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Abstract—The main contribution of this paper arise from the 
development of a new framework for the problem of 
Simultaneous Localization and Mapping (SLAM) in the 
domain of stereo vision based robot navigation. The new 
framework has its inspiration in the mechanics of human 
navigation. At present the solution is specific to a unique 
instance of SLAM, where the primary sensing device is a short 
baseline stereo vision system.  The new framework addresses 
several key issues of this particular problem. As observed in 
our earlier work [1], the particular sensing device has a highly 
nonlinear observation model resulting in inconsistent state 
estimations when standard recursive estimators such as the 
Extended Kalman Filter (EKF) or the Unscented variants are 
used. Secondly, vision based approaches tend to have issues 
related to large feature density, narrow field of view and the 
potential requirement of maintaining large data bases for 
vision based data association techniques. The proposed Multi 
Map SLAM solution addresses the first issue by formulating 
the SLAM problem as a nonlinear batch optimization. Second 
issue is addressed through a two tier map representation. The 
two maps have unique attributes assigned to them. The Global 
Map (GM) is a compact global representation of the robots 
environment and the Local Map (LM) is exclusively used for 
low-level navigation between local points in the robots 
navigation horizon. 

I. INTRODUCTION 
HIS work follows our previous work [1-3] on the use of 
small baseline stereo cameras in Simultaneous 

Localization and Mapping (SLAM). There a detailed study 
on sensor behavior and sensor modeling were carried out. It 
was shown that with the use of small baseline stereo 
cameras, the non linearity of the observation model manifest 
within very short ranges leading to inconsistencies in filter 
estimates. We also showed that a simple linearization as in 
EKF can not handle such nonlinearities requiring a more 
elegant solution. Here we propose nonlinear batch 
optimization as a suitable alternative to the standard 
recursive methods [4-6] used in solving the SLAM problem. 
We begin the batch formulation similar to [7, 8], however it 
is then extended into the new Multi Map (MM) framework 
where techniques from the Variable State Dimension Filter 
[9, 10] are used in order to realize a consistent and efficient 

 
Manuscript received September 14, 2007. (Write the date on which 

you submitted your paper for review.) This work is supported by the ARC 
Centre of Excellence program, funded by the Australian Research Council 
(ARC) and the New South Wales State Government. 

D. C. Herath, S. Kodagoda and G. Dissanayake are with the ARC Centre 
of Excellence for Autonomous Systems, University of Technology Sydney, 
AUSTRALIA (e-mail: d.herath, s.kodagoda, g.dissanayake@cas.edu.au)  

solution to the small base line stereo vision based SLAM 
problem. 

The technique has evolved through observations made on 
human navigation patterns. It has been observed that 
humans tend to use a few important visual cues such as 
prominent constructions, major roundabouts, etc when 
navigating from one point of interest to the next and tend to 
discard most of the information utilized in refining the 
navigation task such as lane markings, traffic signs, etc in 
between such points along the path.   

We intend to use a similar principle in the development of 
the novel Multi-Map approach. The new representation 
consists of a Global Map (GM), analogous to important 
visual cues. This map enables the SLAM algorithm to be 
bounded globally and the corresponding map size grows 
monotonically in dimensionality as the robots exploration 
horizon expands. The second map called the Local Map 
(LM) enables the lower level navigation between two visual 
cues of the global map, analogous to the lane markings, etc. 
When a particular segment of the navigation is completed, 
the local map corresponding to the path segment is 
marginalized from the robots state vector. Hence, the 
dimensionality of the local map state vector varies from 
segment to segment but does not correlate with the growth 
of the robots exploration horizon, considerably reducing the 
computational requirements of the overall SLAM algorithm. 
This novel representation has the added advantage of 
corroborating estimator consistency through explicit use of 
batch optimization techniques in the estimation process. 

II. SLAM AS AN OPTIMIZATION PROBLEM 
SLAM could be posed as a multivariate parameter 

estimation problem [7, 8] where a set of unknown state 
variables corresponding to the robot pose and map ( )x  are 
estimated via the observations ( )z  made of the environment 
through sensors on-board the robot. A general solution to 
the problem is to obtain the maximum a posteriori (MAP) 
estimate,   
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where ( | )p z x  is the observation likelihood and ( )p x is the 
prior. Nonlinear batch optimization techniques generally 
preserve the entire history of the states to be estimated. The 
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large number of observations used in a single optimization 
cycle could potentially improve the linearization due to more 
accurate estimates being available for use in the linearization 
process.   

The formulation begins by noticing that the observation 
likelihood in the context of SLAM contains both 
observations ( )z  to features as well as odometry 
measurements ( )u . These two types of measurements are 
conditionally independent and could be factorized yielding 
the following optimization problem,  

 

* ( | ) ( )argmax

( , | ) ( )argmax
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Therefore, the constrained observation model is, 

 ( , | ) ( | ) ( | )i i i ip p p=z u x z x u x  (3) 

where x contains both map and the entire set of poses of the 
robot. Assuming observations to be Gaussian distributed,  
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where, ( ( )) 1, ,i i i i z= − =ε z h x …   is the innovation of the 
stereo vision observation and ( )ih x  is the predicted 
observation to the feature. ( )i i i= −μ u g x , where ( )ig x  is 
the predicted odometry measurement. Now, assuming a 
uniform prior over the state variables, the cost function 
( ( )F x ) to minimize in order to solve the SLAM problem is 
derived by taking the negative of the log of the likelihood 
function, 
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Then the new MAP estimate is, 

 * 1 1argmin( )T Tμ μ− −= +
x

x ε R ε U  (6) 

This represents the standard least-squares problem generally 
solved through Gauss-Newton iterations, 

 1k k k+ = + Δx x x  (7) 

In order to minimize the cost function, the algorithm starts at 
0k =  with an initial estimate of the state vector 0x̂ , and 

proceeds to calculate the approximations to the derivatives. 
The first derivative, 

 1 1( ) T T
h gF ε μ− −∇ = = − −x b J R J U  (8) 

and the Hessian matrix, 

 2 1 1( ) T T
h h g gF − −∇ ≈ = +x A J R J J U J  (9) 

Then at the kth iteration, 

 k k kΔ =A x b  (10) 

and an improved estimate of the states are realized through 
(7). Iterative sequence continues until an acceptable 
minimum is reached. A good indication of a minimum is 
when the rate of change in residual is minimal.  

III. MULTI MAP SLAM 
From a practical perspective MM framework utilize two 

different techniques for image registration corresponding to 
the two map representation. Features corresponding to the 
high level global map rely on visually salient features that 
can be recognized using high dimensional descriptors that 
are scale and affine invariant. The descriptive nature of these 
features provides the necessary loop closure information. In 
this work, we have chosen SURF [11]. SURF based Global 
Map (GM), is sparse and the features could only be 
observed at certain points of interest (PoI) in the robots 
trajectory. The low level map is used for navigating the 
robot between the features of the GM, which needs a fast 
feature tracker. As the features need to be tracked between 
consecutive frames (data association), the tracker can be 
simple without needing complex descriptors. Although there 
are several number of trackers proposed in the literature, we 
have chosen the KLT [12, 13] due to its simplicity and 
speed.   

IV. BATCH OPTIMIZATION WITH MULTIPLE MAPS 
 Let’s consider the simple navigation scenario depicted in 

Fig.1. The robot starts at the origin and completes a small 
loop by returning to the origin after a temporal lapse.  In this 
particular example, a small cluster of GM features are 
located near the origin of the robots trajectory marked GM-
node1. There is only a unique PoI at the origin of the 
reference frame. Once the robot completes the journey, it 
sees the GM features again and realizes the loop closure. 
Until the robot reaches the end of the loop, it uses the 
features from the LM for realizing bounded estimates of its 
states.  The algorithm that extends the batch optimization to 
accommodate the two maps is described next. 

GM-Node1

 Local 
Map

 
Fig. 1 Simplest form of the MM approach with a single node of Global 
Map. GM-Node1 provides Loop Closure information 



  

The first extension to the solution presented in previous 
section occurs when the state vector is extended to 
accommodate the GM features, 

 , ,
T

r LM GM⎡ ⎤⎣ ⎦=x x x x  (11) 

The state vector contains two independent maps. The LM 
( LMx ) contributes to the frame-to-frame optimization whilst 
the GM ( GMx ) contributes to the loop closure. The 
initialization of batch optimization is provided by a local 
EKF, which only operate between two consecutive PoIs. 
After carrying out extensive simulation and 
experimentations, we concluded that EKF can provide a 
reasonable initialization for the optimization algorithm. 
Therefore, 

 ,00 , ,ˆ ˆ ˆ ˆ
T

GM
EKF EKF
r LM⎡ ⎤⎣ ⎦=x x x x  (12) 

Since the Global Map features need to be integrated in the 
optimization algorithm, an initial estimate of the GM states 
( ,0ˆ GMx ) is required. The GM feature observations with the 

EKF robot pose estimates ( ˆ EKF
rx ) is used to initialize the 

map.  Once the state and the initial estimates are defined the 
minimization proceeds as discussed in the previous section. 

V. GENERALIZED MULTI MAP SMOOTHER 
In this section, we describe the generalized multi map 

filter for extended arbitrary navigation. Fig. 2 shows a 
simplified navigation scenario, which could be used to 
appreciate the Multi Map Smoothing (MMS) algorithm. 
Since the robot is not returning to its origin, the GM-node1 
features can not be used in closing this larger loop causing 
EKF based initialization to deviate significantly. This leads 
to inconsistency in the estimates of the MMF. Thus, PoIs are 
required at regular intervals of the robot path, 1. To maintain 
the consistency of the MMF estimates by executing the 
MMF at shorter intervals. Thereby increasing the accuracy 
of the initial estimates of the consecutive optimization 
cycles. 2. To anticipate loop closures at locations other than 
the origin.  
We could improve the efficiency of the MMF algorithm by 
marginalizing LM features at appropriate intervals. 
Techniques based on the VSDF [9, 10] algorithm are used to 
maintain the consistency of the estimates while features are 
marginalized. The KLT based feature tracker is not capable 
of associating data with significant temporal laps. This 
unique character of the LM features results in 
marginalization exclusive of information loss.
 

A. Estimation Process 
The algorithm could be outlined as follows. The first PoI 

is created at the origin (GM-Node 1 in Fig. 2) where the 
robot initiates its navigation as in the case of the MMF. 

Following PoIs are scheduled heuristically considering the 
anticipated navigation pattern and knowledge of the 
environment in which the robot operates. Thus in Fig. 2, 
PoIs are placed after each turn of the robot. As described 
previously PoIs are marked with a set of view invariant 
features described by high dimensional descriptors (GM-
node 1,2) thus enabling detection of a Loop Closure. Once a 
PoI is reached, algorithm sets out to execute the MMF 
utilizing the LM and AM information currently available 
(for instance at LC-1 the MMF has GM-Node 1,2 and LM-2 
features in the augmented map state vector). This is similar 
to the previously described MMF. VSDF techniques are 
used to marginalize the features from the state vector that do 
not contribute to the current execution of the MMF. The 
VSDF  provides a means to preserve the ‘contributions’ to 
the estimator from the observations  made to these 
marginalized features by linearizing these measurements and 
incorporating them into a Gaussian prior within the batch 
optimization paradigm. 

The MMS is essentially a recursive smoother with 
dynamically varying state dimension. The Filter could be 
summarized as consisting of following components. 
Assuming that the robot is at the pth PoI, (p>2) the current 
LM contains only a partial set of the LM features that are 
observed from the PoI at p-1.  Thus the new cost function to 
minimize contains a prior reflecting the linearized control 
input data as well as the non linear measurement data, 

1
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T T
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h h

−

−

= − − + − −

+ − −
0x x x A x x d x Q d x

z x R z x
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Also it now requires augmenting the state vector with the 
new LM features, its corresponding observations, robot 
poses encompassing the current LM and any newly 
initialized GM features. Thus the new state change from the 
previous PoI, 

 
Fig. 2 A simplified illustration of the Generalised Multi Map approach. The 
robot starting from the origin takes a slightly complicated route. Apart from 
the origin, PoIs are created when the robot makes a ‘sharp’ turn. The first 
Loop Closure (LC-1) occurs when the features observed at the first PoI are 
observed again from the third PoI. A second Loop Closure (LC-2) occurs 
when some of the features observed at second PoI are re-observed from 4th 
PoI. 
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where ( ( )r px ) represents the limited pose history attributed 
to the pth LM and ( ( )LM px ) contains the LM features 
belonging to the pth LM. ( 1)GM p −x  contains GM features 
that are already initialized during previous PoIs beginning 
from the origin and ( ( )GM px ) are the newly observed GM 
features yet to be estimated. Thus it is clear that the only 
component of this dynamic state vector that contributes to 
monotonic increase in the dimension is the observation of 
new GM features. Rest of the state changes with each PoI 
but does not contribute to continuous increase of the overall 
dimensionality of the state vector.  

Having defined the state vector and the cost function, 
Levenberg-Marquardt optimization could be performed by 
defining the derivatives with respect to the current state 
vector, 
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Once optimization has converged LM features belonging 
to the current segment of the robot path are marginalized, 
corresponding observations, robot poses and any GM 
observations related to the removed robot poses are also 
removed. This smoothing cycle is applied recursively at 
each new PoI. Thus the consistency of the state estimate is 
preserved at regular intervals of the robots trajectory, while 
maintaining an efficient algorithm for arbitrary navigation. 

B. Marginalizing LM from the MM 
The first requirement in the MMS approach is to remove 

the LM features from the state once they are used to improve 
the pose estimates of the relevant potion of the navigation. 
Consider the state vector in (11), which is the starting point 
for the Multi Map optimization at a given (pth) PoI , 

 , ,
TMMF MMF

r p m⎡ ⎤= ⎣ ⎦x x x  (16) 

where [ ], TMMF
m LM GM=x x x  is the combined multi map at the 

current PoI. It is required to remove ( LMx ) from ( MMF
mx ). 

This could be achieved by straight forward removal of the 
corresponding map elements from the overall state vector. 
Thus, 

 , ,
TMMF

r p GM⎡ ⎤= ⎣ ⎦x x x  (17) 

However the optimization algorithm now contains a prior 
inverse covariance term which should also be marginalized 
accordingly. Assume that 0A is reordered to reflect the 

states to be removed ( ,*LMA ) and retained ( ,*RA ) such 

that, 
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Then using the matrix inversion lemma, the new prior after 
marginalization of LM could be calculated as, 
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This technique lends itself to the removal of poses prior to 
the current PoI as well. 

C. Removing Observations Associated with Marginalized 
Features 

As the MM approach extends beyond the first loop closure it 
becomes necessary to remove observations corresponding to 
the previous LM features, since they are marginalized as 
described in the previous section. As a consequence the pose 
estimates belonging to these parts of the journey are no 
longer as accurate as would be when improved local 
navigation information was available through the LM. The 
technique described in section could be used to linearize 
such observations. The technique also lends itself to be used 
in linearizing any odometry measurements corresponding to 
marginalized robot poses in the state vector. 

VI. RESULTS 

A. Simulation Results 
Fig. 3 shows the map estimates from the MMS algorithm 

for a loop similar to that described in Fig 2. There are two 
nodes of the GM of which the first node initialized at the 
beginning of the robots trajectory aids the small loop closure 
and the second node first initialized during the third leg of 
the smaller loop aids the final loop closure. An EKF based 
SLAM was used to generate the initial estimate 0x̂ . The 
estimated error from this filter is shown in Fig. 4(a) which as 
discussed in [1, 2] produce inconsistent state estimates. Fig. 
4(b) shows the error estimate from the new MMS approach. 
As can be seen from the figure, the estimates are consistent 
and the two loop closures corresponding to the two nodes of 
the GM are also visible, indicated by the decreasing 
uncertainty.  

Finally in Fig. 5, the average Normalized Estimation 
Error Squared (NEES) [14] for 50 trials of the simulation 
experiment are presented. The NEES is a measure of 
estimator consistency which could be used when the true 
locations of the states are known. The estimates are within 
the 2σ  confidence bounds conforming that the MMS is 
capable of producing consistent state estimates where EKF 
failed to produce consistent state estimates in comparably 
smaller sized loops using the particular stereo vision sensor 
as shown in [1, 2]. 
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Fig. 3 Map estimate from the MMS. (a) The complete map 
comprising of the two nodes of GM (‘+’) and the LM (‘*’) 
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Fig. 4 Robot pose estimates from (a) EKF and (b) from the MM 
Smoothing. The first loop closure occurs near the 100sec  
corresponding to the first node of the GM. 
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Fig. 5 Average NEES results for MMS 

B. Experimental results 
Below we asses the new framework in a practical indoor 

application using an Active Media Robotics Pioneer 2 as the 
robotic platform and videre stereo vision sensor. Fig. 6 
shows a map of the environment generated using the pose 
estimates of the batch algorithm and raw laser scans. The 
thickness of the walls is a general indication of the error 
distribution in the robot path estimates. Therefore, 
quantitatively the algorithm provides sensible estimation of 
the robot path.  

Fig. 7 shows the robot pose error relative to ‘ground 
truth’ given by a laser range finder based EKF. The outer 
(dashed) line is the compounded error estimate 

( )2 22 laser visionσ σ+ . The 2σ error bounds from the batch 

algorithm as well as from the vision EKF are shown in the 
graph for comparison. As expected, vision EKF produced 
optimistic results. Apart from the error in y estimate, both x 
direction and heading errors appear to be consistently 
estimated relative to the compounded error bound. It is 
possible that the off shoot in y direction to be attributed to 
any accumulated errors in the laser EKF prior to the loop 
closure.  

Fig. 8 shows the results of MMS applied to a large loop. 
For this experiment, SURF features were generated near the 
origin and near the end of the large loop enabling two loop 
closures, one after the completion of the smaller loop and 
the second after completion of the larger loop. 
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Fig. 6 SLAM results using the batch optimization algorithm. Red ‘*’ 
indicates map estimates from the batch algorithm. Green ‘.’ indicates the 
vision EKF map estimates.  Green and red ellipses represent the covariance 
estimates from EKF and batch algorithms respectively.  
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Fig. 7:  Comparative robot 2σ  bounds (dashed lines indicate the combined 
estimate of laser and batch algorithm, dotted lines indicate estimates from 
the batch algorithm and the solid lines are from the vision EKF) and the 
error in Multi map SLAM robot pose estimation relative to the laser based 
EKF (ground truth) 

VII. CONCLUSION 
This paper presented a novel framework for the small 

baseline stereo vision based SLAM  The unique two tier 
map representation provides a compact method for 
representing large environments through a global map. The 
local map allows for temporary use of large number of 
features for local navigation.  Marginalization of these 
features maintains the tractability of the developed algorithm 
within manageable constraints.  With high dimensional 
feature descriptors, the global map provides the loop 
closure. We have shown that the multi map approach 
provided consistent results in challenging indoor 
environments. Further work is being carried out in order to 
generalize the framework as well as to study the 
computational aspects of the algorithm. 
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Fig. 8 Multi Map results of a large loop compromising two GM 
nodes. Red ‘*’ indicates the LM estimates given by the MMS 
and green ‘.’ corresponds to the same maps but the estimates are 
from the EKF, which provides the initial estimate for the MMS. 
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