamics model
large errors and instability during the period of adaptatiof©" Predicting desired torques. The inverse model maps
and readapting every time is a suboptimal and inefficierfUrrent statesd, and the next desired statés ., to the
strategy that unlearns the dynamics of the previous cantex€0mmand7; that results in the transition between these
A proposed solution is the use of multiple models, eachtates:

of which is appropriate for a different context. However, Tt = 9(©¢,0441) - 1)
existing work on the multiple models paradigm [3], [10],,[5]

[7], does not cope well with issues concerning the choice of

correct number of models, detection of novel contexts and

use of knowledge from previously learned models to new @

contexts Furthermore, the actual number of discrete ctsitex

may grow indefinitely with time as new situations appear. \ \
Most prior work on estimating contexts from movement data .

rely heavily on analytical rigid body dynamics and estiroati e 0
of a few, heavily constrained parameters of the full body

dynamics[4]. This approach fails when deriving analytical Fig. 1. The forward and inverse model
dynamics is complicated or not feasible.

The first author is supported by the Greek State Scholargtupadation . . . . .
Both authors are at School of Informatics, University of rituirgh, The inverse model shown in F'g-l(”ght) can be used in

United Kingdomg. pet kos@ns. ed. ac. uk many control settings; the most common being to use it as
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where A is the gain matrix. This is a combination of a .|
feedforward command that uses the inverse model and
feedback command that takes into account the actual st¢
of the system. The more accurate the inverse model is, tl2
lower the feedback component of the command will be, i.e
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the magnitude of the feedback command can be used as ;2|
measure of the accuracy of the inverse model. Furthermol 03r
good predictive models allow us to use low feedback gain: 02} 1 02l 150
resulting in a highly compliant system without sacrificimg t
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Fig. 3. Results on learning single context dynamics. Left error. Middle:
contribution of error-correcting feedback command. Rigfracking error

and employs Partial Least Squares (PLS) to deal with high
dimensional inputs. For more details about LWPR see [9].

A. Experiments in Learning Dynamics for Sngle Context

We verify the ability to learn the inverse model online
with LWPR and show that the model can successfully be
used for control. We demonstrated this for a simulated 3
DOF robot arm! (see Fig. 2(a)) as well as on the 7 DOF

(b) anthropomorphic SARCOS robot arm (Fig. 2(b)). The statis-

Fig. 2. (a) Simulated 3DOF arm (b) 7DOF SARCOS dextrous arm 1iCS are accumulated and shown for the simulated arm. The

task of the arm was to follow a simple trajectory planned in

Typically, in robotic systems with proprioceptive andioint angle space, consisting of a superposition of sirdgsoi
torque sensing, at each time stepve “observe” a state With different phase shifts. 20 iterations of the trajegtor
transition and an applied torque signal summarized in théere repeated: during the first four iterations, pure feeklba
triplet (O, 0,41,7), i.e., we have access to the true ap{PD) Cor_1trol was used to c_ontrol the arm, while at the
plied control command (which was generated via composifé€xt 16 iterations, a composite controller using the inwers
control). To learn the inverse dynamics, we needica- Model being learned was used. The gains were lowered as
linear, online regression technique which also provides erroff@ining proceeded. The procedure was executed six times
bounds that we may use for context identification. We us@nd repeated for six different contexts for accumulatirg th
the Locally Weighted Projection Regression (LWPR) [9] -Statistics. Fig. 3(left) plots the normalized mean squared
an algorithm which is extremely robust and efficient for in-8rmor between the torques predicted by the LWPR model
cremental learning of non-linear models in high dimensiongnd the true torques experienced on the test data (i.e., the
An LWPR model uses a set of linear models, each of whicHata that was held out from the training), which shows a
is accompanied by a locality kernel (usually a gaussiart) thguick drop as training proceeds and settles at a very low
defines the area of validity of the linear model. For an inpufalué averaged over all trials. The contribution of the erro
x, if the output of thek'” local model is written as)y(x) correct_ing feeqlback c_ommand to the feedforward command
and the locality kernel activation isy(z), the combined (S€€ Fig. 3(middie)) is low, vouching for the accuracy of
prediction of the LWPR model is the learnt model while being used for control. Furthermore,

1 the tracking error (Fig. 3(right)) is very low and improves

d(x) = — Zwk(w) vp(x), W= Zwk(w) . (3) significantly when we switch to composite control. For the

w 2 & detailed statistics on the online dynamics learning of the 7
The parameters of the local linear models and locality kernePOF SARCOS robot arm and tracking results on a pattern

are adapted online and also local models are added on @ight task, readers are referred to [9].
as needed basis. Furthermore, LWPR provides statistically
sound input dependent confidence bounds on its predictiongSimulations performed using ODE and OpenGL




IIl. THE MULTIPLE MODEL PARADIGM 0

Although we have verified the ability to learn dynamic
models and perform control under a single context, the main
emphasis of this work is the ability to cope with varying e

contexts. The multiple model paradigm copes with the issue
of non-stationary dynamics by using a set of models, each
of which is specialized to a different context. A schemafic o o
a generic multiple model paradigm is shown in Fig. 4. The
(a) (b)
D i del Learnin
Control ynamics mode’s g Fig. 5. Multiple models and hidden contexts
Context 1
Commands comext  state have eqyal prior probat_)ilitiqs(ct.). _Undgr thi_s probabili_stic
Context Dynarics formulguon, context estn_”r}a'uon is just inferring the pargar
Estimates Predictions of ¢; given a state transition and the command that resulted
‘ Switch / Mix H Context estimator = ‘ System ‘ in this transition:
‘ T 1 P(Ct:i|@t7@t+1,7})O(P(Tt|Ct:i7@t,@t+1)P(Ct:i). (5)

Applied Command
Context estimates are very sensitive to the accuracy of the
inverse models. They can be improved by acknowledging

observed dynamics of the system are compared to the predﬁ?:at contexts do not change too frequently. We can introduce
. ) i ‘temporal dependency between cont with
tion of each learned model to identify the current contex b P y a1 | o)

i . n appropriate transition probability between contextt th
The context estimates are used for selecting the model I bprop P Yy

¢ trol and for training. All existi itiole mdd Sflects our prior belief on the switching frequency to achie
use for control and for training. All existing muttiple made ., -, 16 robust context estimation. The graphical model

pargd;gms r(;AUQQI{ngOVIVtr;_e samz F:(IjOt' tSfO m§ Of;he EX'SEmian be reformulated as the Dynamic Bayesian Network
Mmodels are vioduiar Ssefection and identification Tor LONIog, ), Fig. 5(b) to achieve this. Application of standard

(MOSAIC) [3], Multiple Paired Forward and Inverse ModelsHidden Markov Model (HMM) techni : .
! o : ques is straightforward
[10] and Multiple Model Switching and Tuning (MMST) [5], by using eq.5 as the observation likelihood in the HMM,

[7]. The main issues that have to be tackled for using mlmltiplgiven the hidden state, — i. A low transition probability

discrete models for control are: _ ~ penalizes too frequent transitions and using smoothing or
1) Infer the current context for selecting the appropriatgjterbj alignment produces more stable context estimates.

Fig. 4. Schematic of a multiple model paradigm

model to use forcontrol. the experiments, we will assume a fixed transition matrix
2) Infer the current context for selecting the appropriatgb(ct = j|e, = i) with high value .999 fori = j and
model totrain with the experienced data. .001 otherwise and use the HMM model only for filtering or
3) Figure out the appropriateimber of models (possibly  smoothing, depending on whether we investigate an online
using a novelty detection mechanism). or batch estimation scenario, respectively.
Hence, it is clear that context estimation is of critical )
importance in the multiple model scenario. B. Data Separation

_— Context estimates are used for guiding online control and
A. Context Estimation for further training of the models. However, to get these
It is appropriate to formulate context estimation in acontext estimates we need a mechanism for getting rehativel
probabilistic setting to account for inaccuracies of therié  accurate (initial) models to bootstrap the context esiionat
models as well as handle transitions. The graphical model procedure. Most of the existing multiple model paradigms do
Fig. 5(a) represents a set of inverse models correspondingriot give a satisfying answer to this issue. MMST assumes
a specific number of contexts. The hidden contextual vagiabthat relatively good models are available from the begignin
¢; is discrete and indexes the different models. The inversghereas MPFIM does not address this issue at all.
model in this formulation can be written as: The problem of bootstrapping the context separation from
P(7]Ous1, 01, c0=1) = N(6:(Ors1,0:), 5:(Ois1,04)) , (4) coptext—gnlabeled data i; very similar to clustering peohﬂ;
using mixture of Gaussians. In fact, the context variable
whereg; is the prediction of the LWPR model correspondingcan be interpreted as a latent mixture indicator and each
to thei!” context ands; is some estimate of the variance,inverse model contributes a mixture component to give
which can be either set to a predetermined constant dse to the mixture model of the forn?(r;|©;,0.41) =
based upon the input dependent confidence bounds providet] P(; |©¢,0:11,¢; = i) P(¢; = ). Clustering with
by LWPR. Also, if there is no knowledge about the priomixtures of Gaussians is usually trained using Expectation
probability of contexts, we can assume that different caste Maximization (EM), where initially the data are labeled



estimation method that we have, the HMM filtering using

Hwv,  Viteroi

T ) :ig(d‘:..gg‘jjmmm"d LWPR’s confidence bounds, performs when used for online
095) JrJr context estimation and control. Sometimes the context esti
sl i | mation lags behind a few time steps when there are context
switches, which is a natural effect of online filtering (as
j opposed to retrospect smoothing).
4 i

The performance of online context estimation and control
is close to the control performance we achieved for the singl
context displayed in Fig. 3. Using the HMM filtering based
on LWPR’s confidence bounds, the average tracking error
over the 10 cycles was 0.0019 and the ratio of feedback PD
control was 0.074.

Automatic separation of data to contexts was tested. We
ran the simulation switching randomly between two différen
Datapoint contexts, collected the data and executed 6 iterationseof th
2 4 6 10002000 300040005000 2> 10002000 300040005000 EM-like algorithm described in Section 111-B. The evolutio

Datapoint

Accygacy
©
o
8
Context
Command

w

0.8

0.75

0.7
0

Fig. 6. Discrete context estimation under randomly switghdlynamics

with random responsibilities Then every mixture component
is trained on its assigned (weighted) data (M-step) and
afterwards the responsibilities for each data point is meco
puted by setting them proportional to the likelihoods for
each mixture component (E-step). Iterating this procedure
each mixture component will specialize on different pafts o
the data and the responsibilities encode the learned cluste
assignments.
We will apply a common variant of the EM-algorithm oo
where responsibilities are computed greedily, i.e., where e’ Crsion” © e e’ Ctarsior© comen
the data is hard assigned to the mixture component with _ _ _
. T . . . .. Fig. 7. Automatic separation of datapoints to contexts.t:Ltkfe non-
maximal likelihood instead of weighted continuously Wlthtemporal model is used for the E-step. Right: the temporalleh@ used
the component’s likelihood in the M-step. In our case, the the E-step
likelihood of a data triplet(©;,0;1,7¢) under thei'"
inverse model iP(1; | O, ©141, ct =1), which is a Gaussian of the assignment of datapoints to contexts can be seen in
with either fixed variance or the variance given by LWPR'Fig. 7. On the left, the non-temporal model has been used
confidence bounds. for context estimation, whereas on the right, the temporal
. , . model has been used. The first column displays the random
C. Experiments With Multiple Discrete Models initial assignment of datapoints to contexts, whereasase |
The context estimation methods described in Section lleolumn displays the correct assignment. As can be seen in
A were used for online estimation and control with sixthe plot on the right, at the end of the last iteration, most of
separately learnt contexts. Random switches betweenxhe #ie datapoints are grouped correctly (84% of the data was
contexts were performed in the simulation, where at evemlassified correctly). The learned models were then used for
time step we switch to a random context with probabilityonline control and further online training. Twelve itecats
.001 and stay in the current context otherwise. The contest the trajectory were executed, with random switches be-
estimates were used online for selecting the model that wilveen the two contexts. Accuracy in context estimation was
provide the feed-forward commands. 88% while the tracking error was 0.0051 and the ratio of
We have two classes of experiments, one is where we dieedback PD control was 0.23. The errors are slightly higher
not using HMM filtering of the contextual variable and thethan in the case where models were trained using labeled
other is where we use it. Also, we have two choices for thdata, but this is satisfying considering the fact that wetesth
variance of the observation model, one is where we usewdth unlabeled data.
constant (found empirically) and the other is where we use
the more principled confidence bounds provided by LWPR!Y: AUGMENTED MODEL FORCONTINUOUS CONTEXTS
The simulation was run for 10 iterations. The percentage of The multiple model paradigm has several limitations. First
accurate online context estimates for the four cases alonfall, the right number of discrete models needs to be known
with offline Viterbi alignment can be seen in the Fig. 6(left) and estimating this is non-trivial. Realistically, novehtexts
Fig. 6(middle) gives an example of how the best contexdppear quite often and to cope with this, a novelty detection

Datapoints
Datapoints




TABLE |
LINEARITY OF THE DYNAMICS MODEL IN THE INERTIAL PARAMETERS

If 7 is the kinetic energyi/ is the potential energy of the system and we define a Lagmangia- 7 — U/, the dynamics of the system is given by
d oL oL _
dt 0qg;  Oq;

whereqi, ¢2...qn is a set of generalized coordinates (here, the joint angled)r;, ...7, denote the so called generalized forces associated with the

corresponding joint angleg;. The generalized force; is the sum of joint actuator torques, joint friction torque®d other forces acting on the joint (e.g.

forces induced by contact with the environment). The toirsétic energyZ” and the total potential energy is just the sum of the kinetic energy and potential
energies of all the links of the manipulator respectively,, I = 27:1 T, U= 27:1 U; The kinetic and potential energy of thié" link is given by:

Ti (6)

1 p. . 1
T; = 5mjp?pj + mjlijTS(wj) + ijTijj , Uy, = —mjggpj — mngle @)

wherem; is the totalmass of link j, p; is the position vector of the center of mass of lijikw; is the rotational velocity of linkj, S(w;) is a3 x 3
skew-symmetric matrix that depends on, [; is the position vector of the center of mass of the link frora drigin of the frame of the linkgg is the
gravity acceleration vectot; is theinertia tensor of link j measured at the origin of the reference frame of the link.sBuiting 7 in the Lagrangian
and with some rearrangement, we can see that the Lagrangiaa linear relationship to the set of inertial parameters:

™= [mlymlllaumlllyymlllzyllww7Ilwy, ---7mn7mnlnzymnlnyymnlnzylnzzy ~~~7Inzz}

In short, the Lagrangian can be written in the form:
L =g(g ¢

Since the inertial parameters indo not depend on time aj then the dynamics equation for jointis:

4 99(a,d) 99(a,4)
dt  9q; 9q;

Thus, the dynamics can be written in the form
7 =yi(q, 4, §)m (8

mechanism is needed. However, even with a very robustanipulator links. In other words, the inverse dynamics can
novelty detection mechanism, we may end up with a verge written in the form:
large number of models, since in theory, possible contagts a
infinite. Moreover, it is better if we can generalize between T=Y(¢, 4, 4)m (11)
contexts and most multiple model paradigms do not provide »
an obvious way to do this. or for a specific context:

All these issues can be circumvented if we replace the set
of models with a single unique model that takes as input

continuous hidden contextual variables, i.e., instead of a S%hereq, i and§ denote joint angles, velocities and accelera-

of g; corresponding to different contexts, a single inversg, g respectively. This relationship can be derived based
model G is used:

fundamentals of robot dynamics [6], [1] as shown in Table I.
T = G(O4, 0441, ¢1) . (9) This equation splits the dynamics in two term(q, ¢, §) is
a term that depends on kinematics properties of the arm such

Here, ¢, is not a discrete variable that indexes differents |ink lengths, direction of axis of rotation of joints aral s
models but a set of continuous variables that describe the, This is a very complicated and highly non-linear funatio

context. The probabilistic model of the inverse dynamicg¢ joint angles, velocities and accelerations. The teris a

Tr = Y;"(% q, q.)ﬂ—r (12)

would then be: high dimensional vector containing all inertial paramstef
P(1|0:,0:11,¢t) = N(G(O1,0111,¢), 0(0r,0041,¢1)) . all links of the arm (see Table 1).
(10) Now, lets consider that we model the dynamics of the

A possibility for learning the augmented model is to followarm as the manipulated object being the last link of the
the same procedure as in the discrete case for learning #en. Then, manipulating different objects is equivalent to
models, i.e., apply an EM like procedure. However, thehanging the physical properties of the last link of the arm.
relationship of the contextual variables to the output & thunder the assumption thaf. (¢, ¢, ¢) is constant between
augmented model could be arbitrary, making learning in sucfifferent models, we could a use a set of learned models,
a setting a very difficult task. It is imperative to exploityan with known inertial parameters, to infer an augmented
prior knowledge about the relationship of the inverse modehodel that predicts the dynamics for any possible context
to appropriate contextual variables. 7. SinceY,(q, 4, ) is constant between contexts, then the
For the case of manipulation of objects with a robot armaugmented modek (0, 0,1, ¢;) is simply:
this is possible. It can be shown that the dynamics of a robot
arm have a linear relationship to the inertial propertiethef G(04,0¢11,¢1) =Y (¢, 4,§)mr =T (20)



TABLE Il
INFERRING THE HIDDEN CONTINUOUS CONTEXT IN THE TEMPORAL MODE

In our probabilistic setting, the augmented inverse maoslel i
Tt = G(O1, 0141, ¢t) = A(Ot, O14+1) + B(O1, Or1)ce +1 (13)

where A(©¢,0+41) and B(O, ©¢41) are estimated from the models used for forming the augmemtsdel andn = N(0, X,ps). Xops IS estimated
from the confidence bounds of the inverse models that formatiggnented model. Also, the transition model for the contedds to be defined. Since
we believe that the context does not change too often, théstigo:

Ct+1 = Ct + C (14)

where¢ = N (0, 2¢,) with X4, set to a very small value.

Based on the defined model, we can write down the inferencéhfotemporal Bayesian network using the augmented inversdeinFor control, only
filtered estimates (a la Kalman filtering) can be used.

We want to compute(ct | 71:¢4+1, ©1:¢+1) Using the estimate at the previous time spdp:—1 | 71:¢, ©1:¢) and the new evidence;+; and©;1. The
previous estimate(ct—1 | 71:¢, ©1:¢) is defined as:

plet—1171:4,©1:6) = N(py—1 4, Be—11t) (15)

Estimates for the next time stefc: | T1.++1, ©1.¢+1) are obtained in a recursive way in two steps. The first isptleeliction step wherep(c; | 71:¢, ©1:¢)
is computed using the filtered estimate on the previous tiee and the transition modglc:+1 | ¢¢), without taking into account evidence at time- 1:

plee | T1it, ©1:6) = N (1 45 ¢ | ¢) (16)

wherep, |, = py_1 |, andXt |t = Xy |, + Z¢r. Then, thefiltered estimate modifies the predicted estimates using the observationeatitie ¢ + 1 as
(dependency ofA and B on the state transition is omitted for compactness):

plet | T1t4+1, Orit41) = N(Ht | t415 PN | t+1) (17)

where,
Mt |t+1 = He|t T+ b | tBT(BEt | tBT + Zubs)71(7t+1 —A—Buy | t) (18)
Stjir1 = Sepe — S0 BT (BS 1 BT + Lops) T BE |y (19)

where state transitions have been appropriately replaged most likely give more accurate estimates.
joint angles, velocities and accelerations and the conaéxt

variables by the inertial parameters. @oquire the model, )
we need to have an estimate Bf(q, ¢, ). If we have an The augmented model _proposed for e_xf[ractlng the con-
appropriate number of models (that is, at least as many §8Uous context/latent variable was empirically evaldate
the cardinality ofr,), we can simply estimaté&(q, ¢, §) Separate models f_or the qunamlcs of the arm mampulatmg
using least squares due to the linearity property.dentrol ~ S€ven different objects with theame shape but different
purposes, if we have an estimateof at timet, given the Masses were trained and labeled. Masses were uniformly
desired transition for the next time step, we can compuf@Stributed between 0 and 0.06 where zero mass means
Y(q*,¢*,¢*) and just compute the feedforward commandload-free arm movement. Since all 10 inertial parameters
For robust context estimation, we can use temporal depeft theé manipulated object change linearly as the mass of
dencies, similar to the principles used in the multiple moddh® manipulated object changes between the contexts, just
scenario. However, since we now have a set of continuo¥© known (labeled) contexts can be used to obtain the
hidden variables as opposed to a single discrete contéd{dmented model. While the scenario is less complicated

variable, the inference is slightly more involved, please s than estimating the full moment of inertia matrix , succabksf
Table II estimation of the mass of the other five contexts and control

. , o using the augmented model can be used to validate the
But what does it mean for the quantit¥.(q,q,q) to concept

remain constant in different contexts? Basically, it means gt the accuracy of the augmented model was tested

that all kinematic quantities of the arm, remain the samg,geq on how well it can approximate other contexts’ dynam-
between different contexts. This is clearly true in the casgg e trained the augmented model using data from masses
of manipulating different objects, since the kinematic$® ot 9 01 and 0.03. After parameter estimation, the learned
arm do not change as different objects are manipulated. ,qe| was used to predict the dynamic torques required to
Each link of the arm has ten inertial parameters. Thimanipulate the other five contexts over a subset of the waine
implies that, ideally, if we have the prerequisite number ofrajectory but for loads which have not been trained with.
'labeled’ context data, that is 11 independent and perfed@the error for the novel loads were computed by comparing
models, then, one can infer all the dynamic parameters tiie results of the augmented model with the torques learnt
any manipulated object. In practice however, since learndry the multiple, discrete models for the other five contexts.
models will not be perfect, a larger number of models wouldFig. 8 (left) shows the nMSE of the torques predicted by the

A. Experiments with the augmented model
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Fig. 8. (a) Accuracy of the augmented inverse model (b) @aotis context estimation: Temporal vs. Non temporal (c)ti@aous context estimation
and control

augmented model, averaged over all the joints. While the V. DISCUSSION
interpolated torques for the load of 0.02 is almost perfect, \we have described a method of using a learned set of

the extrapolated torques (outside the trained model of 0.Qgdels for control of a system with non-linear dynamics
and 0.03) for other loads also show excellent performanc%ndercontinuously varying contexts. In addition , we have
Next, we investigate whether the augmented model carfined the multiple model paradigm to be ablestoulta-
be used for accurate context estimation. The augmentegously deal with learning dynamic models, use them for
model (learned using the same two contexts) was used fonline switching control and also efficiently bootstrapadat
context estimation under pure feedback control, where trgeparation for context unlabeled data. An important asplect
mass of the manipulated object changed randomly durirthis work is that we manage to infer the continuous hidden
the simulation. Note that in this case, the context estimateontext that contains dynamic properties of the manipdlate
were not used for computing the control commands. Webject, e.g. the mass of the object as illustrated in theréxpe
compared the non-temporal and temporal formulation foments. While in this research, we have focused on estimating
context estimation, results for which are plotted in the. Figcontext purely from the predictive and experienced dynamic
8 (middle). The results for the non-temporal case are nfitom manipulation, we are investigating avenues of incor-
that accurate and depend heavily on the choice of the pripprating a much richer sensory suite including haptidltact
of the context. However, when using the temporal model, thieformation from the hand to enhance context estimation and
mass of the manipulated object is estimated quite accyratetontrol.
irrespective of the prior. This can be explained by the faat t
in the temporal case, the posterior of one time step effelgtiv

acts as the prior of the next, negating the influence of théll John J. Craig. Introduction to Robotics: Mechanics and Control.
Pearson Prentice Hall, 2005.

initial priors beyond the start phase of the trajectory. [2] Imamizu H. Osu R. Yoshioka T. Flanagan R., Nakano E. anddta

Considering the real mass as the target the NMSE of M. Composition and decomposition of internal models in moto
! learning under altered kinematic and dynamic environmenife

the estimates for the non—tgmporal and temporal cases were joyrnal of Neuroscience, 19, 1999.

0.8881 and 0.0423, respectively. In the next step, we used tH3] M. Haruno, D. M. Wolpert, and M. Kawato. Mosaic model for
context estimates for control. The last simulation withcon ~ S2hsorimotor leaming and controlNeural Computation, 13:2201-
tinuous random changes in the context was repeated, but thi§ r. A. Hilhorst and K. Tanie. Dexterous manipulation ofjetis
time the arm was controlled with a composite controller and  with unknown parameters by robothands. Pnoceedings of IEEE
the augmented model was used to provide the feedforward g:ge”:té%gaé_gfgfse'%?quggzbo“CS and Automation, volume 4,
command. Context estimates based on the temporal modg) k. s. Narendra and J. Balakrishnan. Adaptive controhgsiultiple
were used as input to the augmented model. Fig. 8 (right? models. |EEE Transactions in automatic control, 42:171-187, 1997.
displays the accuracy of context estimates in this experime I - aﬁgj‘g&?g asr;?ingérsfglc?c?o' Modelling and Control of Robot
compared to the one using pure feedback command. Thig] m. K. siliz and K. S. Narendra. Adaptive control of robmtinanipu-
comparison gives us an idea about how context estimation lators using multiple models and switchingnternational Journal of
; ; Robotics Research, 1995.

IS aﬁe.Cte.d Wwhen using th.e alflgmented moqel fOI.‘ COntrOI[8] J.E. Slotine and W. Li. On the adaptive control of robotnipalators.
Quanutauvgly, contex.t esumanon accuracy is a bIF WOrse " |nternational Journal of Robotics Research, 6(49-59), 1987.

in the previous experiment it was 0.0423 whereas it is now9] Sethu Vijayakumar, Aaron D'Souza, and Stefan Schaatreimental

0.0644. Furthermore, the efficiency of the augmented model e Jearing in high dimensionsiewral Computation, 17:2602-
. . - . 4, 2005.

n contrqlllng the arm Wh!Ch can judged from the feedback t@1o] p. M. wolpert and M. Kawato. Multiple paired forward arverse
composite command ratio was 0.1495 — a result comparable models for motor controlNeural Networks, 11:1317-1329, 1998.
to one we had for control with learned models under a single

context.
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