Autonomous Control of an Autonomous Underwater Vehicle Towing a
Vector Sensor Array

Michael R. Benjamin
NAVSEA Division Newport
Newport RI 02841

Cambridge MA 02139
Email: mikerb@csail.mit.edu

Abstract— This paper is about the autonomous control of
an autonomous underwater vehicle (AUV), and the particular
considerations required to allow proper control while towing a
100-meter vector sensor array. Mission related objectives are
tempered by the need to consider the effect of a sequence of
maneuvers on the motion of the towed array which is thought
not to tolerate sharp bends or twists in sensitive material. We
describe and motivate an architecture for autonomy structured
on the behavior-based control model augmented with a novel
approach for performing behavior coordination using multi-
objective optimization. We provide detailed in-field experimen-
tal results from recent exercises with two 21-inch AUVs in
Monterey Bay California.

I. INTRODUCTION
A. Motivation

The primary motivation for this work is to achieve the
ability to deploy large sets of autonomous mobile marine
platforms over a wide area of the ocean environment and over
a long period of time with little or no human supervision.
Concerns over effective coverage, communication range and
safe operation of the platforms are all primary motivations of
an effective form of autonomous control. The long duration
and unpredictable nature of the environment require the
vehicles to adapt their missions and behave autonomously
as events unfold. Conversely, practical concerns of marine
operations over large areas require an element of operator
predictability over the course of time. These two character-
istics can be at odds with each other in practice, but can
be tempered by effective periodic communication through
a network of fixed and mobile nodes co-deployed in a
coordinated manner designed to balance individual platform
and network objectives.

In the work described here, we focus on autonomous
control and communications with a single AUV fitted with
a vector sensor array (Fig. 1) operating in an environment
with other AUVs having access to one or more fixed or
mobile gateway buoys, all equipped with acoustic modems.
We have implemented and describe here a set of autonomy
behaviors sufficient for long term deployment, and dynamic
re-deployment from ship or shore station, and report results
from recent in-water deployment exercises in Monterey Bay.

David Battle
Don Eickstedt
Dept. of Mechanical Engineering
Dept of Mechanical Engineering, MIT Massachusetts Institute of Technology
Cambridge MA 02139
Email: davidb,eicksted @mit.edu

Henrik Schmidt
Arjuna Balasuriya
Dept. of Mechanical Engineering
Massachusetts Institute of Technology
Cambridge MA 02139
Email: henrik,arjunab@mit.edu

Gateway Buoy

=

% AUV

=

AUV with VSA

Fig. 1. A set of autonomous underwater vehicles is deployed over a large
area and time period to monitor underwater marine traffic. One vehicle is
equipped with a vector sensor array (VSA) to provide contact and track
solution information to be shared via acoustic link to other AUVs and back
to shore via a gateway buoy, which itself could be mobile. The VSA-
equipped node or platform may also be redirected by other nodes via
acoustic link to deploy in another region based on information obtained
by other nodes. The VSA-equipped vehicle is responsible for efficiently
meeting its deployment obligations while avoiding sets of maneuvers that
would compromise the safety of the sensing and communication structure
of the array.

The towed vector sensor array is one of the main elements
of this larger objective, which aims to exploit the latest
advances in AUV technology to deploy an autonomous
vehicles with endurance of the order of several months. A
critical element of this approach includes sensor scalability
to the smaller platform sizes afforded by AUVs and efficient
energy use to obtain the required levels of persistence. Vector
sensor technology facilitates scalability by virtue of its higher
theoretical gain for a given aperture length.

B. Background of Behavior-based Control

In behavior-based systems, platform control is the result of
a set of independent, specialized modules working together
to choose appropriate vehicle actions. It has been viewed as
an alternative to the traditional sense-plan-act control loop
where decision-making and planning are performed on a
single world model that is built up and maintained over time.
Commonly cited virtues of behavior-based systems include:

the ease of development of the independent modules, the
lack of a single complex world model, and the potential for
a highly reactive vehicle with certain behaviors triggered by
the appropriate events in a dynamic environment. The origin
of these systems is commonly attributed to Brooks’ “sub-
sumption architecture” in [1]. Since then, it has been used in
a large variety of applications including: indoor robots, e.g.,
[21, [3], [4], [5], land vehicles, e.g., [6], and marine vehicles,
e.g., [7], [8], [9], [10], [11]. Action selection is the process
of choosing a single action for execution, given the output of
each behavior. Action selection has well known difficulties as
reported in [4] and [6] for which multi-objective optimization
is thought to provide some countermeasure.

II. TECHNICAL APPROACH
A. The MOOS-IvP Autonomy Architecture

This work uses the MOOS-IVP architecture for au-
tonomous control. MOOS-IVP is composed of the Mission
Oriented Operating Suite (MOOS), a open source software
project for coordinating software processes running on an
autonomous platform, typically under GNU/Linux. MOOS-
IvP also contains the IvP Helm, a behavior-based helm that
runs as a single MOOS process and uses multi-objective
optimization with the Interval Programming (IvP) model
for behavior coordination, [12]. See [13] and [14] for other
examples of MOOS-IvP on autonomous marine vehicles.

A MOOS community contains processes that communi-
cate through a database process called the MOOSDB, as
shown in Fig. 2(a). MOOS ensures a process executes its
“Iterate” method at a specified frequency and handles new
mail on each iteration in a publish and subscribe manner. The
IvP Helm runs as the MOOS process pHelmIvP (Fig. 2(b)).
Each iteration of the helm contains the following steps: (1)

SHz 2Hz 20Hz

lMlcmModem lGPS lPWMConlroller MOOSDB

pHelmIvP

Action Information
pLogger 4—» MOOSDB pHelmIvP
s prunion
IvP . .

smm +— IvPFunction

pNav pMOOSBndgc pTracker A IvPFunction

10Hz SHz H.

(a) A MOOS Community (b) The pHelmIvP process

Fig. 2. The IvP Helm runs as a process called pHelmIvP in a MOOS
community. MOOS may be composed of processes for data logging
(pLogger), data fusion (pNav), actuation (iPWMController), sensing (iGPS),
communication (pMOOSBridge, iMicroModem), and much more. They can
all be run at different frequencies as shown.

mail is read from the MOOSDB, (2) information is updated
for consumption by behaviors, (3) behaviors produce an
objective function if applicable, (4) the objective functions
are resolved to produce a single action, and (5) the action
is posted to the MOOSDB for consumption by low-level
control MOOS processes. The behaviors used in this work
are discussed in Section V.

B. The Back-Seat Driver Paradigm

While low-level control tasks such as navigation, depth-
keeping and vehicle safety were relegated to the AUV main
vehicle computer, all high-level control inputs were derived
from a separate vehicle payload computer running the MIT
MOOS-IVP system. This computer incorporated a Linux-
based CPU for general-purpose computational tasks, such as
the multi-objective helm, as well as a specialized 8 GFlop
vector processor to support heavy signal processing loads
such as spectrum analysis and broad-band beamforming.

III. GENERAL PROPERTIES OF THE HELM AND
BEHAVIORS

A. General Properties of the Helm

The IvP Helm, as a software module, can be viewed as
an interface between the set of behaviors and the MOOSDB
and the other system components connected to MOOSDB. Its
primary function at run time is to arbitrate between behaviors
by soliciting objective functions from each, over a common
decision space, and performing multi-objective optimization.
Besides posting the resulting decision to the MOOSDB, the
helm also posts other variable-value pairs based on requests
of the behaviors generated during the behaviors’ function-
producing iteration. This includes state information that one
behavior may communicate to another across iterations, such
as a condition that marks the completion of one behavior
and triggers the activation of another as described by the
CONDITION and ENDFLAG parameters below.

The helm, upon startup, reads a configuration, i.e., mis-
sion, file with sets of parameters. The key parameters for
behaviors used in experiments reported here are described
in the following sections. An important component of our
research objectives is to allow behaviors to be adaptive not
only to environment events, but also to periodic high-level
commands from field control. This means a mission file is
not a static script with a start and completion, but more
aptly described as a state space with an initial state and
conditions for migrating between states based on events;
mission-control, environment or otherwise.

B. Universal Behavior Parameters

The following parameters describe properties inherited by
all behaviors described in later sections.

PRIORITY: The priority weight of the produced objective
function. A behavior may also be implemented to dynam-
ically determine its own priority weight.

DURATION: The time duration before the behavior is marked
completed. If none provided, the behavior will not time-out.
The clock begins when the behavior first becomes active.
CONDITION: A condition that must be satisfied for the
behavior to be active. It is a equal-separated pair such as
DEPLOY=true. If more than one condition is given, they all
must be satisfied. The variables are MOOS variables and the
helm automatically subscribes to a variable appearing as a
behavior condition.

RUNFLAG: A variable and a value posted while the behavior is
active. It is a equal-separated pair such as TRANSITING=true.
More than one runflag may be provided and can be used to
satisfy or block the conditions of other behaviors.

ENDFLAG: A variable and a value posted when the behavior
has completed. The circumstances causing completion are
unique to the individual behavior, but if any behavior has a
DURATION specified, the endflags are posted upon time-out,
which occurs when the duration specified by the DURATION
parameter has been exceeded. The value of this parameter is
a equal-separated pair such as ARRIVED.HOME=true.

UPDATES: A MOQS variable from which updates to behavior
parameters are read from after the behavior has been initially
instantiated and configured at the helm startup time. Any
parameter and value pair that would have been legal at startup
time is legal at runtime. This is one of the primary hooks to
the helm for mission control; the other being the behavior
conditions described above.

IV. NETWORK AND FIELD CONTROL

A key component of our objective of ubiquitous, au-
tonomous mobile marine sensing platforms is the periodic
interface to humans via Network and Field Control (NAF-
CON) detailed briefly here.

A. The WHOI Acoustic Modem and NAFCON Interface

The AUVs are equipped with acoustic modems from the
Woods Hole Oceanographic Institute (WHOI) that imple-
ment an adaptive decision feedback equalizer with integrated
Doppler and error-correction to afford 80-bps frequency
hopped-FSK mode communications. The modem provides
the user with the tools necessary to create a simple time-
division, multiple-access (TDMA) network for master-slave
polled systems, or a random-access peer-to-peer network.
Each communication transaction includes a short network
packet called a cycle-initialization. This specifies the source,
destination and data rate of the packet to follow. In this
experiment, Compact Control Language (CCL) developed by
WHOI is used to handle the bandwidth limitations underwa-
ter.

In these experiments, two primary types of messages were
sent by the NAFCON to the AUV; deploy and prosecute.
The deploy message instructs the AUV as to where it should
operate for efficient use of the field. The message includes
latitude, longitude, and depth of deployment. A prosecute
message is sent from NAFCON when a target of interest has
been detected and localized to an area of uncertainty. The
goal of the prosecution is to better localize, classify or track
the target. Similarly, the AUV reports to the NAFCON by
sending status reports, contact reports and track reports.

The CCL messages are decoded by the modem driver
and published as a variable in the MOOSDB (NAF-
CON_MESSAGES). The pNAFCON MOOS process subscribes
to the NAFCON_MESSAGES string variable and extracts details
of the message sent by the NAFCON. Based on the message
contents, pPNAFCON publishes mission control messages and

set flags in the MOOSDB to allow the helm to activate
relevant behaviors.

B. Autonomy States and State-Transitions

The vehicle mission specification used in these experi-
ments was comprised of a set of states, behaviors operating
in those states, and events from the field and NAFCON for
transitioning between states. The states are shown in Fig. 3
and described below.

[

ABORT

Fig. 3. The five main vehicle autonomy states. Each state is transitioned
into with the receipt of a NAFCON message of the same name. Each state
is comprised of one or more vehicle behaviors responsible for achieving the
objectives of that state.

DEPLOY-STATE: Entered on receipt of the DEPLOY message.
The vehicle transits to its deployment location and begins to
loiter waiting for a prosecute message.

PROSECUTE-STATE: In this mode, the vehicle transits toward
the currently estimated current position of the target. If the
vehicle gets within a predetermined range of the estimated
target position, it begins a loiter maneuver waiting for an
acoustic detection. If an acoustic detection is made, the
vehicle will maneuver to track the target until it moves
outside its operational area, it loses the target, or a RETURN
or ABORT message is received.

ABORT-STATE: The vehicle will transit toward its abort
waypoint using the waypoint behavior described in Section
V. When the waypoint is reached, a SURFACE message will
be generated and the vehicle will enter the SURFACE state.
The non-monotonic radius and duration-limit parameters are
utilized to handle errant cases where the vehicle misses the
abort point.

SURFACE-STATE: SURFACE: The system initially begins in
this state waiting for a DEPLOY message. The SURFACE
message is also internally generated when the vehicle reaches
either its return or abort waypoints.

RETURN-STATE: The vehicle will transit toward its return
waypoint using the waypoint behavior described in Section
V. When the waypoint is reached, a SURFACE message is
generated and the vehicle will enter the SURFACE state.
The non-monotonic radius and duration-limit parameters are
utilized to handle errant cases where the vehicle misses the
return point.

Each state is comprised of one or more vehicle behaviors
responsible for achieving the objectives of that state. These
behaviors are described next.

V. HELM BEHAVIORS
A. The Waypoint Behavior

The waypoint behavior is for transiting to a set of specified
waypoints. The objective function produced by this behavior
is defined over the 2D action space given by possible heading
and speed choices (Fig 5). The following parameters are
defined for this behavior:

POINTS: A list of X,y pairs given as points in 2D space; units
in meters.

SPEED: The desired speed, in meters/second, at which the
vehicle travels through the points.

CAPTURE_RADIUS: The radius tolerance, in meters, for satis-
fying the arrival at a waypoint.

ORDER: The order in which the waypoints are traversed.
Either “reverse” or the default “normal”.

LEAD: For track-line following, this is the distance, in
meters, from the perpendicular intersection point to the next
waypoint. The perpendicular intersection point is the point
on the line given by the current and previous waypoint that
is closest to the current vehicle position. The vehicle steers
toward this point. If this point extends beyond the next
waypoint, the steering point is exactly the next waypoint.
If heading toward the first waypoint, this steering point is
just that waypoint.

REPEAT: The number of times the vehicle will traverse
through the set of waypoints, proceeding to the 1st waypoint
after the nth waypoint has been hit.

NM_RADIUS: The non-monotonic radius is the capture radius
distance within which a detection of increasing distances to
the waypoint is treated as a waypoint arrival. As a rule of
thumb, a distance of twice the arrival radius is used (Fig. 4).

P ~

arrival_radius

arrival_radius 7

nm_radius™

.l 1 1

(a) (b) (©)

Fig. 4. (a) a successful waypoint arrival by achieving proximity less than
the capture radius. (b) a missed waypoint likely resulting in the vehicle
looping back to try again. (c) a missed waypoint but capture declared
anyway when the distance to the waypoint begins to increase and the vehicle
is within the non-monotonic radius.

B. The Loiter Behavior

This behavior is used for transiting to and repeatedly
traversing a set of waypoints forming a convex polygon.
Typically the polygon is a hexagon forming a desired loiter
region. Measures are described below to ensure this behavior
robustly handles dynamic exit and re-entry modes when or
if the vehicle diverges from the loiter region due to external

Fig. 5. The objective function produced by the waypoint behavior is
defined over possible heading and speed values. Here is an objective function
favoring maneuvers to a waypoint 135 degrees from the current vehicle
position and favoring speeds closer to the mid-range of capable vehicle
speeds. Higher speeds are represented farther radially out from the center.

events. And it is dynamically reconfigurable to allow a
mission control module to repeatedly reassign the vehicle to
different loiter regions by using a single persistent instance
of the behavior. The following parameters are defined for
this behavior in addition to the general behavior parameters
described previously:

POLYGON: A list of x,y pairs indicating points in 2D space.
Units are in in meters and must describe a convex polygon;
As an alternative to listing a sequence of points, a orbit-style
polygon can be given by four values the x and y position,
the radius, and the number of points on the polygon.
SPEED: See the waypoint behavior.

CAPTURE_RADIUS: See the waypoint behavior.

CLOCKWISE: If “true”, the behavior will influence the vehicle
in a clockwise direction around the polygon.

NM_RADIUS: See the waypoint behavior.

ACQUIRE.DIST: Distance between the vehicle and polygon
that will trigger the behavior into acquire mode. Concerns
both the cases when the vehicle is inside as well as outside
the polygon; the re-acquire algorithms are different however.

When the behavior is active, it is in either one of two
modes; the acquire mode or normal mode. In the normal
mode it is merely proceeding to the next waypoint on the
polygon. In the acquire mode, each iteration begins by
determining a polygon re-entry vertex, to minimize the angle
to the following waypoint. The acquire point depends on the
chosen direction of polygon traversal, as shown in Figure 6.

CLOCKWISE = TRUE

CLOCKWISE = FALSE

Fig. 6. In the acquire mode, the polygon points are evaluated for suitability
in terms of a smooth entry trajectory. Only the “viewable” points, those
viewable if the polygon were an opaque object and the viewer were at
the current vehicle location, are contenders. The contenders are rated on
the follow-on angle given the desired clockwise or counter-clockwise loiter
direction. Larger follow-on angles are preferred as shown.

When in the acquire mode and outside the polygon,
the chosen vertex is the one most tangential in either the
clockwise or counter-clockwise direction as shown in the
figure. When the vehicle is inside the polygon, the chosen

vertex is the one which forms the most obtuse angle between
the current vehicle position, the vertex, and the follow-on
vertex. Unlike the case when outside the polygon, the chosen
vertex changes as the vehicle makes progress back to the
polygon perimeter. The effect is for the vehicle to spiral out
to the perimeter for the smoothest re-entry into a normal
loitering path (See Fig. 11).

The circumstance most common for triggering the acquire
mode is the initial assignment to the vehicle to loiter at a new
given region in the X,Y plane. This assignment could occur
while the vehicle happens to already be within the polygon
for a number of reasons. Furthermore, the vehicle could be
driven off the polygon loiter trajectory due to environmental
(wind or current) forces or the temporary dominance of other
vehicle behaviors such as collision avoidance or tracking of
another vehicle. Once the behavior enters the acquire mode,
it remains in this mode until arriving at the first waypoint
(defined by the arrival and non-monotonic radii settings),
and switches to normal mode until the acquire mode is re-
triggered or the behavior run conditions are no longer met.

C. The Memory-Turn-Limit Behavior

The objective of the Memory-Turn-Limit behavior is to
avoid vehicle turns that may cross back on its own path
and risk damage to the towed array. Its configuration is
determined by the two parameters described below which
combine to set a vehicle turn radius limit. However, it is not
strictly described by a limited turn radius; it stores a time-
stamped history of recent recorded headings and maintains a
heading average, and forms its objective function on a range
deviation from that average. This behavior merely expresses
a preference for a particular heading. If other behaviors also
have a heading preference, coordination/compromise will
take place through the multi-objective optimization process.
The following parameters are defined for this behavior:

MEMORY_TIME: The duration of time for which the heading
history is maintained and heading average calculated.

TURN_RANGE: The range of heading values deviating from
the current heading average outside of which the behavior
reflects sharp penalty in its objective function.

The heading history is maintained locally in the behavior
by storing the currently observed heading and keeping a
queue of n recent headings within the MEMORY_TIME thresh-
old. The heading average calculation below handles the issue
of angle wrap in a set of n headings hg . .. h,—1 where each
heading is in the range [0, 359].

heading_avg = atan2(s, ¢) - 180/,

where s and c are given by:

n—1 n—1
s= sin(hym/180)), c= > cos(hpm/180)).
k=0 k=0

The vehicle turn radius r is not explicitly a parameter of the
behavior, but is given by:

r=v/((u/180)r),

where v is the vehicle speed and w is the turn rate given by:

u = TURN_RANGE / MEMORY _TIME.

The same turn radius is possible with different pairs of values
for TURN_.RANGE and MEMORY_TIME. However, larger values
of TURN_RANGE allow sharper initial turns but temper the
turn rate after the initial sharper turn has been achieved.

D. The Go-To-Depth Behavior

This behavior will drive the vehicle to a sequence of
specified depths and duration at each depth. The duration
reflects the time at depth after achieving that depth. The
behavior examines the current vehicle depth and declares
the target depth achieved if it is within the delta given
by CAPTURE.DELTA. The behavior also stores the recorded
depth from the prior behavior iteration, and if the target
depth is between the prior depth and current depth, the
depth is considered to be achieved regardless of whether the
current depth is within the CAPTURE_DELTA. The following
parameters are defined for this behavior:

DEPTH: A list of depth-duration pairs. The duration applies
from the time the depth is first achieved.

REPEAT: The number of times the vehicle will traverse
through the evolution of depths. The default value is zero.
CAPTURE_DELTA: The depth difference between current and
target depth required to declare a target depth achieved.

E. The Periodic-Speed Behavior

This behavior will periodically influence the speed of the
vehicle while remaining neutral at other times. The timing is
specified by a given period length in which the influence is
on, and a gap length specifying the time between periods. It
was conceived for use on an AUV equipped with an acoustic
modem to periodically slow the vehicle to reduce self-
noise and reduce communication difficulty. The following
parameters are defined for this behavior:

PERIOD_LENGTH: Period duration during which the behavior
produces an objective function over the desired speed.
PERIOD_GAP: Time duration in seconds between periods.
PERIOD_SPEED: The desired speed in meters/second.
PERIOD_PEAKWIDTH: The width of the peak in meters/second
in the speed objective function. See Fig. 7.
PERIOD_BASEWIDTH: The width of the base, in meters/second
in the speed objective function. See Fig. 7.

VI. EXPERIMENTAL RESULTS

The results reported in the section are from field exercises
in Monterey Bay in August 2006. The tow platform for the
series of experiments described was an MIT 21 inch diam-
eter, 158 inch-long AUV custom built by Bluefin Robotics
in Cambridge Mass (Fig. 8). The vehicle possessed a single
ducted thruster capable of propelling the vehicle and array

SPEED = 0.5

z PEAKWIDTH = 0 £ PEAKWIDTH =
=] S5
BASEWIDTH = 0.2 BASEWIDTH = 0.2
| | | | | |
1.0 1.5 2.0 25 0.5 1.0 [2.0 2.5
(a) Speed (m/s) (b) Speed (m/s)

Fig. 7. In (a) the preference is a for a particular speed and a slight tolerance
in either direction. In (b) the preference is for a particular range of speeds
with a slight tolerance either way.

at better than 3 knots. The navigation system of the vehicle
consisted of a GPS receiver (for surface fixes), a Leica digital
3-axis fluxgate compass, Crossbow Attitude and Heading
Reference System (AHRS), and bottom-locking RDI- Tele-
dyne Workhorse Navigator 300 kHz Doppler Velocity Log
(DVL). Dead-reckoning was achieved by fusing the above
sensor inputs via a proprietary Bluefin algorithm.

Fig. 8. The MIT 21-inch Bluefin autonomous underwater vehicle modified
to tow a vector sensor array. The inset photo shows a severe twist incurred
on the array after vehicle calibration runs in the first few days of field
exercises. Vehicle control during the calibration runs was not conducted
using the autonomy architecture described here, and several sharp (less than
40 meter radius) turns were performed on the vehicle that likely contributed
to the twist shown here and several others. The inset photo was shot the day
prior to the main photo which reflects the repair to the array twist with a
cast-like patch halfway down in the photo. No such severe twists or minor
twists were observed when the autonomy methods reported in this paper
were used. Photos from Monterey Bay exercises August 2006.

The prototype array discussed here was designed to sup-
port a speed range from O to approximately 4 knots. Zero
speed operation, wherein the array floats up behind the vehi-
cle (which may be bottomed), invites the possibility of low-
power detection modes and extended endurance. The partic-
ular VSA tested in MB’06 consisted of 47 meters of light-
weight tow cable with integral optical fiber communications,
an 8 meter vibration isolation module (VIM), 30 meters of
acoustic array, and 15 meters of stability-enhancing drogue.
See Figs. 8 and 9. In engineering the array and its mechanical
interface to the Bluefin 21 vehicle, particular attention was
payed to the issue of stability, which is typically poor for
low-tension (low-drag/low-speed) systems of this type. Such
instabilities are well known to be speed dependent and, in
this case, dictated the selection of array materials in addition

to a restricted maneuvering envelope for the AUV.

Drogue (15m)

Vehicle
Connector

VIM(8m)

Tow Cable (46m) Acoustic Module (30m)

Fig. 9. The vector sensor array is roughly 100 meters in total length
composed of four sections leading out from the AUV: a 47 meter tow cable
section, an 8 meter vibration isolation module, a 30 meter acoustic module,
and a 15 meter drogue at the end.

The tow cable section of the VSA was composed, in part,
of a thin steel tube surrounding fiber optic data cables. This
array section was thought to be vulnerable to damage if twists
or kinks were to occur during operation. We report here
two deployments using the MOOS-IvP autonomy module.
Results from deployments are described in Figs. 10 and 11.

VII. CONCLUSION

This paper has investigated the problem of controlling an
autonomous underwater vehicle towing a 100-meter vector
sensor array. We described a novel method of behavior-based
control using multi-objective optimization and a novel set of
vehicle behaviors that were demonstrated in field exercises to
effectively control an AUV under different mission circum-
stances over hours of operation. This paper also provides, to
our knowledge, the first ever demonstration of such a system
on a physical marine platform. Further research is ongoing
to explore the robustness of this method in more complex
navigation scenarios, both in simulation and on the water.

ACKNOWLEDGEMENTS

This work was supported by the Office of Naval Research
(ONR), under Contract N00014-05-G-0106 Delivery Order
008, “PLUSNET: Persistent Littoral Undersea Surveillance
Network™, and by Dr. Don Wagner at ONR.

REFERENCES

[1] R. A. Brooks, “A Robust Layered Control System for a Mobile Robot,”
IEEE Journal of Robotics and Automation, vol. RA-2, no. 1, pp. 14—
23, April 1986.

[2] R. C. Arkin, “Motor Schema Based Navigation for a Mobile Robot:
An Approach to Programming by Behavior,” in Proceedings of the
IEEE Conference on Robotics and Automation, Raleigh, NC, 1987,
pp. 264-271.

[3] R. C. Arkin, W. M. Carter, and D. C. Mackenzie, “Active Avoidance:

Escape and Dodging Behaviors for Reactive Control,” International

Journal of Pattern Recognition and Artificial Intelligence, vol. 5, no. 1,

pp. 175-192, 1993.

P. Pirjanian, “Multiple Objective Action Selection and Behavior Fu-

sion,” Ph.D. dissertation, Aalborg University, 1998.

[5] J. Riekki, “Reactive Task Execution of a Mobile Robot,” Ph.D.
dissertation, Oulu University, 1999.

[6] J. K. Rosenblatt, “DAMN: A Distributed Architecture for Mobile Nav-
igation,” Ph.D. dissertation, Carnegie Mellon University, Pittsburgh,
PA, 1997.

[71 A.A.Bennet and J. J. Leonard, “A Behavior-Based Approach to Adap-
tive Feature Detection and Following with Autonomous Underwater
Vehicles,” IEEE Journal of Oceanic Engineering, vol. 25, no. 2, pp.
213-226, April 2000.

[8] M. Carreras, J. Batlle, and P. Ridao, “Reactive Control of an AUV Us-
ing Motor Schemas,” in International Conference on Quality Control,
Automation and Robotics, Cluj Napoca, Rumania, May 2000.

[9] R. Kumar and J. A. Stover, “A Behavior-Based Intelligent Control
Architecture with Application to Coordination of Multiple Underwater
Vehicles,” IEEE Transactions on Systems, Man, and Cybernetics - Part
A: Cybernetics, vol. 30, no. 6, pp. 767-784, November 2001.

[4

=

" 1400 1700 72000

2300

" 1400 1700 2000

2300

2300

/57 mins

1700

/ \
/ .
/ \
/ - \
i - - \
/ i \ :
/ Start Point ! \ Redeploy
2000 . 4 : N 2000 : =
: A) / /) 45 .
N\ i / 5 mins,
\ i I/
; d /
\ . 8 mins /
\ /
\ y
1700 . . \ . / 1700
(@) (b)
" 1400 1700 72000 " 1400 1700 72000

2300

/

83 mins /

1700

©

(@

" 1400 1700 72000

2300

by

%

1700 N\
\ g

" 1400 Abort point 1700 72000
ﬂ 113 mins

2300

Fig. 10. Monterey Bay experiments with MIT 21-inch Bluefin AUV towing a vector sensor array. In (a) the AUV has completed its spiral out to shown
hexagon loiter region. In (b) the AUV has been loitering for 45 minutes and receives a command to redeploy. In (c) the AUV has redeployed and completed
its spiral out to the shown hexagon loiter region. In (d) the vehicle has nearly completed its first traversal of the hexagon loiter region. In (e) the vehicle
receives a new command to redeploy to an abort point. In (f) the vehicle approaches the abort point and surfaces. The depth and speed of the vehicle are
plotted on the bottom versus time with the six frames in (a) thru (f) marked accordingly.

[10] J. K. Rosenblatt, S. B. Williams, and H. Durrant-Whyte, “Behavior-
Based Control for Autonomous Underwater Exploration,” Interna-
tional Journal of Information Sciences, vol. 145, no. 1-2, pp. 69-87,
2002.

[11] S. B. Williams, P. Newman, G. Dissanayake, J. K. Rosenblatt, and

H. Durrant-Whyte, “A decoupled, distributed AUV control architec-
ture,” in Proceedings of 31st International Symposium on Robotics,
Montreal, Canada, 2000, pp. 246-251.

[12] M. R. Benjamin, “Interval Programming: A Multi-Objective Opti-
mization Model for Autonomous Vehicle Control,” Ph.D. dissertation,

© 800 * 1400 S2000 77 * 2600 800 © 1400 © 2600
3200 : : Pt : 3200 : :
Loiter Phase
2600 MIT 21-inch Bluefin AUV ——— / 2600 Prosecute Phase
: S =780 (13 mins) \
: (=185 (19.75 mins)
2000 { :) 2000 L
1400 1400
Contact 3 m/s © Contact 3 mis
......... — —
() (b)
- 800 © 1400 = - 2600 - 800 © 1400 - 2600
3200 : : ' : 3200 : : :
2600 2600
2000 2000 £=3005 (50.1 mins)
: /" Abort Phase
\ (=1575 (26.25 mins)
1400 : . 1400 - \'“\
: . e
: Abort Command
Contact 3 m/s
(©) (d)
110 [/ o
[\r\,ﬁw N
Depth
’ J N
=0 1=780 (13 mins) 1=1185 (19.75 mins) 1=1575 (26.25 mins) 1=3005 (50.1 mins)
1.425 [
Mt il bt it 'M"'IWWMTL. " e et ol
Speed
0
Fig. 11. Monterey Bay experiments with MIT 21-inch Bluefin AUV towing a vector sensor array. In (a) the vehicle has been deployed to a loiter region

shown by the hexagon and has been commanded to traverse the region in a clockwise manner and thus proceeded to the eastern most vertex of the hexagon
as an initial entry trajectory. During transit it was at 8 meters of depth and cycling between speeds of roughly 1.2 m/s and 0.7 m/sec as shown by the
depth and speed plots below. Before it arrived on station at the loiter region, it received a new message from field control via acoustic link to prosecute a
contact with the position and trajectory shown. In (b) the vehicle has been in the prosecute phase for roughly 5 minutes and has closed range considerably.
The desired speed of the vehicle is higher in the prosecute phase to close range quickly. In (c) the vehicle has been in the prosecute phase for roughly 13
mins and the contact is now opening range to the vehicle. The message to abort the mission and return to a commanded abort point is imminent. The abort
command will require the vehicle to perform nearly a 180 degree turn. In (d) the vehicle has arrived at the abort point and come to surface. The transit to
the abort point was at 10 meters of commanded depth and the same commanded speed as during the loiter phase as the two time plots below indicate.

(13]

[14]

Brown University, Providence, RI, May 2002.

M. Benjamin, J. Curcio, J. Leonard, and P. Newman, ‘“Navigation

of Unmanned Marine Vehicles in Accordance with the Rules of

the Road,” in International Conference on Robotics and Automation

(ICRA), Orlando, Florida, May 2006.

M. Benjamin, M. Grund, and P. Newman, “Multi-objective Optimiza-
tion of Sensor Quality with Efficient Marine Vehicle Task Execution,”

in International Conference on Robotics and Automation (ICRA),
Orlando, Florida, May 2006.

