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Prioritizing linear equality and inequality systems: application to local

motion planning for redundant robots

Oussama Kanoun, Florent Lamiraux, Pierre-Brice Wieber, Fumio Kanehiro, Eiichi Yoshida and Jean-Paul Laumond

Abstract— We present a novel method for prioritizing both
linear equality and inequality systems and provide one algo-
rithm for its resolution. This algorithm can be summarized as a
sequence of optimal resolutions for each linear system following
their priority order. We propose an optimality criterion that is
adapted to linear inequality systems and characterize the result-
ing optimal sets at every priority level. We have successfully
applied our method to plan local motions for the humanoid
robot HPR-2. We will demonstrate the validity of the method
using an original scenario where linear inequality constraints
are solved at lower priority than equality constraints.

I. INTRODUCTION

A. Statement of the problem and contribution

Let us recall the context of prioritized kinematic control of

robots. For a robotic arm, a humanoid robot or any articulated

structure, a motion of the structure’s joints is calculated to

achieve a goal task. The task is often a target position and/or

an orientation in the workspace for a body in the structure.

Call q the joints configuration of the robot and T (q) = 0
the goal value of a task whose current value is T (q) = c.

By computing the jacobian J = ∂T
∂q

(q), one can calculate

velocities q̇ to tend towards achieving T (q) = 0. q̇ is solution

of the following linear equality system [1]:

Jq̇ = −λc

where λ is a positive real. This linear system can be under-

constrained for structures with a high number of degrees

of freedom. As we naturally want to specify extra tasks to

take advantage of this redundancy, comes a need to organize

the tasks from most to least critical. The reason is that we

want to avoid trade off between tasks of unequal importance

and secure the most critical ones. Several works have been

carried in this scope yielding efficient algorithms for task

prioritization [2], [3], [4]. These algorithms have also been

widely used in the robotics community [5], [6].

Some tasks are not naturally expressed as linear equality

systems. There are for instance limits on the controls (e.g
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velocity and acceleration bounds in robot joints). Another ex-

ample is the avoidance of collision with obstacles in the envi-

ronment. Collision avoidance is a task naturally expressed as

T (q) ≤ 0, where T (q) is a function defining the boundaries

between colliding configurations, {q such that T (q) > 0},
and non-colliding ones {q such that T (q) < 0}. The critical

nature of these unilateral constraints have inspired works

such as [7], [8], [9], [10]. In these works, the inequality

constraints are taken into account prior to solving any other

task.

The contribution of our work is to overcome this restriction

as our method will allow us to prioritize both linear equations

and linear inequalities in any order. The algorithm we provide

in this paper is general in the sense that it can be applied

to any problem involving the resolution of a set of linear

equality and inequality systems with priorities.

For the control of redundant robots, the inequalities at

lower priority allow us to solve new kinds of scenarii.

Consider for example a humanoid robot which has to grasp

an object seen with embedded cameras. It is best if its

reaching hand does not come between the cameras and the

object too soon. This is because we would like to keep

checking the visual target to maximize the chance of a

successful grasp. In this scenario, the robot has to accomplish

a primary reaching task and a secondary region-avoidance

task. The available algorithms do not handle this problem

including tasks expressed by inequalities with lower priority.

Our algorithm, however, will provide a solution to this

scenario.

B. Definition of linear systems

Let A and C be matrices in ℜm×n and b and d vectors

in ℜm with (m,n) ∈ N
2. We’ll consider in the following

either a system of linear equalities

Ax = b (1)

or a system of linear inequalities

Cx ≤ d (2)

or both. When m = 1, (1) is reduced to one linear equation

and (2) to one linear inequality.

A system of linear equalities may have no solution or may

define an affine subspace of ℜn. For instance, in case n = 3
this affine subspace is either a point, a line, a plane or the

whole space ℜ3.



A linear inequality, when it has solutions, defines a half-

space. The set of solutions of a system of linear inequal-

ities is the intersection of the halfspaces generated by its

inequalities. This set is a volume of ℜn bounded by a convex

polytope which may be closed or infinite (for example a

halfspace is infinite). See figure 1 for an illustration of a

system of linear inequalities in ℜ2.
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Fig. 1. Two linear inequalities determining a convex polygon in ℜ2

C. Approach

Affecting priorities to linear systems means that we leave

some of the systems unsolved to respect the ones with higher

priorities. Letting L1 and L2 be two linear systems without

common solutions, prioritizing L1 over L2 means that we

retain a solution which satisfies L1 to the expense of L2.

Nonetheless, to take into account L2, one may select a

solution of L1 which minimizes the euclidean distance to

L2’s solutions set. Euclidean distance is one example of

optimality criterion adapted to systems of linear equalities.

As a matter of fact, a point realizing this shortest distance

belongs to the orthogonal projection of L2’s solutions on

L1’s and can be obtained analytically. Furthermore, the entire

set of points realizing the shortest distance may also be

determined analytically [3]. To solve a third system of linear

equalities L3, the resolution is done within L2’s optimal set.

For our problem, we adopt the same approach consisting

in solving every linear system in the optimal set defined

by higher priorities. When we introduce systems of linear

inequalities, however, we introduce solution sets which are

volumes of ℜn bounded by convex polytopes. In this particu-

lar case, euclidean distance is not a good optimality criterion

(Figure 2).

In this work, we choose an optimality criterion adapted

to both types of linear systems and study the nature of

generated sets of solutions (Section II). For this choice, we

prove that prioritizing linear systems results in optimal sets

described with linear systems and we deduce a resolution

algorithm that is relatively easy to implement (Section III).

We illustrate the effectiveness of our method by describing

an application to local motion planning for the humanoid

robot HRP-2 (Section IV).
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Fig. 2. The set of solutions to a primary system of linear equalities L1 and
a secondary system of linear inequalities L2 are without common solutions.
M and P are solutions of L1 minimizing the euclidean distance to L2’s set,
however, P satisfies two inequalities out of three while M satisfies none.

II. OPTIMAL RESOLUTION OF LINEAR SYSTEMS

In this section we construct optimization problems to

solve each type of linear system. For each problem, we

demonstrate the nature of the optimal set. A will denote

a matrix in ℜm×n and b a vector in ℜm unless indicated

otherwise.

A. System of linear equalities

When trying to satisfy a system (1) of linear equalities

while constrained to a non-empty convex set Ω ⊂ ℜn, we’ll

consider the set Se of optimal solutions to the following

minimization problem:

min
x∈Ω

1

2
‖w‖2 (3)

with

w = Ax− b. (4)

Since the minimized function is coercive, the set Se is non-

empty. We also have the property:

x1, x2 ∈ Se ⇔ x1, x2 ∈ Ω and Ax1 = Ax2, (5)

from which we can conclude that the set Se is convex.

Proof: Let’s consider an optimal solution x∗ to the min-

imization problem (3)-(4). The gradient of the minimized

function at this point is

AT (Ax∗ − b).

The Karush-Kuhn-Tucker optimality conditions give us that

the scalar product between this gradient and any vector v not

pointing outside Ω from x∗ is non-negative,

w∗T Av ≥ 0

with

w∗ = Ax∗ − b.

Let’s consider now two such optimal solutions, x∗
1 and x∗

2.

Since the set Ω is convex, the direction x∗
2−x∗

1 points towards

its inside from x∗
1, so we have

w∗T
1 A(x∗

2 − x∗
1) ≥ 0



which is equivalent to

w∗T
1 w∗

2 − ‖w
∗
1‖

2 ≥ 0.

The same can be written from x∗
2,

w∗T
2 w∗

1 − ‖w
∗
2‖

2 ≥ 0,

so that we obtain

‖w∗
2 − w∗

1‖
2 = ‖w∗

2‖
2 + ‖w∗

1‖
2 − 2w∗T

2 w∗
1 ≤ 0,

but this squared norm can’t be negative, so it must be zero

and w∗
2 = w∗

1 , what concludes the proof. �

In the unconstrained case, when Ω = ℜn, the solutions

of (3)-(4) are such that AT Ax∗ = AT b. This minimization

problem corresponds therefore to a constrained pseudo-

inverse solution of the system of linear equalities (1).

B. System of linear inequalities

When trying to satisfy a system (2) of linear inequalities

while constrained to a non-empty convex set Ω ⊂ ℜn, we’ll

consider the set Si of optimal solutions to the following

minimization problem:

min
x∈Ω,w∈ℜm

1

2
‖w‖2 (6)

with

w ≥ Cx− d, (7)

where w plays now the role of a vector in ℜm of slack

variables. Once again, since the minimized function is co-

ercive, the set Si is non-empty. Considering each inequality

cjx ≤ bj of the system (2) separately, we also have the

property:

x1, x2 ∈ Si ⇔ x1, x2 ∈ Ω and

∀j

{

cjx1 ≤ dj ⇔ cjx2 ≤ dj ,

cjx1 > dj ⇒ cjx1 = cjx2,
(8)

which means that all the optimal solutions satisfy a same set

of inequalities and violate the others by a same amount, and

from which we can conclude that the set Si is convex.

Proof: Let’s consider an optimal solution x∗, w∗ to

the minimization problem (6)-(7). The Karush-Kuhn-Tucker

optimality conditions give that for every vector v not pointing

outside Ω from x∗,

w∗T Cv ≥ 0

and

w∗ = max {0, Cx∗ − d}. (9)

This last condition indicates that if an inequality in the

system (2) is satisfied, the corresponding element of w∗ is

zero, and when an inequality is violated, the corresponding

element of w∗ is equal to the value of the violation.

Let’s consider now two such optimal solutions, x∗
1, w∗

1

and x∗
2, w∗

2 . Since the set Ω is convex, the direction x∗
2−x∗

1

points towards its inside from x∗
1, so we have

w∗T
1 C(x∗

2 − x∗
1) ≥ 0

which is equivalent to

w∗T
1 (Cx∗

2 − d)− w∗T
1 (Cx∗

1 − d) ≥ 0.

The optimality condition (9) gives

w∗T
1 w∗

2 ≥ w∗T
1 (Cx∗

2 − d)

and

w∗T
1 w∗

1 = w∗T
1 (Cx∗

1 − d),

so we obtain

w∗T
1 w∗

2 − ‖w
∗
1‖

2 ≥ 0.

The same can be written from x∗
2,

w∗T
2 w∗

1 − ‖w
∗
2‖

2 ≥ 0,

so that we obtain

‖w∗
2 − w∗

1‖
2 = ‖w∗

2‖
2 + ‖w∗

1‖
2 − 2w∗T

2 w∗
1 ≤ 0,

but this squared norm can’t be negative, so it must be zero

and w∗
2 = w∗

1 , what concludes the proof. �

C. Mixed system of linear equalities and inequalities

We can observe that systems of linear equalities and

systems of linear inequalities are dealt with optimization

problems (3)-(4) and (6)-(7) which have similar lay-outs and

similar properties (5) and (8). The generalization of these

results to mixed systems of linear equalities and inequalities

is therefore trivial and we’ll consider in the following the

minimization problem (in a more compact form)

min
x∈Ω,w∈ℜm

1

2
‖Ax− b‖2 +

1

2
‖w‖2 (10)

with

Cx− w ≤ d. (11)

The set of solutions to this minimization problem shares both

properties (5) and (8).

III. PRIORITIZING LINEAR SYSTEMS

A. Formulation

Let’s consider now the problem of trying to satisfy a set of

systems of linear equalities and inequalities with a strict order

of priority between these systems. At each level of priority

k ∈ {1, . . . p}, both a system of linear equalities (1) and a

system of linear inequalities (2) are considered, with matrices

and vectors Ak, bk, Ck, dk indexed by their priority level

k. At each level of priority, we try to satisfy these systems

while strictly enforcing the solutions found for the levels of

higher priority. We propose to do so by solving at each level

of priority a minimization problem such as (10)-(11). With

levels of priority decreasing with k, that gives:

S0 = ℜn, (12)

Sk+1 = Arg min
x∈Sk,w∈ℜm

1

2
‖Akx− bk‖

2 +
1

2
‖w‖2 (13)

with Ckx− w ≤ dk. (14)



B. Properties

A first direct implication of properties (5) and (8) is that

throughout the process (12)-(14),

Sk+1 ⊆ Sk.

This means that the set of solutions found at a level of

priority k is always strictly enforced at lower levels of

priority, what is the main objective of all this prioritization

scheme.

A second direct implication of these properties (5) and (8)

is that if Sk is a non-empty convex polytope, Sk+1 is also

a non-empty convex polytope, the shape of which is given

in properties (5) and (8). Figure 3 illustrates how these sets

evolve in different cases. Classically, these convex polytopes

can always be represented by systems of linear equalities and

inequalities:

∀k, ∃Āk, b̄k, C̄k, d̄k such that x ∈ Sk ⇔

{

Ākx = b̄k

C̄kx ≤ d̄k

With this representation, the step (13)-(14) in the prioritiza-

tion process appears to be a simple Quadratic Program with

linear constraints that can be solved efficiently.

Note that when only systems of linear equalities are con-

sidered, with the additionnal final requirement of choosing

x∗ with a minimal norm, the prioritization process (12)-(14)

boils down to a reformulation of the well-known task-priority

problem [3].

C. Algorithm

The proposed Algorithm consists in processing the priority

levels from highest to lowest and solving at every level the

corresponding Quadratic Program. The representation of the

sets Sk by systems of linear equalities and inequalities is

efficiently updated then by direct application of the properties

(5) and (8).

It is naturally possible to optimize additional criteria

over the final set of solutions. For instance, one might be

interested in the solution with minimal norm, or in the

solution that maximizes the distance to the boundaries of

the optimal set, etc...

Note that a similar algorithm has already been described

in [11], but in the setting of Constraint Programming on

discrete variables: the structure and the logic are similar,

but the inner workings are very different, especially the

theoretical analysis of Section II.

IV. APPLICATION

We have applied the proposed algorithm to plan local

motions for the humanoid robot HRP-2 [12]. We show

in the following examples the ability of our algorithm to

treat any order of priority with both equality and inequality

tasks. The motions mentioned hereby may be viewed in the

accompanying video.

Algorithm 1 Solve prioritized linear systems

1: Initialize the system of equalities Ā0, b̄0 to empty.

2: Initialize the system of inequalities C̄0, d̄0 to empty.

3:

4: for k = 0 to p− 1 do

5:

6: Solve the Quadratic Program (13)-(14) to obtain Sk+1.

7:

8: Āk+1 ←

[

Āk

Ak

]

, b̄k+1 ←

[

b̄k

Akx∗
k

]

.

9:

10: C̄k+1 ← C̄k, d̄k+1 ← d̄k.

11:

12: for all c
j
k in Ck do

13: if c
j
kx∗

k ≤ d
j
k then

14:

15: C̄k+1 ←

[

C̄k+1

c
j
k

]

, d̄k+1 ←

[

d̄k+1

d
j
k

]

.

16:

17: else

18:

19: Āk+1 ←

[

Āk+1

c
j
k

]

, b̄k+1 ←

[

b̄k+1

c
j
kx∗

k

]

.

20:

21: end if

22: end for

23: end for

A. Example 1: inequality tasks at higher priority

In this example, we illustrate the utility of prioritizing

equality tasks after specification of inequality constraints.

The goal of the motion is to reach a ball underneath an

object (blue polyhedron in figure IV) while looking at it.

Here is the stack of tasks sorted in decreasing priority:

1) Stability + Collision avoidance

2) Reach for the ball

3) Look at the ball + minimal joint velocity

The stability task ensures the quasi-static stability of the mo-

tion by fixating the center of mass projection and the feet on

the ground. The collision avoidance task was built following

Kanehiro’s method[13] for smooth avoidance between non

strictly convex polyhedra. This task is used for both obstacle

avoidance and self-collision avoidance and it expresses as

a linear inequality system. For the reaching we specified

a three-dimensional position task on the center of the left

hand. The gaze task was defined as the alignment of the

principle axis of the head on the vector linking the center of

the head to the ball. We added a final task to minimize the

joint velocities, also called a damping task (see [14]).

In the resulting motion, the looking task could be main-

tained until the robot’s head came close to the border of

the table. When simultaneous looking and reaching became

infeasible, the specified priorities made the robot continue

the reaching while its gaze direction drifted off the target.

Task 2) was satisfied at the end of this motion (frame 4(d)).

We tried to achieve the same goal while making the

looking and the reaching tasks share the same priority. This
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Fig. 3. Optimal sets in different scenarii

time the robot was trapped in an intermediate configuration

of the previous motion (frame 4(c)) where the looking

task was maintained while the head over the table and the

reaching hand stuck away from the ball.

One other method, presented by Park et al [8] and applied

to move a robotic arm, should also permit to solve this sce-

nario. For the next example, there is no available resolution

method to our knowledge.

B. Example2: inequality tasks at lower priority

In this example we illustrate the ability of our algorithm to

account for inequality tasks at low priority. The goal of the

motion is to reach for a ball while avoiding, when possible, a

region around the ball (represented in figure 5(a) by a green

box). Here is the priority order for this motion:

1) Stability + auto-collision avoidance

2) Reach for the ball

3) Look at the ball

4) Avoid the green box + minimal joint velocity

The idea behind placing the tall box on the ball is to guide

the hand out of the vision field to avoid the occlusion of the

ball. In a more rigorous but less simple implementation of

this scenario, one would consider the vision cone linking the

robot’s head to the ball. For the illustration of the method,

however, the green box suffices.

For the box avoidance task, four points in the body of the

hand were checked for collision. The reaching task placed

at priority 2) is different from the first example as it is one-

dimensional only. This is done by allowing the hand to move

on the orthogonal plane to the vector separating it from the

target.

In the resulting motion, the hand was forced by task

4) to stay behind a face of the green box (frame 5(b))

until it became incompatible with task 2). Then, the hand

progressively entered the volume of the box (frame 5(c))

and achieved its goal (frame 5(d)). As we expected, the

inequality task 4) was maintained as long as possible and

ended unsatisfied to the benefit of equality task 2).

This motion was computed using an average processor

in about four times its actual duration. The performance of

the algorithm should be improved in the future with a more

optimized implementation.

V. CONCLUSION

We presented the novel problem of prioritizing both linear

equality and inequality systems and provided one algorithm

for its resolution. This algorithm can be summarized as

a sequence of optimal resolutions for each linear system

following their priority order. We proposed an optimality

criterion that is adapted to linear inequality systems and

characterized the resulting optimal sets at every priority level.

We successfully applied our method to plan local motions for

the humanoid robot HPR-2. One planning scenario presented

the originality of requiring inequality tasks be solved at

lower priority than equality tasks. Further applications of

our algorithm, such as to biped robots’ locomotion, are to

be considered in forthcoming works.
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