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Abstract—As virtualization technology becomes ever more
capable, large-scale distributed applications are increasingly de-
ployed in virtualized environments such as data centers and
computational clouds. Many large-scale applications have soft
real-time requirements and benefit from low and predictable
latency, even in the presence of diverse traffic patterns between
virtualized hosts. In this paper, we examine the policies and
mechanisms affecting communication latency between virtual
machines based on the Xen platform, and identify limitations that
could result in long or unpredictable network traffic latencies.
To address these limitations, we propose VATC, a Virtualization-
Aware Traffic Control framework for prioritizing network traffic
in virtualized hosts. Results of our experiments show how and
why VATC can improve predictability and reduce delay for
latency sensitive applications, while introducing limited overhead.

I. INTRODUCTION

As computer hardware has increased in power, so has the
use of virtualization technology in data centers and clouds.
This two-prong progress has fostered the development of large-
scale distributed real-time systems. In a virtualized environ-
ment, applications/services are deployed in Virtual Machines
(VMs), so that the network I/O performance of the virtualized
hosts becomes a critical component of meeting the communi-
cation requirements of distributed real-time applications. Ex-
amples of such applications include shipboard computing [1],
where distributed mission-critical and safety-critical tasks are
deployed in multiple servers, and are subject to end-to-end
deadlines. Similarly, end-to-end latency constraints are also
present in enterprise data centers and industrial automation
systems that are increasingly deployed in virtualized environ-
ments. The main challenge in such settings is that VMs running
latency-sensitive (soft real-time) applications are likely to be
deployed in the same host as VMs that run bandwidth-intensive
(bulk) applications. VMs in the same physical host share CPU
and network I/O resources. While CPU sharing mechanisms
are reasonably well understood, network I/O resources involve
a complex range of interactions that are harder to predict
and control. This makes meeting latency requirements for
distributed real-time applications in the presence of competing
non-real-time applications challenging.

In non-virtualized hosts running standard Linux, a queueing
discipline (QDisc) layer implements traffic control function-
ality, including traffic classification, prioritization and rate
shaping. Several different queueing disciplines are provided in
the Linux kernel. In particular, disciplines such as Prio [2] and
FQ CoDel [3] prioritize network traffic and can, therefore, ef-
fectively protect latency-sensitive applications from contention

with non real-time traffic. These queueing disciplines are also
used in virtualized hosts based on Xen [4], a widely-used
open-source virtualization platform. From now on, following
Xen’s terminology, we use the term domain in place of VM.
Xen employs a manager domain called domain 0 (dom0) to
manage the other domains (guest domains). Dom0 is also
responsible for processing I/O operations (including network
traffic) on behalf of the guest domains. By default dom0
runs a Linux kernel. Virtualization, however, may introduce
priority inversions in some network components and between
the transmission (TX) and reception (RX) routines. Those
limitations are unaccounted for by the standard Linux queueing
disciplines, and therefore have the potential to make queueing
delays unpredictable for latency-sensitive traffic in Xen.

This paper proposes virtualization-aware traffic control
for network traffic in virtualized hosts, and implements the
proposed approach in Xen. Specifically, the paper makes the
following contributions: (1) it evaluates latency performance in
Xen in the presence of diverse traffic patterns, and identifies
the impact of different components in the network path of
Xen; (2) it evaluates standard Linux traffic control policies in
Xen, and highlights limitations that arise from Xen’s network
architecture; and (3) it introduces VATC, a Virtualization-
Aware Traffic Control scheme in which the network streams
in Xen are prioritized with a one-thread-per-priority commu-
nication architecture, thereby offering greater latency control
and predictability for latency-sensitive applications.

II. MOTIVATIONS

As mentioned earlier, Xen uses a Linux-based manager
domain (dom0) to handle network traffic from and to guest
domains. Xen’s network stack is thus similar to that of the
standard Linux distribution, but with additional virtualization-
related components. Understanding to what extent virtualized
platforms can offer latency guarantees, therefore, calls for
exploring how Linux policies and mechanisms, including
queueing disciplines, the sharing of transmission and reception
queues, and the frequency with which interrupts (notifications)
are generated and serviced, interact in a virtualized environ-
ment. A first contribution of this paper is, therefore, to offer a
careful study of such interactions and how they affect latency
under different traffic configurations.

In this section, we first review standard Linux packet trans-
mission and reception routines, which have been stable since
version 2.6. In contrast, the architecture of the virtualization-
related components of Xen has seen much change across ver-
sions of Linux. Hence, we select two representative versions,



Linux 3.10 and Linux 3.18 (the current version), identify
limitations in both versions, and explore their implications for
latency guarantees. As was mentioned before, addressing those
issues is the main motivation behind the design of VATC.

A. Network Stack in Standard Linux

Fig. 1: Transmission/Reception in Standard Linux

Transmission:
T1: packets are transferred from app to TX driver queue
Reception:
R1: interrupt handler inserts netdev into the poll list and
R2: raises NET RX SOFTIRQ
R3: NET RX SOFTIRQ handler cleans up TX driver queue and
R4: delivers packets from RX driver queue to app

1) Transmission Routine in Standard Linux: Figure 1
shows network transmission and reception routines in stan-
dard Linux. In standard Linux, packets from applications are
processed by the network stack in the Linux kernel. Because
the virtualization-extensions of Linux only change the link
layer, we omit session, transport and network layers in the
figure. Packets are enqueued into the appropriate queueing
discipline (QDisc) queue(s) in the link layer, which is where
Linux implements traffic control. The TX driver queue, also
known as the ring buffer, is a FIFO queue that works closely
with the NIC.

Queueing Discipline: The QDisc layer implements traffic
classification, prioritization and rate shaping. QDisc settings
can be configured through the TC command. By default, Linux
uses pfifo fast as the queueing discipline for traffic control.

Depending on the QDisc configuration, Linux can prioritize
packets and reduce queueing delay for latency-sensitive appli-
cations. Prio [2] is a queueing discipline that has one queue
per priority. It works in cooperation with packet filters, which
distribute packets from different flows (applications) into dif-
ferent queues. When the dequeue function of Prio is called,
the order in which packets are dequeued from queues goes
from high-priority to low-priority. Hence, assigning latency-
sensitive applications to the highest priority queue can ensure
shorter queueing delays. FQ Codel [3] [5] is another queueing
discipline that works to reduce queueing delay. FQ Codel has
one queue per flow, with a quantum for each queue. Once the
quantum is reached, the corresponding queue is classified as a
negative deficit queue, which has low-priority. This policy thus
offers short queueing delays to latency-sensitive applications
with low throughput.

TX driver queue: Packets remain pending in the TX driver
queue until the next DMA transfer to the NIC. Congestion in

the TX driver queue can, therefore, have a critical influence on
packet transmission delays. Congestion arises when too many
large packets are forwarded to the NIC and the hardware is
not capable of processing them fast enough.

There is typically a limit to the size of TX driver queue,
which controls the number of pending packets. However, this
control is insufficient to prevent congestion when the bulk
of the NIC traffic consists of large packets. This limitation
has been addressed in recent Linux kernels (after 3.3), by the
introduction of a Byte Queue Limit (BQL) [6] policy, which
limits the number of bytes in the TX driver queue of the NIC.
In cooperation with the QDisc layer, BQL can greatly reduce
the queueing delay in the TX driver queue, even in the presence
of large packets. With BQL, the size of the TX driver queue is
limited dynamically, based on the traffic mode and throughput.
Once the queue size hits the limit, the QDisc layer holds or
drops subsequent packets.

In most NIC drivers, when packets are successfully sent by
the NIC, a TX completion interrupt is triggered. The interrupt
handler puts a netdev (a software data structure representing
the NIC driver) device into the poll list, which is a per CPU
data structure in Linux. At the end of the interrupt handler,
a software interrupt, called NET RX SOFTIRQ, is raised,
whose handler services the poll list. The NET RX SOFTIRQ
handler processes the network devices in the poll list in a
round-robin order, with a quantum of 64 packets. When the
netdev device is fetched, the NET RX SOFTIRQ handler
invokes the NAPI poll() method of the NIC driver. Depending
on the NIC driver, the NAPI poll() method may perform
different actions. In the NIC driver used in our experiments, the
NAPI poll() method cleans up the TX driver queue and receives
packets from RX driver queue. Other NICs have separate TX
and RX interrupts.

The TX completion interrupt handler cleans up the
TX driver queue, while the RX interrupt handler raises
NET RX SOFTIRQ. The NAPI poll() method of these NIC
drivers only does packet reception. Once the queue size is
under the BQL limit, the interrupt handler notifies the QDisc
layer to resume releasing packets to the TX driver queue.
The interval between TX completion interrupts (the interrupt
throttle rate) can be configured. In clusters and data centers,
where low-latency communication is vital [7], users tend to
configure a small interval. However, too frequent interrupts can
generate heavy CPU workloads and adversely impact progress
of the packet transmission and reception routines. Conversely,
if the interrupt interval is too large, the TX driver queue may
become congested because it is not refreshed often enough.
In this case, packets remain pending in the QDisc layer and
can experience long queueing delays there. Several NIC driver
vendors offer dynamic interrupt throttle rates, which adjust the
interval value on the fly based on whether the traffic is low-
latency or bulk. Our evaluation in Section IV examines the
effect of different configurations of these settings.

2) Reception Routine in Standard Linux: Figure 1 also
shows network reception in standard Linux, in which packet
arrivals trigger hardware interrupts, and the interrupt handler
then puts the netdev (the same network device mentioned
above) into the poll list and raises NET RX SOFTIRQ. When
the NET RX SOFTIRQ handler fetches the netdev and in-
vokes the corresponding NAPI poll() method, packets are



delivered from the RX driver queue to the upper layer. The
NET RX SOFTIRQ handler function ends when either no
device in the poll list has packets pending, or it has serviced
over 300 packets or has run for > 2 jiffies.

B. Network Stack Modifications in Xen

Recall that Xen relies on a manager domain, dom0
(domain 0), to handle inter-domain and network traffic. A
Linux system is installed in dom0. Because the virtualization-
extensions of Xen have been merged into the mainline of the
Linux kernel (since version 3.0), the network stack in dom0
is similar to that of standard Linux. The core network stack
in dom0 has been stable, but the virtualization-related com-
ponents have significantly evolved across versions of Linux.
Figures 2 and 3 show the Xen transmission and reception
routines in two representative versions, dom0-3.10 (dom0 built
on Linux 3.10) and dom0-3.18 (dom0 built on Linux 3.18),
respectively.

Fig. 2: Transmission/Reception in Dom0-3.10

Transmission:
T1: notification handler triggers xen netbk kthread
T2: xen netbk kthread delivers packets from netif(s) to backlog device
T3: xen netbk kthread raises NET RX SOFTIRQ
T4: NET RX SOFTIRQ handler delivers packets from backlog to TX driver queue
Reception:
R1: interrupt handler inserts netdev into the poll list and
R2: raises NET RX SOFTIRQ
R3: NET RX SOFTIRQ handler cleans up TX driver queue and
R4: delivers packets from RX driver queue to rx queue and triggers
xen netbk kthread
R5: xen netbk kthread delivers packets from rx queue to guest domain(s)

1) Network Stack in Dom0-3.10: In dom0-3.10, there are
two virtualization-related components: the netif and netback
devices. Each guest domain has a corresponding netif device in
dom0. Traffic transmission/reception between the guest domain
and its netif device is realized by a memory copy or remap
based on the buffer between them. All netif devices are then
included in the netback device, which works as a gateway.
A kernel thread, named xen netbk kthread, services all tasks
related to the netback device.

Transmission Routine in Dom0-3.10: When a guest domain
puts packets into the buffer connected to its corresponding
netif device, it also sends an event notification to dom0. In
dom0, the notification handler triggers the xen netbk kthread

to receive packets. Once the xen netbk kthread is scheduled,
packets pending in the buffer between netif devices and guest
domains are first enqueued into the tx queue of the netback
device in a round-robin order. When the enqueue task finishes,
the xen netbk kthread dequeues the packets from the netback
tx queue in FIFO order. The dequeued packets are forwarded
to the backlog device. When the packets arrive at the backlog
device, the xen netbk kthread inserts the backlog device into
the poll list, and raises a NET RX SOFTIRQ. When the
NET RX SOFTIRQ handler is scheduled and the backlog
device is fetched, packets go through the same routine as in
standard Linux. A setting specific to dom0-3.10 is that each
time the xen netbk kthread raises a NET RX SOFTIRQ, it
then immediately executes the softirq processing function. This
ensures that in most cases only a few packets are ever pending
in the backlog device. For compatibility, no modifications are
made to the traffic control policies (queueing disciplines).

Reception Routine in Dom0-3.10: When a packet arrives, a
hardware interrupt is triggered, whose handler inserts the net-
dev device into the poll list and raises a NET RX SOFTIRQ.
Next, in the context of its handler1, packets pending in the RX
driver queue of the NIC are forwarded to the rx queue of the
netback device. When packets are enqueued, the handler also
triggers the xen netbk kthread. When the xen netbk kthread
is scheduled, packets in the rx queue are distributed to desti-
nation domains through the netif devices.

A special feature of the netback device is that the en-
queue/dequeue operations of the tx queue and the dequeue
operation of the rx queue of the netback device are done
in the context of the xen netbk kthread. The length limit
of both the tx queue and the rx queue is 256 by default.
The xen netbk kthread runs a loop that first deals with the
rx queue. Only when all the packets pending in the rx queue
are delivered, does the xen netbk kthread perform the en-
queue/dequeue operations of the tx queue.

2) Network Stack in dom0-3.18: In dom0-3.18, the netif
and netback devices are replaced by a new network backend
device, named vif (virtual interface). Each vif device shares
a buffer with its corresponding guest domain. The main
difference between the netif and vif devices, is that the vif
device does not need to coordinate with the netback device
for transmission. Furthermore, it also has a separate rx queue
and a dedicated kernel thread (rx kthread) for reception.

Transmission Routine in Dom0-3.18: When a guest domain
has a packet to transmit it first notifies dom0. The notification
handler then inserts the corresponding vif device into the
poll list, and raises a NET RX SOFTIRQ. When the handler
is scheduled, it processes all the devices in the poll list in the
same way as in standard Linux. After the NET RX SOFTIRQ
handler function ends, other pending softirqs are processed.
If a notification handler raises the NET RX SOFTIRQ be-
fore that processing finishes, the NET RX SOFTIRQ handler
function is invoked again after other pending softirqs have
been processed. In situations where the NET RX SOFTIRQ is
frequently raised, it is therefore possible for softirq processing
to run continuously for an extended period of time.

1when dom0 is busy with transmission, NET RX SOFTIRQ handler func-
tion is executed by xen netbk kthread.



Fig. 3: Transmission/Reception in Dom0-3.18

Transmission:
T1: notification handler inserts vif into the poll list and
T2: raises NET RX SOFTIRQ
T3: NET RX SOFTIRQ handler delivers packets from vif(s) to TX driver queue
Reception:
R1: interrupt handler inserts netdev into the poll list and
R2: raises NET RX SOFTIRQ
R3: NET RX SOFTIRQ handler cleans up TX driver queue and
R4: delivers packets from RX driver queue to vif(s), and triggers
rx kthread(s)
R5: rx kthread(s) delivers packets from rx queue(s) to guest domain(s)

Reception Routine in Dom0-3.18: When a packet arrives, the
hardware interrupt handler inserts the netdev device into the
poll list and raises a NET RX SOFTIRQ. The handler then
delivers packets from the RX driver queue to the rx queue
of the destination vif device. This is in contrast to delivering
them to the rx queue shared by all netif devices in dom0-3.10.
Each vif device has a corresponding reception kernel thread
(rx kthread). When packets are inserted into an rx queue, the
corresponding rx kthread is also triggered. Packets are then
forwarded from the rx queue to the guest domain when that
rx kthread is scheduled. This must wait, however, until after
the softirq processing finishes, which can cause delays, as was
discussed earlier.

C. Traffic Control Limitations in Xen

We now summarize limitations of Xen traffic control
mechanisms, some of them common to both dom0-3.10 and
dom0-3.18 and others specific to one version. Those limita-
tions, when combined with contention for resources such as
network bandwidth or CPU, can produce unexpected delays. In
Section IV, we investigate a number of scenarios under which
resource contention is present, and where those limitations may
affect latency-sensitive applications.

Limitation 1: Priority Inversion between Transmissions
In dom0-3.10, because the netback tx queue is a simple

FIFO queue shared by all guest domains, packets from latency-
sensitive domains can be delayed easily by a large number
of packets from bandwidth-intensive domains. Meanwhile, the
waiting time in the netif device also increases because the
enqueue operation of the netback tx queue is only invoked
after delivering all the packets in it (worst case is 256).

In dom0-3.18, when both latency-sensitive domains and
other interfering domains are transmitting packets, their vif

devices are all inserted into the poll list and serviced in
a round-robin order. A vif device holding latency-sensitive
packets can, therefore, be delayed by other vif devices. As a
result, priority inversion between domains still exists in dom0-
3.18. Note that the default quantum for each network device in
the poll list is 64 (packets). Reducing the quantum can resolve
this priority inversion. However, as we shall see next, there is
another limitation that this approach cannot resolve.

Limitation 2: Priority Inversion between Transmission and
Reception

In dom0-3.10, the xen netbk kthread invokes transmission
and reception functions in a round-robin order. Hence, even if
priorities are enforced in the tx queue and rx queue, respec-
tively, priority inversion can still arise between the two. For
example, while a latency-sensitive domain is receiving packets
from another physical host, bandwidth-intensive domains may
at the same time be transmitting packets. It is therefore possible
that when packets destined for the latency-sensitive domain
are put into the rx queue by the NET RX SOFTIRQ handler,
the xen netbk kthread is busy processing the tx queue. As a
result, latency-sensitive packets are dequeued only after all the
packets in the tx queue (up to 256 packets) are delivered. This
can result in a long delay in the rx queue.

In dom0-3.18, when the NET RX SOFTIRQ handler for-
wards a packet to the vif device, it wakes up the corresponding
rx kthread to do the follow-up tasks. However, the rx kthread
can only be scheduled after the softirq processing finishes.
In CPU-bound situations with many (non real-time) domains
sending packets at a high enough rate, NET RX SOFTIRQ
can be raised frequently (by the notification handler), so that
the handler continuously services the poll list, which can
delay the running of rx kthreads for a long time. In CPU-
bound scenarios in dom0-3.18, interferences can, therefore,
still arise between transmission and reception. Simply reducing
the quantum for each network device in poll list cannot resolve
this priority inversion, because the duration for which softirq
processing runs doesn’t depend on the quantum value.
Note that in dom0-3.10, there is no interference between
the softirq processing and the xen netbk kthread, because, as
mentioned in Section II-B1, the NET RX SOFTIRQ handler
is also executed in the context of the xen netbk kthread.

Summary: When compared to dom0-3.10, dom0-3.18
eliminates the tx queue and rx queue shared across guest
domains, and consequently removes this source of priority
inversions. However, the introduction of per-domain vif de-
vices brings a new source of priority inversions, because of
the round-robin order with which vif devices are serviced in
the poll list. Additionally, in dom0-3.10, TX and RX tasks are
jointly handled by a single kernel thread (xen netbk kthread),
which can itself contribute to priority inversions. This limi-
tation is not present in dom0-3.18, but interference between
the softirq handler (for transmission) and rx kthread can have
a similar impact in CPU-bound situations (see Section IV-B).
The existing queueing disciplines that Xen inherits from Linux
cannot address these limitations, because the latency problems
they introduce are in the virtualization-related components.

III. DESIGN AND IMPLEMENTATION

Our goal is to improve Xen’s ability to protect latency-
sensitive applications. For that purpose, we introduce a



virtualization-aware traffic control (VATC) architecture, which
mitigates the limitations identified in dom0.

The simplest way to mitigate priority inversions among
transmission flows is to extend priority awareness to the
netback tx queue (in dom0-3.10) or the vif devices in the
poll list (in dom0-3.18). However, priority inversions between
transmission and reception are due to the coarse sharing of
the xen netbk kthread (in dom0-3.10) and the interference
between softirq processing and rx kthread (in dom0-3.18). As
a result, rather than implementing one queueing discipline for
packet transmission in the virtualization-related components,
VATC is designed to provide fine-grained kernel-thread-based
traffic control.

In Linux, both the scheduling policy and the priority of
kernel threads can be configured by users. SCHED FIFO is
a preemptive fixed-priority scheduling policy, under which a
high-priority thread can preempt a running low-priority thread.
VATC builds on this concept by assigning the network traffic of
high-priority domains to high-priority kernel threads, and the
network traffic of low-priority domains to low-priority kernel
threads.

Fig. 4: VATC: Virtualization-aware Traffic Control

Transmission:
T1: notification handler(s) trigger xen netbk kthread(s)
T2: xen netbk kthread(s) deliver packets from netif(s) to TX driver queue
Reception:
R1: interrupt handler triggers net recv kthread
R2: net recv kthread cleans up TX driver queue and
R3: delivers packets from RX driver queue to rx queue(s) and triggers
xen netbk kthread(s)
R4: xen netbk kthread(s) deliver packets from rx queue(s) to guest domain(s)

Figure 4 illustrates the overall structure of VATC2. In
VATC, there are now multiple netback devices (instead of
one shared netback device), and correspondingly multiple
xen netbk kthreads to handle packet transmissions and re-
ceptions to/from different domains. These xen netbk kthreads
are configured with different priorities. Guest domains
with the same priority (same latency requirement) share
the same netback device and xen netbk kthread. All the
xen netbk kthreads are scheduled under a SCHED FIFO pol-
icy. The number of netback devices (xen netbk kthreads) can
be configured based on the number of priority levels needed.

2By replacing the network backend driver, VATC works in both dom0-3.10
and dom0-3.18.

For clarity, Figure 4 uses two priority levels. Do-
main 1 and domain 2 are running real-time (latency-
sensitive) applications and are assigned to a high-priority
thread. Domain 3 and domain 4 are low-priority domains
running bandwidth-intensive (non real-time) applications.
The high-priority xen netbk kthread(H) handles the network
traffic of the high-priority domains, and the low-priority
xen netbk kthread(L) handles traffic of the low-priority do-
mains. The net recv kthread, which is triggered by TX com-
pletion and the RX interrupt handler, has the highest priority.
It cleans up all the packets that have been transmitted from
the TX driver queue and processes packets in the RX driver
queue. Because both transmission and reception are handled by
kernel threads, we remove the poll list and software interrupt
handling from VATC. Next, we review packet transmission and
reception in VATC, as well as their interactions.

1) Packet Transmission in VATC: When a high-priority
domain has packets to send, it notifies dom0. The notification
handler in dom0 then triggers the corresponding high-priority
xen netbk kthread, which can preempt lower-priority threads.
Packets from the high-priority domain are first enqueued in
the tx queue of the corresponding netback device. The thread
then checks whether the BQL limit of the TX driver queue has
been reached. If it has, i.e., the TX driver queue is congested,
it suspends itself until the net recv kthread cleans up the TX
driver queue and refreshes the queue size. After cleaning up the
TX driver queue, the net recv kthread notifies the suspended
xen netbk kthread to resume (if the new queue size is under
the BQL limit). If multiple xen netbk kthreads are suspended,
they will resume one by one, based on their priorities. In
network-contention situations, this design protects real-time
traffic in a similar way as some priority-based queueing dis-
ciplines, such as Prio. Because of this, transmission in VATC
can bypass the QDisc layer. Note that each xen netbk kthread
can process packets in the tx queue in FIFO order because
the source domains of these packets have the same priority.
After packets are put into the TX driver queue, they are
subsequently transmitted by the NIC. Once there are no more
packets from any high-priority domain to enqueue and the
tx queue is empty, the high-priority thread stops, allowing a
lower-priority thread to run.

In dom0-3.10, the xen netbk kthread raises
NET RX SOFTIRQ and executes the softirq in its own
context, and therefore also has to handle all the pending
softirqs. VATC removes softirqs because they can lead to
priority inversion when a high-priority thread has to process
softirqs raised by low-priority threads. VATC therefore
handles packet TX/RX entirely in the xen netbk kthreads
and the net recv kthread. To ensure the implementation is
thread-safe, VATC deals with all the critical sections (e.g.,
updating forwarding table, or putting packets into TX driver
queue) in the same way as the softirq processing in dom0-3.10
(which is also executed in thread context).

2) Packet Reception in VATC: When packets arrive at a
virtualized host, the RX hardware interrupt handler wakes
up the net recv kthread, instead of the NET RX SOFTIRQ,
to process them. Once the net recv kthread is scheduled, it
picks up packets from the RX driver queue and forwards them
to the rx queue of the destination netback device. For the
rx queue of the netback device, each enqueue operation wakes



up the corresponding xen netbk kthread, which will be sched-
uled after the net recv kthread finishes its work. If multiple
xen netbk kthreads are woken up by the net recv kthread,
they will be scheduled based on their priorities. When a
xen netbk kthread is scheduled, it delivers packets from the
corresponding rx queue to the destination domains.

3) Interference between Transmission and Reception:
Recall that in dom0-3.10, interference between transmission
and reception arises because both are processed by the
xen netbk kthread in a round-robin order (with a quantum of
up to 256 packets). This coarse sharing results in the transmis-
sion (or reception) of real-time traffic potentially being delayed
by the reception (or transmission) of non-real-time traffic. In
dom0-3.18, the rx kthread (for reception) can be preempted by
the NET RX SOFTIRQ handler (for transmission). In VATC,
the transmission/reception of real-time traffic is handled by
high-priority kernel thread(s). Hence, the interference from
either the transmission or reception of non-real-time traffic
(handled by lower-priority kernel threads) is greatly reduced.

IV. EVALUATION

As outlined in Section II, various factors can delay soft
real-time traffic in Xen. In this section, we explore a number
of scenarios where such delays can arise, and both quantify
their magnitude and analyze their causes. We evaluate latency
and latency predictability for delay-sensitive traffic under our
implementation of VATC in Xen with dom0-3.18, and un-
der existing Xen traffic control mechanisms3, i.e., Prio and
FQ CoDel in both dom0-3.10 and dom0-3.18.

The evaluation is carried out on a testbed consisting of six
physical machines, hosts 0 to 5. Host 0 is an Intel i7-980 six
core machine with Xen 4.3 installed, on which dom0 is a 64-bit
CentOS built on Linux kernel 3.10.43 or 3.18.0. Host 0 acts as
the host server. Five other physical machines, hosts 1 to 5, run
standard Linux. All machines are equipped with Intel 82567
Gigabit NICs and are connected by a TP-LINK TL-SG108
Gigabit switch. Because both Prio and FQ CoDel are fine-
grained packet schedulers, it is recommended [8], [9] that the
TCP Segmentation Offload (TSO) and Generic Segmentation
Offloading (GSO) of the NIC be disabled, which we do. This
ensures that large packets with a size greater than the MTU
(1, 500 bytes in our system) are segmented in the kernel instead
of in the NIC, and avoids long head-of-the-line blocking delays
in the TX driver queue. Our NIC driver uses the NAPI poll()
method, which is invoked by the NET RX SOFTIRQ handler,
to clean up the TX driver queue. Figure 5 offers a schematic
overview of the testbed.

In host 0, dom0 is given a dedicated physical CPU core.
This is common practice to handle communication and in-
terrupts [10], [11], and is also recommended by the Xen
community to improve I/O performance [12]. We boot up five
guest domains, domain 1 to domain 5 on host 0. Each of them
is pinned to a separate physical CPU core to avoid influences
from the VM scheduler. In our setup, domain 1 is the latency-
sensitive domain and domains 2 to 5 are interfering domains.

3FIFO is the default traffic control scheme in Linux, but as expected it
performs poorly when it comes to latency guarantees. As a result, we only
compare the latency of VATC to that of Prio and FQ Codel.

Fig. 5: Testbed Setup

Hence under VATC, traffic from/to domain 1 is handled by a
high-priority kernel thread in dom0, while traffic belonging to
domains 2 to 5 is handled by a low-priority one.

The round-trip latency between domain 1 and host 1 is
measured as follows. Domain 1 pings (with ICMP packets)
host 1 every 10 ms, and host 1 replies back. This traffic pattern
seeks to emulate the behavior of common periodic real-time
applications. Each experiment records latency values for 1, 000
ICMP request/response pairs. We report both median and tail
latency (95th percentile). Tail latency is important to many soft
real-time applications because it reflects latency predictability.
In domain 2 to domain 5, we run the stream test of Netperf [13]
to simulate non-real-time applications.

The Intel NIC in our hosts supports interrupt intervals from
10µs to 10ms. The Intel NIC driver also provides two adaptive
modes, dynamic conservative (50µs to 250µs) and dynamic
(14µs to 250µs). Both modes dynamically adjust the interrupt
interval based on the type of network traffic, bulk or interactive.
The dynamic conservative mode is the default mode of the
Intel NIC driver. We evaluate both modes and a range of static
values.

A. Evaluation Scenarios

Latency of high-priority (latency-sensitive) traffic is mea-
sured for different scenarios that can give rise to resource
(CPU or network) contention in dom0. CPU contention can
occur when low-priority domains are sending many small
packets. In those scenarios, the TX handler (xen netbk kthread
in dom0-3.10 or NET RX SOFTIRQ handler in dom0-3.18)
is frequently triggered. This impact can be compounded by
setting the interrupt handler interval to a small value, as
the bottom-half processing of the interrupt handler can then
overload dom0. As we shall see, in CPU-contention scenarios,
whether using dom0-3.10 or dom0-3.18, the two Limitations
identified in Section II, introduce long queueing delays in
virtualization-related network components (netif, tx queue,
rx queue in dom0-3.10, or vif, QDisc, rx queue in dom0-
3.18). Network contention arises when guest domains generate
a high volume of large packets that saturate the NIC. In those
cases and as we shall again see, long delays happen in the
hardware, and as a result, VATC and existing traffic control
schemes perform similarly.

We explore CPU-contention and Network-contention sce-
narios in Section IV-B and Section IV-C, respectively, and
throughout the experiments use the terms small packet stream
and large packet stream to identify the packet size of traffic
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(a) One small UDP interfering stream
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(b) Two small UDP interfering streams
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(c) Three small UDP interfering streams
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(d) Four small UDP interfering streams

Fig. 6: CPU-contention – Increasing number of interfering streams: Median high-priority latency

from low-priority domains, i.e., 1 byte for small packet streams
and 1, 500 bytes for large packet streams. Small packet streams
can lead to CPU contention because of high processing over-
head, while large packet streams can cause network contention
because of high bandwidth consumption.

B. CPU-Contention Scenarios

In this section, we evaluate the latency of high-priority
traffic in the presence of interfering low-priority streams con-
sisting of small UDP packets. Figure 6 and Figure 7 show
the round-trip latency (median and 95th percentile) of ICMP
packets from the high-priority domain for different numbers
of interfering low-priority small UDP streams and different
interrupt intervals (from 10µs to 1024µs and using the dynamic
and dynamic conservative modes).

1) Impact of Interrupt Interval: In order to isolate the
impact of different interrupt intervals, we focus on the case
of one interfering stream (Figures 6a and 7a). We note that
because packets are small, the dynamic conservative mode
and the dynamic mode tend to default to setting the interrupt
interval to the lower bound of their range, i.e., 50µs and 14µs,
respectively.

When the interrupt interval is small (10µs to 16µs, or
dynamic), high-priority packets experience long delays under
both Prio and FQ CoDel in dom0-3.10. The reason is frequent
preemption by the NET RX SOFTIRQ handler (issued by TX
completion interrupts), which results in the xen netbk kthread
not getting enough CPU resources. Note that some NIC
drivers clean up TX driver queue in the context of the
hardware interrupt handler, but this mechanism still preempts
the xen netbk kthread and may result in long delays. This
problem is absent in dom0-3.18, which removed the shared
tx queue of dom0-3.10 and replaced it with separate vif
devices for each domain. The vif devices are put into the
poll list that is serviced by the NET RX SOFTIRQ handler.
Hence, frequent invocations of the handler function contribute
to more frequent servicing of vif devices, especially with
only one competing vif device (interfering domain) and one
netdev device (for TX driver queue clean-up) in the poll list.
VATC can be seen to perform similarly to dom0-3.18, and the
reason is that even though the xen netbk kthread is frequently
preempted by the net recv kthread, there is no shared queue
(like the netback tx queue in dom0-3.10) where low-priority
packets can accumulate and delay high-priority packets.
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(a) One small UDP interfering streams
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(b) Two small UDP interfering streams
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(c) Three small UDP interfering streams
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Fig. 7: CPU-contention – Increasing number of interfering streams: Tail (95th percentile) high-priority latency

To validate the above conclusions, we performed a detailed
analysis of how different dom0 components contribute to the
overall latency of high-priority packets.

In both dom0-3.10 and VATC, queueing may arise in:

• netif: packets wait in netif while the
xen netbk kthread dequeues packets from the
tx queue or rx queue;

• tx queue: this (FIFO) queue is shared by packets from
all domains;

• QDisc: when there is congestion in the TX driver
queue, packets are kept waiting in the QDisc layer;

• rx queue: when the xen netbk kthread is servicing
the tx queue, the response packets of the high-priority
ICMP stream wait in the rx queue.

In dom0-3.18, queueing may arise in:

• vif: when the NET RX SOFTIRQ handler is servic-
ing other vif devices in the poll list, high-priority
packets are pending in the corresponding vif device;

• QDisc: when there is congestion in the TX driver
queue, packets are kept waiting in the QDisc layer;

• rx queue: After ICMP response packets are forwarded
to the rx queue, the corresponding rx kthread must
wait for the softirq processing to finish before it can
be scheduled.

Figure 8 reports the delay contributions of individual compo-
nents for high-priority packets in Prio–dom0-3.10, Prio–dom0-
3.18 (the results with FQ CoDel is similar to those with Prio),
and VATC for an interrupt interval value of 10µs.

The results confirm our earlier hypothesis, namely, that
because of dom0-3.10’s reliance on a shared netback tx queue,
a large number of (low-priority) packets can accumulate
there, and in the process introduce large delays in the netif
and netback tx queue (Limitation 1), as well as the netback
rx queue (Limitation 2). Because neither dom0-3.18 nor VATC
rely on such a shared queue (the tx queue of the high-
priority traffic is separate with its own high-priority thread
in VATC), those delay contributions are eliminated. We note,
though, the relatively long tail of rx queue latency for dom0-
3.18. It is because the softirq processing (triggered by the
TX notifications from the interfering domains) can delay the
rx kthread. As we shall see in the next set of experiments, this
effect becomes more pronounced as the number of interfering
domains increases. Increasing the interrupt interval (beyond



32µs) allows the xen netbk kthread of dom0-3.10 to get
enough CPU resources and eliminate most of the queueing
delays in those components, so that it then performs as well as
dom0-3.18 and VATC. As the interrupt interval value increases
further, the pending time in the QDisc layer is larger because
the TX driver queue is cleaned up less frequently and becomes
a bottleneck for all schemes. This explains the steady and
comparable increases in latency all configurations experience
in Figure 6a and Figure 7a.
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Fig. 8: CPU-contention – One interfering stream: dom0 high-
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2) Impact of the Number of Streams: The growth in the
number of cores in a single host means that multiple guest
domains can coexist within one host. Supporting latency
differentiation with more than one domain is, therefore, an
important scalability concern. In this section, we evaluate the
latency of the high-priority (ICMP) stream as the number of
interfering domains increases.

Figures 6b, 6c, and 6d show the median latency of high-
priority packets with 2, 3, or 4 interfering low-priority small
UDP streams, while Figures 7b, 7c, and 7d show tail latency
for the same configurations. Additionally, Figures 9 and 10 de-
tail the delay contributions of individual components in dom0.
We note from the figures that VATC’s latency performance
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Fig. 10: CPU-contention – Increasing interfering traffic and
# streams – dom0-3.18 high-priority latency (10µs interrupt
interval, (b) presents a subset (values between 0 ms and 3.5
ms) of the results of (a))

is unaffected by the number of interfering streams, as the
high-priority xen netbk kthread handling the real-time traffic
cannot be preempted by the lower priority ones. In other words,
VATC successfully mitigates Limitation 1 and Limitation 2.

The main difference among the results of Figures 6a
to 6d is the significant degradation in latency experienced
in dom0-3.18 as the number of interfering domains/streams
increases. This degradation is such that dom0-3.10 eventually
outperforms dom0-3.18. This, however, does not mean that
dom0-3.10 is immune to the number of interfering streams. As
Figures 6b and 7b (two interfering streams) illustrate, VATC
now outperforms dom0-3.10 for all interrupt interval values,
including the range 32µs to 1024µs where dom0-3.10 does not
suffer from frequent preemptions by the softirq handler. The
main reason is that with two interfering low-priority streams,
the packet arrival rate (at dom0) is high enough to overload
the packet processing capacity of the xen netbk kthread. As
a result and as shown in Figure 9, longer queueing delays
now arise in the netif (Limitation 1) and in the rx queue
(Limitation 2). The impact of this effect saturates quickly.
Note that two interfering streams are enough to overload the
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xen netbk kthread, and furthermore the size of the shared
netback rx queue is limited to 256. As a result, dom0-3.10
only experiences limited changes as the number of interfering
streams increases further.

The situation is different for dom0-3.18, which experiences
increases in latency (median and tail) with the number of
interfering streams. Figure 10 sheds some light on this be-
havior. As the number of interfering domains increases, so
does the number of vif devices inserted in the poll list, which
contributes a small but steady increase in delay. The delay in
the QDisc layer also increases, as there are now more pending
packets in the TX driver queue, and the bottom-half processing
of the TX completion interrupt is delayed since in our NIC
driver the TX completion interrupt handler simply inserts the
netdev device into the poll list and leaves the bottom-half
processing (clean up of the TX driver queue) to be executed by
the NET RX SOFTIRQ handler. As the number of competing
vif devices (in the poll list) increases, the netdev device is
serviced less frequently. This results in higher congestion in
the TX driver queue and, therefore, longer queueing delays in
the QDisc layer. In some other NIC drivers that clean up TX
driver queue in hardware interrupt handler, the vif devices in
poll list won’t delay the clean-up of TX driver queue, thus the
queueing delay in QDisc layer may be reduced.

Both of those contributions to higher latency can be at-
tributed to Limitation 1, but Limitation 2 can be seen to have
an even more pronounced effect. The addition of a second
interfering stream (see Figure 10b) significantly affects the
delay in rx queue. This is caused by the NET RX SOFTIRQ
handler repeatedly servicing the poll list when the softirq
is raised frequently by notification and interrupt handlers4.
This can then result in the rx kthread being delayed for an
unpredictably long time as illustrated in Figure 7b which
captures the tail of the delay distribution in dom0-3.18. For
purposes of illustration, the 95th latency percentiles are 8
and 40 times higher in Prio–Dom0-3.10 and Prio–Dom0-
3.18, respectively, than in VATC. Interestingly though, this

4NIC drivers that clean up the TX driver queue in the hardware interrupt
handler without, therefore, raising NET RX SOFTIRQ might reduce this
workload. However, because the dominant contribution to the softirqs is the
notification handler, we do not expect this would be of much benefit.

trend somewhat reverses as the number of interfering streams
increases further beyond 2, because the NET RX SOFTIRQ is
raised less frequently as more low-priority streams are added.
In our experiments, a large fraction of the softirqs are raised
by notification handlers from guest domains. Because dom0’s
CPU is overloaded, not all low-priority packets can be serviced
in time, and a backlog of packets builds-up in the buffers
between vif devices and the corresponding (low-priority) guest
domains. This backlog prevents the corresponding guest do-
mains from putting more packets into the buffer, and thus
no new notifications are issued to dom0 until the buffer is
refreshed.

The next experiment explores further the impact of noti-
fication frequency on latency performance in dom0-3.18. The
results are shown in Figure 11, which parallels Figure 10 but
keeps the total throughput of the interfering traffic constant
and evenly distributed across streams (as opposed to each
stream contributing their own independent traffic volume).
This largely eliminates the possibility of congestion in the
buffer between each vif and guest domain. Consequently, the
notification frequency from guest domains is much higher than
in the previous experiments. For example, with 4 interfering
streams, we measure a notification frequency that is 100 times
larger than with the same number of streams each contributing
their own traffic. This difference is largely responsible for the
significant increase in latency seen between Figures 10 and 11
(the worst delay observed in the experiment of Figure 11 was
160 ms!). Of note in Figure 11 is the fact that while latency
initially experiences significant increases as more streams are
added, adding a fourth stream appears to contribute to a slight
decrease. We were not able to pinpoint the exact sources of the
decrease, but conjecture that it may be partially due to some
streams now not always having new packets, which would in
turn lower the notification rate.

Summary:

• In dom0-3.10, small interrupt intervals can overload
the xen netbk kthread and cause high latency. Dom0-
3.18 addresses this problem by eliminating shared
packet queues.

• Neither dom0-3.10 nor dom0-3.18 can protect latency-
sensitive traffic when dom0 is overloaded by small
packet streams. As the interference becomes larger,
the queueing delay in dom0-3.10 is bounded, while the
delay in dom0-3.18 worsens because vif devices share
the poll list and the softirq handler delays reception.

• Limitation 1 and Limitation 2 are both present in
dom0-3.10 and dom0-3.18, so scenarios exist where
traditional Linux traffic control mechanisms such as
Prio and FQ CoDel cannot protect latency-sensitive
applications. VATC overcomes these limitations by
dedicating a netback device and a prioritized kernel
thread to each priority level, so that real-time streams
are protected from interference from other traffic.

C. Network-Contention Scenarios

The next set of experiments explores the ability to protect
latency-sensitive stream in scenarios where network bandwidth
is the scarce resource. This is realized by relying on interfering
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Fig. 12: Network-contention – One interfering stream (UDP or TCP): Median high-priority Latency (ms)

streams with large packet sizes, i.e., 1, 500 bytes (MTU)
for each UDP or TCP packet in the network link. In our
experiments a Netperf stream application runs in domain 2 and
sends a stream of large packets (UDP or TCP) to host 2 which
is sufficient to saturate the network link. Note that since the
majority of the traffic is now large packets, both the dynamic
conservative mode and the dynamic mode set their interrupt
interval to the upper bound of their range, i.e., 250µs. As a
result, their performance is, therefore, now aligned with that
of a static interrupt interval set to approximately that value.

Large packets can congest the TX driver queue, so that
high-priority packets may end-up waiting in the QDisc layer
for a long time. This delay depends on how long the (TX
completion) interrupt interval is. Only when the handler cleans
up the TX driver queue, are packets pending in QDisc layer
transmitted. Meanwhile, the ICMP response packets can ex-
perience long delays in the NIC, because the RX interrupt
frequency is also limited by the interrupt interval configuration.

Figure 12a and Figure 12b respectively show the median
latency (tail latency is close to the median value) of high-
priority packets under the impact of one large-packet UDP
stream or one large-packet TCP stream. We see that the round-
trip latency is penalized as the interrupt interval increases.
Because the majority of the latency happens in hardware or
is caused by the congestion there, VATC offers little or no
improvement in latency.

In a few cases (sending a large-packet TCP stream with
interrupt intervals between 10 µs to 32 µs), the overhead
of VATC contributes to a higher CPU utilization. However,
the increase is limited and was not found to affect overall
system throughput across the range of experiments that were
conducted.

V. RELATED WORK

As soft real-time applications are widely deployed in
virtualized platforms, protecting latency-sensitive traffic has
become an important topic.

The network I/O control in VMware vSphere [14]
can reserve I/O resources (e.g. network bandwidth) for

business-critical traffic based on user-defined network resource
pools [15]. In Windows Server 2012 R2 [16], Hyper-V
QoS [17], [18] also provides bandwidth management to net-
work traffic. In environments with network-contention, these
can effectively enhance the performance of latency-sensitive
VMs. However, because they focus on managing bandwidth,
they may not effectively handle the priority inversions caused
by CPU contentions as we observed in Xen, which is the focus
of VATC. Therefore existing approaches to bandwidth manage-
ment and VATC are complementary solutions for network- and
CPU-contention scenarios, respectively.

KVM [19] is another virtualization platform based on
Linux. It creates multiple vhost threads to handle traffic
from different guest VMs. However, different vhost threads
are not assigned priorities corresponding to the priorities of
the VMs. In addition, because vhost threads service traffic
as in standard Linux, KVM may experience similar priority
inversion problems. For example, the vhost thread servicing
real-time traffic can be preempted by threads for non-real-time
traffic or softirq handlers.

Xu et al. [9] investigate optimizing the network stack of
Xen’s dom0 by fragmenting large packets into small ones
so that BQL and FQ CoDel can work more efficiently to
reduce queueing delay. In addition to those network stack
modifications, Xu et al. [9] also optimize the VCPU scheduler
and the network switch to further reduce host-to-host latency
in a data center setting. That work, however, does not consider
queueing delays in the virtualization layer of dom0, i.e., the
netif, netback, or vif devices, which can play a significant role.

RT-Xen [20], [21], [22] provides a real-time VCPU
scheduling framework recently included in Xen 4.5. Xi et
al. [23] develop RTCA, which implements a prioritization-
aware packet scheduling in the netback device of dom0. RTCA
is able to offer real-time guarantees to local inter-domain
communications. VATC seeks to extend those guarantees to
communications with remote hosts.

Another related topic is how to improve guest domains
communication performance by allocating additional cores to
each domain. Xu et al. [11] improve the I/O performance



of a multi-VCPU guest domain by delegating all its I/O
processing to a dedicated VCPU. Because of the availability
of a dedicated VCPU, the guest domain can process inter-
rupts more efficiently with limited CPU overhead. Similarly,
Har’El [24] proposes an efficient and scalable paravirtual I/O
system by implementing a fine-grained I/O scheduling and
exitless request/reply notification model in KVM. Neither of
these two systems seeks to prioritize network traffic with
different real-time requirements. Their goal is to improve the
average network performance in virtualized hosts (Xen or
KVM).

Finally, other work has focused on NICs supporting SR-
IOV [25], a pass-through mechanism to bypass the network
virtualization layer and dom0 to reduce network latency and
have specialized hardware support for network communica-
tion. These technologies have been supported by commercial
virtualization platforms [26], [27]. In contrast, VATC does not
require special hardware support. Radhakrishnan et al. [28]
present SENIC, which implements rate limiters and transmit
schedulers in hardware. While SENIC is designed to improve
the scalability and performance of the low-level network
stack, VATC focuses on mitigating priority inversion in the
virtualization layer above the native network stack. SENIC and
VATC are therefore complementary to each other.

VI. CONCLUSION

With the development of ever more powerful and flexible
virtualization platforms, distributed soft real-time applications
are increasingly deployed in virtualized environments. Those
deployments introduce new challenges when it comes to
guaranteeing low and predictable latency. This paper evaluates
network latency in Xen in the presence of diverse traffic
patterns and system configurations, including the use of sev-
eral existing Linux traffic control schemes. Our investigation
reveals that mechanisms introduced to support virtualization
can interfere with the ability of those traditional traffic con-
trol schemes to enforce prioritization and, therefore, delay
guarantees. This is because of priority inversions in both
transmissions and through interferences between transmission
and reception in Xen’s current network architecture. This
motivates the development of VATC, a virtualization-aware
traffic control architecture, which addresses these limitations.
VATC dedicates netback devices and prioritized kernel threads
to different priority levels so that real-time traffic can be
protected. An implementation of VATC based on the kernel
of dom0-3.18 is then evaluated over a testbed that supports
different configurations of traffic patterns. The results of those
experiments show that under VATC real-time traffic experi-
ences lower and more predictable latency than under traditional
Xen traffic control schemes.
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