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Abstract— Climbing robots are especially susceptible to ther-
mal overload during normal operation, due to the need to op-
pose gravity and to frequently apply internal forces for clinging.
As an alternative to setting conservative limits on the motor
peak and average current, we investigate methods for measuring
motor temperatures, predicting motor thermal conditions and
generating thermally constrained behavior. A thermal model,
verified using empirical data, predicts the motor’s winding
temperature based on measured case temperature and input
current. We also present a control strategy that maximizes
robot velocity while satisfying a constraint on the maximum
permissible motor winding temperature.

I. INTRODUCTION

Climbing robots are hard on motors. In comparison to

robots that walk or run over the ground, climbing robots have

higher average power requirements due to the need to propel

the body vertically in opposition to gravity. In addition, they

typically apply significant internal forces between opposing

limbs to maintain a grip on the climbing surface and prevent

slippage. At the same time, the motors used in these robots

should be as light as possible, to help reduce the total weight.

These requirements conspire to make motor failure an ever-

present danger when robots attempt to climb rapidly.

To combat this danger, a partial solution is to use parallel

kinematic chains for the legs and/or power transmission

systems with differentials, so that more than one motor can

contribute to the required torque for each degree of freedom

[1]. Even so, the motors are in danger of being overloaded

at increased speed or when a strong grip force is required,

for example, to scale a tree or a telephone pole.

The primary failure mode of motor overload is overheating

of the windings. Commonly, maximum values are set for

the short term and continuous torque to avoid damaging

the motor. The alternative approach taken in this paper is

to construct an empirically validated thermal model of the

motors and to use this model in a control scheme that seeks

to maximize the vertical speed while keeping the motor

windings below the maximum permissible temperature.

Using a commercial low-inertia DC servo motor with a

basket-wound rotor (commonly used in robots and haptic

interfaces), we describe the motor thermal model and present

empirical calibration data. We then consider how to specify

the desired torque profile and gait with such motors in

the context of a climbing robot. The robot chosen for this

work is a variant of the RiSE robot [1] shown in Fig. 1,

which has been configured with four legs instead of the

Fig. 1. Four-legged variant of the RiSE robot climbing a tree. The front
legs are in swing while the rear legs are in two-legged stance.

usual six. Each leg has two degrees of freedom, driven by

a pair of motors through a differential. Passive compliance

and damping in each leg help to distribute the forces when

the legs are gripping. In comparison to the conventional

approach of specifying a limiting peak and average torque,

the explicit thermal control scheme permits faster climbing

without damaging the motors.

II. TEMPERATURE MEASUREMENT AND

PREDICTION

For a basket-wound coreless DC motor, the most likely

thermal failure point is the thin wire used for the rotor

windings [2]. Thus, in order to drive the motor to its thermal

limits, a measurement or accurate estimate of the winding

temperature is required. This section presents a thermal

model that can estimate the winding temperature in short-

and long-term operation as well as the measurement method

used to verify the model.

A. Thermal Model of the Motor

We predict the winding temperature using a simple lumped

parameter thermal model, shown in Fig. 2, a method often
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Fig. 2. Left: quartered cross-section of a coreless basket-wound motor.
(Not to scale) Right: Block diagram for lumped parameter thermal model
of motor. (Definitions of symbols are given in the text.)

used for electric motors [3][4][5][6]. For basket-wound mo-

tors, we model the outer case, the motor windings and the

inner magnetic stator. The model is given by the system of

equations:

Cw

dTw(t)

dt
=

Tc(t) − Tw(t)

Rwc

+
Tm(t) − Tw(t)

Rwm

+ h(t) (1)

Cm

dTm(t)

dt
=

Tw(t) − Tm(t)

Rwm

(2)

where t is time, and Tw(t), Tc(t) and Tm(t) are the tem-

peratures of the motor winding, the outer casing and the

magnetic stator respectively. The unknown parameters in this

model are the winding’s heat capacity (Cw), the magnetic

stator’s heat capacity (Cm), the thermal resistance between

the windings and the outer casing (Rwc) and the thermal

resistance between the windings and the magnetic stator

(Rwm).

The Joule heating of the motor windings is given by h(t)
which is expressed as

h(t) = I(t)2R (1 + α(Tw(t) − T0)) (3)

where I(t) is the current passed through the motor coil

and R is the resistance of the motor coil at T0 = 25◦C.

α represents the temperature coefficient of resistance, which

for copper is 6.8× 10−4 [7]. Basket-wound coreless motors

do not generate heat via iron losses [2].

Heat dissipation from the motor housing can be difficult to

model because it involves determining the convective transfer

to the ambient air and conductive transfer through the motor

mounts, both of which are dependent on environmental

temperatures [8] and motor mounting. Rather than attempting

to predict the outer case temperature (Tc(t)), we measure it

directly with a surface thermistor.

B. Temperature Sensors

To verify and calibrate our thermal model we conducted

tests on a 110182 Maxon A-Max motor (7 watt rating, 26

mm case diameter, 117 gram mass) [9]. This motor has a

low winding resistance of 0.54 ohms. A non-contact sensor

is required for direct measurement of the motor windings

to prevent any physical interference during motor operation.

The experimental setup is depicted in Fig. 3. Measuring

temperature via changes in rotor resistance has been used for

thermal monitoring in AC motors [10], but cannot be used
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Fig. 3. Diagram of experiemental setup showing motor, sensors and applied
load.

for a small brushed motor in situ because of the varying

resistance due to commutation.

For the non-contact sensor, we cut a small opening in

the outer casing of the motor and mounted a Smartec

SMTIR9902 infrared sensor in an insulating mount very

close to the surface of the rotor. Wood was chosen to provide

thermal insulation from the motor casing. Since thermopile

infrared sensors measure a temperature differential between

the sensor and the target surface, the infrared sensor has

an integrated thermistor used to determine the base sensor

temperature [11]. Further, because the emissivity of the

copper windings is low (approximately 0.2), a thin layer of

black paint, with an emissivity around 0.98, is applied to the

motor windings which increases the signal to noise ratio of

the infrared readings.

The infrared sensor was calibrated using a bare motor rotor

that had been removed from its casing and disconnected from

the commutator. The resistance of the copper is linearly-

dependent on temperature over the motor’s operating range

and can be used as a ground truth for calibration. The

resistance was measured using a Kelvin four-wire method

[11] with a sensing current of 3 amperes. The high-current

sensing signal increases the signal-to-noise ratio at the ex-

pense of inducing internal heating. To mitigate this effect, the

resistance is only measured every 100 milliseconds using a

single 1ms burst of current. The calibration of the sensor was

found to be accurate to within ±0.3◦C due to discretization

and within ±1.5◦C due to daily sensor drift.

In order to measure the temperature of the motor casing,

we employed an Omega Engineering SA1-TH series 2.2K

ohm surface-mount thermistor, which adheres directly to the

motor casing for good thermal conductivity and fast re-

sponse. We linearized the output of the sensor by connecting

it in series with a 400 ohm resistor [12] whose value was

determined empirically.

C. Experimental validation of thermal model

The winding’s heat capacity can be determined by mea-

suring the rate of change of winding temperature during the

initial heating of the motor. If the entire motor is initially at

thermal equilibrium at t = 0, then (1) reduces to

Cw = lim
t→0

h(t)

dTw(t)/dt
(4)
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Fig. 4. Typical thermal step response at 3.9A
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Fig. 5. Simulated and actual motor temperatures for a 24 s period square-
wave at 0-3.8 A. ”‘Predicted Coil Temp”’ is omitted on the left for clarity,
as it is indistinguishable from the actual temperature. Plot at right is a
magnified view of the boxed area on the left.

The thermal resistance between the windings and the

outer case can be determined by examining the temperature

difference during constant heating once the system reaches

thermal steady-state:

Rwc = lim
t→∞

Tw(t) − Tc(t)

h(t)
(5)

As shown in Fig. 4, the windings have a time constant of

12 seconds given by the 63% rise time of Tw(t) − Tc(t),
which is relatively slow when compared to the period of

climbing gaits, but fast when compared with the outer

casing thermal time constant. The thermal parameters of the

magnetic stator must be inferred since we are not directly

measuring its temperature.

D. Determination of Remaining Thermal Parameters

Using a simulation of the thermal model, we fit the thermal

parameters to empirical data through a random searching of

the parameter space. To train the thermal model, the motor is

mechanically constrained and excited using a 0–3.8 ampere

square-wave current with a period of 24 seconds. (If a single

current step is delivered, parameter estimation will favor the

slow magnetic rotor response, sacrificing the fit of the fast

winding response.) A typical fit to training data is shown

TABLE I

THERMAL PARAMETERS

Winding-Case Thermal Resistance 1.1 K/W

windings Heat Capacity 13 J/K

Winding-Magnet Thermal Resistance 2.9 K/W

Magnet Heat Capacity 68 J/K
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Fig. 6. Left: 1.3W motor heating from a constant 1.54A current. Right:
1.3W motor heating from a 50% duty-cycle 1.00-1.95A square-wave current.

in Fig. 5 and the results of the parameter fit are provided in

Table I. When these parameters are compared against several

other test datasets, we find the RMS of the error between

winding temperature and predicted winding temperature is

1.75◦C, which is comparable to the drift error of the sensors.

E. Heat Transfer under Static vs. Dynamic Conditions

In order to apply the simple thermal model to a robotic

system with complex motor trajectories, the model cannot be

dependent upon rotor speed. The motor has a 0.5 mm air gap

between the windings and the outer case, which is considered

small enough to make convective transfer negligible under

stationary conditions [13]. Under non-stationary conditions,

the motor will be spinning up to 20 rad/s; thus, for a 10 mm

radius, the mean air speed in the gap will reach upwards

of 0.1 m/s. For an air kinematic viscosity of air at 80◦C at

2.12 m2/s, the Reynolds number for a 0.5 mm gap is around

2.3, which is well below turbulent flow, preventing forced

convective heat transfer.

We empirically verified these claims by comparing two

scenarios shown in Fig. 6: static heating where the rotor is

fixed and dynamic heating where the motor is free to spin.

For the dynamic case, we loaded the motor by attaching a

200 gram weight via a 6 mm diameter pulley directly to

the motor shaft. We applied a 50%-duty-cycle square-wave

current source to the motor, with the high current at 1.95 A

and the low current at 1.00 A. Applying (3) and averaging,

this square wave produces a mean heating power of 1.3 W.

For the static case, we use (3) to calculate that a constant

1.54 A current will produce equal thermal power.

The heating curves from Fig. 6 show that the static and

dynamic cases are nearly identical. The difference between

the two sets is ±1◦C, which is well within the noise of

the sensors. The increased noise of the dynamic test is

attributed to the increased electrical noise produced by brush

commutation.

III. CLIMBING BEHAVIOR UNDER THERMAL

CONSTRAINTS

We base our climbing strategies on a version of the multi-

purpose climbing and walking RiSE robot configured as a

quadruped. Each leg is powered by two RE16 Maxon Motors

[14] through a differential gearing system [1]. In this paper

we concentrate on strategies for pole and tree climbing. As

shown in Fig. 7, each leg is capable of producing a vertical
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Fig. 7. Schematic of the RiSE robot showing vertical and clamping forces
on the legs.

force fiy to locomote upward and a lateral force fix used to

grip the pole. Based on experience with the robot, we choose

a simple, fast and stable bounding gait [15] by specifying

that f1y = f3y and f2y = f4y and setting the front and back

pair of legs 180◦ out of phase. The gait stride length is set

to the robot’s kinematic maximum to reduce the number of

attachment and detachment events, each of which carries an

energy cost.

The resulting bound gait is implemented by a state ma-

chine with the following sequence:

1) A four-legged stance in which the robot holds the tree

and pulls itself upward with all four legs.

2) The front pair of legs detach and enter swing while the

rear pair remains in two-legged stance.

3) The front pair rapidly swings to a forward position

while the rear legs continue to propel the robot upward

while the robot’s tail provides counterbalance.

4) The front pair reattaches to the tree, both pairs entering

four-legged stance and the cycle repeats with reversed

roles for the upper and lower pairs of legs.

Note that the amount of time spent in two- versus four-legged

stance is controllable.

During the detachment, swing and attachment sequence,

the robot employs a bang-bang controller constrained by

maximum voltage for time-optimal control [16]. During

stance phases, the robot’s upward velocity is regulated using

a PI control law while internal grip forces are maintained

using a feedforward voltage command, which maintains an

approximately constant normal force during the stance phase

for each pair of legs. For the purposes of cataloging data,

we consider three different phases: four-legged stance, two-

legged stance and swing (which includes detachment and

attachment).

A. Thermal Minimization

The torque produced by each DC motor is proportional to

the current passed through its windings. [2]

Mi(t) = KτIi(t) − Tfrict (6)

where Mi(t) is the torque produced by the motor, Kτ is

the motor torque constant, Tfrict represents friction and i
indexes the various motors. Since (3) is quadratic, while
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Fig. 8. Left: Normalized distribution of force f/fmax Right: Normalized
winding heating. P/Pmax A: Heating during front two-legged stance. B:
Optimal heating during four-legged stance. C: Heating during rear two-
legged stance.

(6) is linear, there is a thermally optimal distribution of

forces between the legs. For the present case, if we assume

a constant scaling between motor torque Mi(t) and vertical

force fyj and apply the constraint f1y + f2y = mg
2

(where

m is the robot mass and g is gravational acceleration) and

plot the force and thermal heating distribution as we transfer

weight between the two pairs of legs as shown in Fig. 8,

we found that the total thermal losses are minimized when

the forces are evenly distributed between the front and back

feet at point B. Thus, it is desirable for all four legs to be in

contact with the climbing surface as long as possible such

that the weight can be distributed among as many legs as

possible. Points A and C are unavoidable during swing phase,

but the duration of the phase is minimized by the bang-bang

controller.

Although they are not considered here, different gaits or

robot platforms may prevent a thermally ideal force distri-

bution. For example, for robots climbing with directional

adhesion [17], it is desirable to bear most of the vertical

load on the front feet to maximize adhesion. However, for

thermal reasons, it is advantageous to distribute the loading

force evenly among the legs. We note also that maximizing

the swing phase velocity will always increase the average

number of legs in contact independent of the desired gait.

B. RiSE Specific Considerations

The RiSE robot has a differential transmission on each leg

that couples two motors, designated as motor “A” and motor

“B”, using the following transformation:

MiA =
1

2
(nxfix + nyfiy)

MiB =
1

2
(nxfix − nyfiy) (7)

where nx and ny are the respective transmission ratios for

the vertical and lateral degrees of freedom. The practical

ramification of (7) is that the absolute value of MiA will

always be greater than MiB during the more significant

stance phases since both fix and fiy are positive; therefore,

we only need to monitor the temperature of the motor “A”

on each leg for possible thermal overload.
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Fig. 10. Gait period as a function of robot velocity. Each slice indicates
the division of the gait period between the various phases.

C. Winding Heating as a Function of Velocity

While we expect the thermal power to increase monoton-

ically as a function of robot velocity, we cannot easily con-

struct a theoretical model that accounts for the variations of

friction with velocity, loading, etc. Therefore, we determine

the winding heating dependence on velocity empirically.

We collected data at five different velocities, using several

climbing trials at each velocity. Above the fastest presented

velocity, the robot had difficulty producing enough lateral

force to prevent slipping without increasing the voltage

supply. Below the slowest presented velocities, the legs

begin to experience intermittent stiction indicating that a

bound gait is not suitable for slow climbing. Thermal power

is estimated by measuring the current in the “A” motors

and applying (3). Because of the relatively long thermal

time constant of the motors, listed as 10.5 seconds [14],

variations on the time scale of the gait period will not affect

the winding temperature. Fig. 9 shows the average thermal

power dissipated during each phase. Note that the error bars

represent variability of the average between cycles and not

the variation of power within a single cycle.

Since our swing phase velocity is maximized independent

of commanded robot velocity, we expect the duration of

the swing phase and subsequently the two-legged stance

to be a fixed minimum as verified in Fig. 10. As robot

velocity increases, the relative contributions of these two
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Fig. 11. Average thermal dissipation of a single “A” motor as a function
of robot velocity. The data is determined by multipling the values in Fig.
9 by the percentage of time spent in each phase. Each slice indicates the
contribution of each phase to total motor thermal power.

phases increase. By combining the value obtained in Fig.

9 with the percentage of time spent in each phase, derived

from Fig. 10, we can calculate the average thermal power

dissipated by the robot as shown in Fig. 11.

D. Thermal Regulation

If the robot continually drives at the maximum velocity

permitted by thermal constraint, then the winding temper-

ature will be held constant at its allowable maximum. By

measuring the motor case temperature and applying (1) we

can estimate the amount of heat dissipated by the motor

which, in turn, is the maximum permissible thermal power.

Due to the thermal mass of the windings, only the average

thermal power must match the thermal dissipation as given

by

1

∆t

∫ t0+∆t

t0

h(t) dt ≤
Tmax − Tc(t)

Rwc

(8)

where t is the current time, ∆t is the thermal time constant,

tg is the gait period and Tmax is the maximum permissible

winding temperature minus a safety factor to allow for errors

in the sensors and control. Notice that this statement is

equivalent to placing an upper bound on the RMS of the

motor torque. Equation (8) does not account for the heat

capacity of the windings or the magnetic rotor, so a more

sophisticated controller would employ an estimator using (1)

and (2) in order to get additional speed during the initial

heating of these components.

Because the thermal power greatly varies within the gait

cycle, attempting to exert control at bandwidths higher than

the gait frequency is counter-productive. Thus, at each foot-

fall, the maximum desired velocity is calculated using (8) to

find the maximum allowable thermal power for the upcoming

gait period. In turn, the maximum velocity can be calculated

from the inverse of the data presented in Fig. 11. Because

the climbing is performed in an unstructured environment,

the actual thermal power generated for any given stride is

random. In the event of a power spike, the time constant
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Fig. 12. The allowable time spent at each level of power dissipation. This
data was recorded at 17◦-20◦C using “A” motors mounted on RiSE.

of the windings is long enough that the robot has ample

opportunity to reduce speed and dissipate the extra heat.

E. Climbing Duration

As noted in II-E, the motor thermal properties are indepen-

dent of whether is spinning or stationary. Therefore, tests on

a stationary motor exerting torque will yield an estimate of

the maximum climbing time subject to thermal constraints.

By applying a constant current to provide the power specified

by (3), the outer case heats until the constaint given by

(8) is violated. These tests essentially indicate the effects

of ambient temperature and heat conduction into the robot

chassis.

At 17◦–20◦C ambient temperature, the robot is able to

dissipate around 3–3.25 watts indefinitely; however, our

slowest presented speed is 3.3 cm/sec which produces 4

watts of heat. As shown in Fig. 12, this speed allows for

approximately 8–12 minutes of climbing. At the maximum

tested speed in Figs. 9-11, the robot produces 6.4 watts and

could climb for around 2 minutes before having to reduce

speed.

IV. CONCLUSIONS

We have described an approach to regulating the temper-

ature of direct current motors for a vertically climbing robot

based on predictions from a thermal model. To empirically

validate the simple lumped-parameter thermal model, we first

conducted experiments on an isolated motor using a non-

contact infrared temperature measurement of the windings

and a surface-mount thermistor on the motor case. We

established that by measuring the input current and motor

case temperature, winding temperature can be estimated

independent of changing ambient conditions.

We then explored the effects of a symmetric bounding

climbing gait on the thermal capacity of the motor. Heat

dissipation is reduced when forces are distributed among

several actuators, suggesting that the duration of the non-

contact swing phases should be minimized. However, since

the swing phase has a minimum duration constrained by

system friction and available supply voltage, increasing robot

velocity has the effect of decreasing the average number of

legs in contact and thus increases motor heating.

Initially, the maximum velocity is thermally unconstrained

as the motor windings are not at their maximum permissible

temperature. Once the temperature limit is reached (after a

few minutes in the case of the RiSE robot) climbing velocity

is restricted such that the heat dissipated by the windings

equals the mean heat generated. Thus, our method allows a

robot to use the initially available thermal capacity for faster

climbing.
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