
HAL Id: hal-04097740
https://hal.science/hal-04097740

Submitted on 15 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parametric Polynomial-Time Algorithms for Computing
Response-Time Bounds for Static-Priority Tasks with

Release Jitters
Nathan Fisher, Thi Huyen Chau Nguyen, Joël Goossens, Pascal Richard

To cite this version:
Nathan Fisher, Thi Huyen Chau Nguyen, Joël Goossens, Pascal Richard. Parametric Polynomial-
Time Algorithms for Computing Response-Time Bounds for Static-Priority Tasks with Release Jitters.
Proc. 13th IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA 2007), Aug 2007, Daegu,Korea, Unknown Region. �hal-04097740�

https://hal.science/hal-04097740
https://hal.archives-ouvertes.fr


Parametric Polynomial-Time Algorithms for Computing Response-Time Bounds
for Static-Priority Tasks with Release Jitters

Nathan Fisher
Wayne State University

Detroit, MI (USA)
fishern@cs.wayne.edu

Thi Huyen Châu Nguyen
LISI, ENSMA and University of Poitiers (France)

Joël Goossens
Computer Science Department

Université Libre de Bruxelles (U.L.B.)
Brussels, Belgium

joel.goossens@ulb.ac.be

Pascal Richard
LISI, ENSMA and University of Poitiers (France)

pascal.richard@univ-poitiers.fr

Abstract

Feasibility analysis algorithms are based on particular
metrics such as processor utilization, load factor, proces-
sor demand, response-times, etc. The design of efficient al-
gorithms for computing these metrics is a major issue in
real-time scheduling theory. In this paper we propose two
FPTASs (fully-polynomial time approximation schemes) for
checking feasibility of static-priority tasks subjected to re-
lease jitters executed upon a uniprocessor platform. We
then use these FPTASs for computing two upper bounds
of worst-case response-times. Lastly, we show that these
bounds do not achieve constant error bounds in compari-
son with values computed by an exact worst-case response-
time analysis (performed in pseudo-polynomial time), and
we present numerical experiments.

1. Introduction

Improving feasibility tests is an important issue in real-
time scheduling theory. For tasks having deadlines less
than or equal to periods (i.e., constrained-deadlines), no
polynomial-time feasibility tests are known for both static-
priority and EDF scheduling. [13] shows that for static-
priority scheduling, there exists task systems with only two
tasks such that checking feasibility with an exact feasibil-
ity test requires O(k) steps, where k is an arbitrary inte-
ger which does not depend on task parameters (i.e., worst-
case processing requirements, deadlines or periods). Many
polynomial-time sufficient feasibility tests have been de-
fined; see for instance [14, 9, 7, 5, 10] for a non exhaustive

reference list.
Approximation algorithms allow the design of efficient

feasibility tests (e.g. running in polynomial time) while in-
troducing a small error in the decision process, that is con-
trolled by an accuracy parameter. Such approaches have
been developed for EDF scheduling [6, 1, 2] and for static-
priority scheduling [8, 16]. Two different paradigms can be
used to define approximate feasibility tests [6]: pessimistic
and optimistic.

If a pessimistic test returns “feasible”, then the task set
is guaranteed to be feasible on a unit-speed processor. If
the test returns “infeasible”, the task set is guaranteed to
be infeasible on a slower processor, of computing capacity
(1− ε). In [8] is presented such a test for static-priority task
with arbitrary-deadlines.

If an optimistic test returns “feasible”, then the task set
is guaranteed to be feasible on a (1 + ε)-speed processor. If
the test returns “infeasible”, the task set is guaranteed to be
infeasible on a unit-speed processor [6]. To the best of our
knowledge, such an approach has never been investigated
for static-priority scheduling.

This research. The objective of this paper is to extend
approximate feasibility analysis of static-priority tasks sub-
jected to release jitters. We provide an alternative definition
of the Request Bound Function (a characterization of work
for static-priority tasks) which leads to a slight improvement
of the pessimistic FPTAS presented in [8]. We define an opti-
mistic FPTAS in the same scheduling context. Both FPTASs
are then used for respectively computing upper bounds of
worst-case response-times. We then analyse the maximum
error of the approximate values for worst-case response-

13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA'07), Daegu, Korea, 2007



times calculated in polynomial-time in comparison with ex-
act values of worst-case response-times that are computed
in pseudo-polynomial time. Lastly, we give numerical ex-
periments to compare known methods for computing upper
bounds of worst-case response-times.

Organization. Section 2 presents known results for val-
idating static-priority tasks executed upon a uniprocessor
platform. Section 3 presents an improvement of the pes-
simistic tests presented in [8] and an algorithm for comput-
ing upper bounds of task worst-case response-times. Sec-
tion 4 presents an optimistic approximate feasibility test and
its use for computing a second upper bound of task worst-
case response-times. Section 5 presents results on worst-
case error bounds of these approximate values of worst-case
response-times. Lastly, we conclude in Section 7.

2. Definitions

2.1. Task model

A task τi, 1 ≤ i ≤ n, is defined by a worst-case exe-
cution requirement Ci, a relative deadline Di and a period
Ti which is the time units between two consecutive job in-
stances of task τi. The utilization factor of task τi is the

fraction of time that τi requires the processor: Ui
def= Ci/Ti.

The utilization factor of the task set is: U
def=

∑n
i=1

Ci

Ti
. We

assume that deadlines are constrained: Di ≤ Ti. Such an
assumption is realistic in many real-world applications and
also leads to simpler algorithm for checking feasibility of
task sets [11]. In order to model delay due to the RTOS
(in presence of system tick) or due to input data commu-
nications of tasks, we also consider that jobs are subjected
to release jitters; that is, a job may not be ready to execute
as soon as it is released. In fact, it may experience a vari-
able delay between its release time and the first time instant
such that the job is ready to execute. The release jitter Ji

of a task τi is the largest delay between its release time and
(first) ready time. We assume that Ji < Ti; we also assume
that all parameters are integers (i.e., discrete time model).

We assume that all tasks to be run upon a same proces-
sor are independent, synchronously released. The presented
results will also be valid for sporadic task systems (where
there is at least Ti time units between two consecutive job
instances of the task τi). All the tasks have static prior-
ities that are set before starting the application and never
changed at run-time. At any time, the highest priority task is
selected among ready tasks. Without loss of generality, we
assume that tasks are indexed in decreasing order of their
priorities: τ1 is the highest priority task and τn is the lowest
one.

2.2. Approximate Response-Times

A common approach for checking the feasibility of a
static-priority task set is to compute the exact worst-case
response-time Ri. The worst-case response-time of τi is
formally defined as:

Definition 1 Assuming that the system is not overloaded
(the utilization factor is strictly less than 1), the worst-case
response-time of a task τi can be defined as follows:

Ri
def= (min{t > 0 | Wi(t) = t}) + Ji

(Wi(t) denotes the cumulative processor demand and will
be defined formally in the next section.)

No polynomial-time algorithm is known for computing
Ri for the considered task model. Computing efficiently
such a metric will be addressed using approximation algo-
rithms. We now formally define approximate worst-case
response-times according to an accuracy parameter ε as fol-
lows:

Definition 2 Let ε be a constant and Ri be the “exact”
worst-case response-time of a task τi, then an approximate
upper bound of its responses time R̂i satisfies:

Ri ≤ R̂i ≤ (1 + ε)Ri

If the approximation algorithm satisfies the following
conditions: 0 < ε < 1 and the runtime is polynomial in
the input size and 1/ε, then it is a Fully Polynomial Time
Approximation Scheme (FPTAS).

In [17] is presented an upper bound of the worst-case
response of a task τi:

Ri ≤
∑i

j=1 Cj

1 − ∑i−1
j=1

Cj

Tj

We have shown in [15] that this well-known upper bound
does not have a constant error bound (i.e., there exists task
sets such that the upper bound is c times greater than Ri

where c is an arbitrary large number). Thus, the correspond-
ing O(n) algorithm is not an approximation algorithm for
computing upper bounds of worst-case response-times.

To improve the worst-case response-time approximate
analysis, we need methods with a trade-off between compu-
tational time-complexity and sharpness of the upper bounds
of worst-case response-times. In order to define our approx-
imate response-time analysis, we review, in the next section,
known feasibility tests that will be used to define our upper
bounds.



2.3. Exact Analysis

The request-bound function of a task τi at time t (de-
noted RBF(τi, t)) and the cumulative processor demand (de-
noted Wi(t)) of tasks at time t for tasks having priorities
greater than or equal to i are (see [18] for details):

RBF(τi, t)
def=

⌈
t + Ji

Ti

⌉
Ci (1)

Wi(t)
def= Ci +

i−1∑
j=1

RBF(τj , t) (2)

Notice that deadline failures of τi (if any) occur neces-
sarily in an interval of time where only tasks with a priority
higher or equal to i are running. Such an interval of time
is defined as a level-i busy period [12]. Using these func-
tions, two distinct (but linked) exact feasibility tests can be
defined. We now review both results that will be reused
throughout the paper.

The processor-demand approach checks that the proces-
sor demand required by task executions is always less than
or equal to the processor capacity. [12] presents a proces-
sor demand schedulability test for constrained-deadline sys-
tems (but has been extended for arbitrary deadline systems
in [11]). It can be also easily extended to tasks subjected to
release jitters as stated in the well-known following result:

Theorem 1 A static-priority system with release jitters is
feasible if, and only if:

max
i=1...n

{
min
t∈Si

Wi(t)
t

}
≤ 1

where Si is the set of scheduling points defined as follows:

Si
def= {aTj − Jj | j = 1 . . . i, a = 1 . . . �Di − Ji + Jj

Tj
�}

∪ {Di − Ji}

Note that schedulability points Si correspond to a set of
time instants in the schedule where a higher-priority task
can start its execution, after its release jitter delay.

In [16], we show that the worst-case response-time of a
task with release jitter can be computed using Theorem 1.
We defined the notion of the critical scheduling point for
that purpose (under the assumption that the task τi will meet
its deadline at execution time).

Definition 3 The critical scheduling point for a feasible
task τi is:

t∗ def= min{t ∈ Si | Wi(t) ≤ t}

We show in [16] that the cumulative request bound func-
tion at the critical scheduling point of a given task τi leads
to its worst-case response-time.

Theorem 2 ([16]) The worst-case response-time of a task
τi, such that Wi(t∗) ≤ t∗ (i.e., the task is feasible), is ex-
actly Ri = Wi(t∗) + Ji.

Thus, for all feasible tasks, it is possible to compute
their worst-case response-times. But, for an infeasible
task τi (i.e., Ri > Di), there is no one scheduling point
t ∈ Si satisfying Wi(t) ≤ t. Since the size of Si de-
pends on

∑i−1
j=1�Di+Ji

Tj
�, then the algorithm runs in pseudo-

polynomial time. Note that computing the smallest fixed-
point Wi(t) = t using successive approximation of itera-
tive convergence is also performed in pseudo-polynomial
time (the utilization factor is assumed to be a constant).

3. A First Worst-Case Response-Time Bound

In order to define an upper bound of task response-times,
we define a pessimistic FPTAS for analyzing feasibility of
task sets. When such an algorithm returns feasible for a
given task τi, then we shall be able to compute approximate
upper bound of τi. The presented algorithm is a slight im-
provement of [8].

3.1. Pessimistic Approximation Scheme

The RBF function is a discontinuous function with a
“step” of height Ci every Ti units of time. In order to ap-
proximate the request bound function according to an error
bound 1 + ε (accuracy parameter, 0 < ε < 1), we use the
same principle as in [8]: we consider the first (k − 1) steps

of RBF(τi, t), where k is defined as k
def= �1/ε� and a linear

approximation, thereafter. From this definition, we verify
that k ≥ 1/ε.

By extending the approximate function presented in [8]
to take into account release jitter, an approximate request
bound function can be defined as follow [16]:

δ(τi, t)
def=

{
RBF(τi, t) for t ≤ (k − 1)Ti − Ji,

Ci + (t + Ji)Ci

Ti
otherwise

Thus, up to (k−1)Ti−Ji no approximation is performed
to evaluate the total execution requirement of τi, and af-
ter that it is approximated by a linear function with a slope
equal to the utilization factor of task τi.

We propose next a new definition of the Request Bound
Function (i.e.,

...
RBF) that will lead to an improved approx-

imate feasibility algorithms in comparison with the results
presented in [8, 16]. We propose the following alternative



definition and prove that it is equivalent to the definition
presented in Equation (1).

Lemma 1 Under the assumption that all the task param-
eters are integers, then the request-bound function

...
RBF for

static-priority task subjected to release jitters can be defined
as follows:

...
RBF(τi, t)

def=
⌊

t + Ti + Ji − 1
Ti

⌋
Ci

And with this definition we have that RBF(τi, t) =...
RBF(τi, t) ∀i, t

Proof: We shall use the principle of indirect equality: let
a, b, k be integers, then a = b if, and only if, ∀k, k ≤
a ⇔ k ≤ b. Consider an arbitrary integer k such that

k ≤
⌈

t+Ji

Ti

⌉
. Since �x� < x + 1 for any real number x,

then

k ≤
⌈

t + Ji

Ti

⌉
<

t + Ji

Ti
+ 1

Since Ti > 0, then:

Ti(k − 1) < t + Ji

Ti(k − 1) + 1 ≤ t + Ji

This latter inequality exploits the fact that t is an integer.
Then, we finally obtain that:

k ≤ t + Ji + Ti − 1
Ti

Using the rule of indirect equality and since k is arbitrary,
then it follows that:

...
RBF(τi, t) =

⌊
t + Ti + Ji − 1

Ti

⌋
Ci

=
⌈

t + Ji

Ti

⌉
Ci = RBF(τi, t)

Using Lemma 1, we can define an improved approximate
request bound function:

γ(τi, t)
def=

{⌊
t+Ji+Ti−1

Ti

⌋
Ci for t ≤ (k − 1)Ti − Ji,

(t + Ji + Ti − 1)Ci

Ti
otherwise.

(3)
From both definitions of δ(τi, t) and γ(τi, t), it is easy to

see that γ(τi, t) can only improve the approximate function
δ(τi, t), and thus the FPTAS feasibility algorithm proposed
in [8].

Theorem 3 γ(τi, t) is a tighter upper bound of RBF(τi, t)
in comparison with δ(τi, t):

∀t > 0, δ(τi, t) ≥ γ(τi, t)

Approximate cumulative request bound functions of task 3

0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Processor Capacity gamma(tau_3,t) (this paper) delta(tau_3,t) (Fisher & Baruah)

Figure 1. Approximate cumulative request
bound functions on task set τ

We shall see that an FPTAS can be based on γ(τi, t). To
define an approximate feasibility test based on the principle
of Theorem 1, we define an approximate cumulative request
bound function as:

Ŵi(t)
def= Ci +

i−1∑
j=1

γ(τj , t)

According to the error bound 1+ε leading to k = �1/ε�,
we define the following testing set Ŝi ⊆ Si:

Ŝi
def= {bTa−Ja | a = 1 . . . i−1, b = 1 . . . k−1}∪{Di−Ji}

The principle of the algorithm is as follows:

• If there exists a time instant t ∈ Ŝi such that Ŵi(t) ≤
t, then τi is feasible (upon a unit speed processor),

• otherwise τi is infeasible on a processor of (1 − ε) ca-
pacity.

A simple implementation of this approximate feasibility
test leads to a O(n2/ε) algorithm. This is an FPTAS since
the algorithm is polynomial according the input size and the
input parameter 1/ε.

To see the improvement in the approximation under
γ(τj , t) consider the following task set τ , defined as
τi(Ci,Di = Ti), 1 ≤ i ≤ 3 with τ1(1, 3), τ2(2, 5),
τ3(2, 12), is not proved feasible using the tests presented
in [8]. Using the new definition of the Request-Bound Func-
tion

...
RBF (and more precisely γ(τ3, t)), the task τ3 is now

proved feasible since Ŵi(10) = 10 (i.e., see Figure 1 that
presents both approximate cumulative request bound func-
tions for task τ3).



We now prove the correctness of this approximate feasi-
bility test. The key point for the correctness of the approxi-
mation scheme is: δ(τi, t)/

...
RBF(τi, t) ≤ (1+ ε). This result

will then be used to prove that if a task set is stated infeasi-
ble by the FPTAS, then it is infeasible under a (1− ε)-speed
processor.

Theorem 4 ∀t ≥ 0, we verify that:

...
RBF(τi, t) ≤ γ(τi, t) (4)

γ(τi, t) ≤ (1 + ε)
...

RBF(τi, t) (5)

Proof: The Inequality (4) directly follows from the defini-
tions of

...
RBF(τi, t) and γ(τi, t). We now prove the Inequal-

ities stated in (5):
If γ(τi, t) >

...
RBF(τi, t) then t > (k − 1)Ti − Ji, since

γ(τi, t) =
...

RBF(τi, t) prior to (k − 1)Ti − Ji. Thus, there
are k − 1 steps in γ(τi, t) before approximating the request
bound function; it thus follows that:

...
RBF(τi, t) ≥ kCi (6)

Furthermore, γ(τi, t) − ...
RBF(τi, t) ≤ Ci: this is obvious if

t ∈ [0, (k − 1)Ti − Ji] since γ(τi, t) =
...

RBF(τi, t), and if
t > (k − 1)t − Ji, then using Lemma 1 and since 0 ≤
x − �x� < 1 for any real number x:

γ(τi, t) − ...
RBF(τi, t) =(

t + Ji + Ti − 1
Ti

−
⌊

t + Ji + Ti − 1
Ti

⌋)
Ci ≤ Ci

As a consequence:

γ(τi, t) ≤ ...
RBF(τi, t) + Ci

Using inequality (6), we obtain the result:

γ(τi, t) ≤ (1 +
1
k

)
...

RBF(τi, t) ≤ (1 + ε)
...

RBF(τi, t)

As a consequence, both inequalities are verified.
Using the same approach presented in [8], we can estab-

lish the correctness of approximation.

Theorem 5 If ∀t ∈ (0,Di − Ji], Ŵi(t) > t, then τi is
infeasible on a processor of (1 − ε) capacity.

Proof: Assume that ∀t ∈ (0,Di − Ji], Ŵi(t) > t, but τi is
still feasible on a (1 − ε)-speed processor. Since assuming
τi to be feasible upon a (1 − ε) speed processor, then there
must exist a time t0 such that τi:

Wi(t0) ≤ (1 − ε)t0

But, from Theorem 4 and Lemma 1 we verify that Ŵi(t) ≤
(1+ ε)Wi(t), where k

def=
⌈

1
ε

⌉
, then for all t ∈ (0,Di −Ji],

the condition Ŵi(t) > t becomes:

Wi(t) >
t

1 + ε

Since 0 < ε < 1, then 1
1+ε ≥ (1 − ε) and:

Wi(t) > (1 − ε)t ∀t ∈ (0,Di − Ji]

As a consequence, a time t0 such that Wi(t0) ≤ (1−ε)t0
cannot exist and τi is infeasible.

Now, if the approximate test concludes that a task τi is
feasible, then it is feasible upon a unit-speed processor.

Theorem 6 If there exists a time instant t ∈ (0,Di − Ji]
such that Ŵi(t) ≤ t, then Wi(t) ≤ t

Proof: Directly follows from Theorem 4 that allows to
conclude that ∀t ∈ (0,Di − Ji], Ŵi(t) ≥ Wi(t).

To conclude the correctness, we must prove that schedul-
ing points are sufficient.

Theorem 7 For all t ∈ Ŝi such that Ŵi(t) > t, then we
also verify that: ∀t ∈ (0,Di − Ji], Ŵi(t) > t

Proof: (Sketch) Let t1 and t2 be two adjacent points
in Ŝi (i.e., � t ∈ Ŝi such that t1 < t < t2). Since
Ŵi(t1) > t1, Ŵi(t2) > t2 and the fact that Ŵi(t) is an
non-decreasing step left-continuous function we conclude
that ∀t ∈ (t1, t2) Ŵi(t) > t. The theorem follows.

3.2. Approximate Worst-Case Response-
Times

Using the FPTAS presented in previous section, we can
check that a task is feasible upon a unit-speed processor or
infeasible upon a (1 − ε)-speed processor. If it is feasible,
then we are able to compute an upper bound of the worst-
case response-time of a task as presented in Section 3. If the
feasibility algorithm does not give a positive answer, then
our approach is not able to derive any upper bound (but, we
can use the one defined in [17] for instance).

Definition 4 Consider a task τi such that there exists a time
t satisfying Ŵi(t) ≤ t, then an approximate upper bound of
its worst-case response-time is defined by:

t∗ def= min
{

t ∈ Ŝi

∣∣Ŵi(t) ≤ t
}

R̂i
def= Ŵi(t∗) + Ji



We now prove that such a method defines an upper bound
of the worst-case response-time of task τi (i.e., satisfying
the condition presented in Definition 2).

Theorem 8 For every task τi such that there exists a time
t ∈ Ŝi satisfying Ŵi(t) ≤ t, then:

Ri ≤ R̂i

Proof: We know that for all time instant t:

Ŵi(t) ≥ Wi(t)

Let tc be the first time instant such that Ŵi(tc) = tc (i.e.,
tc is critical) and t∗ the time instant corresponding to the
worst-case response-time of τi (i.e., such that Wi(t∗) = t∗),
then we necessarily have t∗ ≤ tc. Since Wi(t) and Ŵi(t)
are non-decreasing functions, the result follows.

4. A Second Worst-Case Response-Time
Bound

In order to define a second upper bound of worst-case
response-times, we define an optimistic FPTAS for approxi-
mate feasibility analysis.

4.1. Optimistic Approximation Scheme

We use the same principle: k− 1 steps of
...

RBF(τi, t) will
be considered, and after that a linear lower bound based an
a simple relaxation of integral values of

...
RBF(τi, t) is used.

The number k of considered steps is defined according to
the accuracy parameter ε:

k
def=

⌈
1
ε

⌉
+ 1

Note that k has a different definition in the pessimistic
case than the optimistic case.

λ(τi, t)
def=

{ ...
RBF(τi, t) for t ≤ (k − 1)Ti − Ji,

(t + Ji)Ci

Ti
otherwise.

To define an optimistic approximate feasibility test, we
define an approximate cumulative request bound function
as:

W̃i(t)
def= Ci +

i−1∑
j=1

λ(τj , t)

We define the following testing set S̃i ⊆ Si:

S̃i
def= {bTa−Ja | a = 1 . . . i−1, b = 1 . . . k−1}∪{Di−Ji}
The principle of the algorithm is the following:

• If there exists a time instant t ∈ S̃i such that W̃i(t) ≤
t, then τi is feasible on a (1 + ε)-speed processor (but
no conclusion can be taken when a unit-speed proces-
sor is considered),

• otherwise τi is infeasible upon a unit speed processor.

As the approximate pessimistic version of the feasibility
test, this optimistic one leads to an O(n2

ε ) algorithm (i.e.,
an FPTAS). We now prove the correctness of the optimistic
approximation scheme.

Theorem 9 ∀t ≥ 0, we verify that:

(1 − ε)
...

RBF(τi, t) ≤ λ(τi, t) (7)

λ(τi, t) ≤ ...
RBF(τi, t) (8)

Proof: The Inequality (8) follows from definitions of
λ(τi, t) and

...
RBF(τi, t). We now prove the Inequality (7).

From definitions, λ(τi, t) <
...

RBF(τi, t) implies t > (k −
1)Ti − Ji. There are exactly (k − 1) steps in λ(τi, t), be-
fore starting the linear approximation of the request bound
function. As a consequence,

...
RBF(τi, t) ≥ kCi (9)

We now prove that
...

RBF(τi, t) − λ(τi, t) ≤ Ci. When t ≤
(k − 1)Ti − Ji, the result follows from definitions since...
RBF(τi, t) = λ(τi, t); otherwise, if t > (k − 1)Ti − Ji:⌈

t + Ji

Ti

⌉
Ci − (t + Ji)

Ci

Ti
= Ci

(⌈
t + Ji

Ti

⌉
− t + Ji

Ti

)
(10)

Since �x� < x + 1 for any real number x, then the Inequal-
ity (10) becomes,

...
RBF(τi, t) − λ(τi, t) ≤ Ci

To complete the proof, we use Inequality (9):

...
RBF(τi, t) −

...
RBF(τi, t)

k
≤ λ(τi, t)

(1 − 1
k

)
...

RBF(τi, t) ≤ λ(τi, t)

The result, (1 − ε)
...

RBF(τi, t) ≤ λ(τi, t), follows since
k ≥ 1/ε .

We now prove that if the approximation scheme returns
infeasible, then the task is infeasible.

Theorem 10 If ∀t ∈ (0,Di − Ji], W̃i(t) > t, then τi is
infeasible on a unit-speed processor.

Proof: From Theorem 9, we obtain that ∀t > 0, W̃i(t) ≤
Wi(t). Thus, if ∀t ∈ (0,Di − Ji], W̃i(t) > t implies that
Wi(t) > t. As a consequence, τi is infeasible.



Lastly, we prove that if the approximate test returns fea-
sible, the tested task is feasible upon a processor with ca-
pacity of (1 + ε).

Theorem 11 If there exists a time instant t ∈ (0,Di − Ji]
such that W̃i(t) ≤ t, then τi is feasible on a processor with
a capacity of (1 + ε).

Proof: Our proof obligation is:

W̃i(t) ≤ t ⇒ Wi(t) ≤ (1 + ε)t

Notice that k
k−1 ≤ 1 + ε. In the proof of the Theorem 9, we

shown that for every task τj : (1 − 1
k )

...
RBF(τj , t) ≤ λ(τj , t).

As a consequence considering the cumulative request bound
functions will lead to (1 − 1

k )Wi(t) ≤ W̃i(t). Then,

W̃i(t) ≤ t can be rewritten:

(1 − 1
k

)Wi(t) ≤ t

Wi(t) ≤ k

k − 1
t ≤ (1 + ε)t

Using the same proof technique as in Theorem 7, we can
show the necessity and sufficiency of the testing set S̃i for
analyzing task τi.

Theorem 12 For all t ∈ S̃i such that W̃i(t) ≤ t, then we
also verify that: ∀t ∈ (0,Di − Ji], W̃i(t) ≤ t

4.2. Approximate Worst-Case Response-
Time Bound

Using the optimistic FPTAS presented in the previous
section, we can check that a task is feasible upon a unit-
speed processor or infeasible upon a (1−ε)-speed processor.
If it is feasible, then we are able to compute an upper bound
on the worst-case response-time of a task as presented in
Section 2. As with the first upper bound, if the feasibility
algorithm does not conclude that a given task is feasible,
then we can use the bound defined in [17].

Definition 5 Consider a task τi such that there exists a
time t satisfying W̃i(t) ≤ t for a given accuracy param-
eter ε, then an approximate lower bound of its worst-case
response-time is defined by:

t∗ def= min
{

t ∈ S̃i|W̃i(t) ≤ t
}

R̃i
def=

k

k − 1
W̃i(t∗) + Ji

where k = � 1
ε � + 1.

We now prove that such a method defines an upper bound
the worst-case response-time of task τi.

Theorem 13 For every task τi such that there exists a time
t satisfying W̃i(t) ≤ t, then:

R̃i ≥ Ri

Proof: The result is verified if the following condition
holds: k

k−1W̃i(t) ≥ Wi(t). For task τi and all time t, The-
orem 9 implies:

(
1 − 1

k

)
...

RBF(τi, t) ≤ λ(τi, t)

If we now consider cumulative request bound functions, the
previous inequality becomes:

W̃i(t) ≥
(

1 − 1
k

)
Wi(t)

k

k − 1
W̃i(t) ≥ Wi(t)

Let tc be the first time instant such that W̃i(tc) = tc (i.e.,
tc is critical for the approximate optimistic feasibility test),
then the task is feasible upon a (1 + ε)-speed processor.
As a consequence and t∗ the time instant corresponding to
the worst-case response-time of τi (i.e., such that Wi(t∗) =
t∗). Since Wi(t) ≤ k

k−1W̃i(t) and both functions are non-

decreasing, then we verify t∗ ≤ tc. Thus, R̃i is an upper
bound of τi worst-case response time.

5. Worst-Case Analysis of Error Bounds

No upper bound of worst-case response times is known
to have a constant error bound in comparison with exact val-
ues computed by a pseudo-polynomial time algorithm. We
now show that the previously presented upper bounds do
not achieve constant error bounds. Firstly, we show that the
first upper bound dominates the second one. Secondly, we
show using a (counter-)example that no worst-case perfor-
mance guarantee can be achieved for these upper bounds of
worst-case response times.

Theorem 14 If both FPTASs conclude that a task τi is fea-
sible, the second upper bound (Definition 5) is always dom-
inated by the first one (Definition 4).

Proof: Our proof obligation is R̂i ≤ R̃i or equivalently
Ŵi(t) ≤ k

k−1W̃i(t). We consider two cases according to
t > (k − 1)Ti − Ji. If t ≤ (k − 1)Ti − Ji, then the FPTAS

do not start any linear approximation. As a consequence we



verify R̂i ≤ R̃i. Now, consider t > (k − 1)Ti − Ji, then
linear approximation are performed by both FPTAS:

k

k − 1
W̃i(t) − Ŵi(t) =

Ci

Ti

(
t + Ji

k − 1
− Ti + 1

)
Since t > (k − 1)Ti − Ji, then Ŵi(t) ≤ k

k−1W̃i(t). So,

joining both cases: R̂i ≤ R̃i.
We now prove that the approximate response time

bounds can be far away from their related exact values.

Theorem 15 For any accuracy parameter ε, there exists
some task systems for which cRi ≤ R̂i for any integer c.

Proof: Let k be defined by k = �1/ε�. Let us consider a
task system with two tasks with the following parameters:
τ1 with C1 = (1 − λ)K and T1 = K; τ2 defined as fol-
lows: C2 = λK2 and T2 = K2 + (K − 1)

⌈
1−λ

λ

⌉
, where

0 < λ < 1, K is an arbitrary integer that is a multiple of k
and such that λK is also an integer. Note that (1−λ)K will
be therefore an integer. We assume that both tasks are not
subjected to release jitter constraints (i.e., J1 = J2 = 0).
Using the Rate Monotonic Scheduling policy, the task τ2

can only be executed λK units of time within every sub-
sequent interval of time of length K. As a consequence,
the exact worst-case response time of τ2 is: R2 = K2.
The approximation switches to a linear approximation at
(k − 1)K which is strictly less than K2. Thus we consider
that t > (k−1)K. The approximate response time analysis
leads to:

Ŵ2(t) = λK2 + (t + K − 1)(1 − λ)

The corresponding approximate worst-case response
time will be achieved for Ŵ2(t) = t. The fixed-point for
τ2 is:

t = K2 + (K − 1)
1 − λ

λ

Therefore, the approximate response-time is strictly
larger than the exact one, and can be made arbitrarily large.
Note that τ2 is feasible according to the pessimistic approxi-
mate feasibility test. But, when λ tends to 0, then 1−λ

λ tends
to infinity and so do the approximate worst-case response
time, while the exact value is still bounded by a constant
integer. So we can always define a constant c such that:
cRi ≤ R̂i by setting λ using an appropriate value.

Since the second upper bound (obtained from the opti-
mistic FPTAS) is dominated by the first one, then it achieves
no performance guarantee neither.

6. Experiments

We randomly generated task sets in order to compare our
best upper bound to other known ones. Unbiased utiliza-

tions were generated using the UUniFast algorithm [4]. Pe-
riods Ti are randomly generated in the interval [1, 2500] and
worst-case execution time Ci are computed as Ci = uiTi.
Deadlines Di are randomly generated within the interval
[Ci, Ti]. A uniform law was used to generate random num-
bers. Ci,Di, Ti was then rounded to the closest integer. The
utilization factor varies from 0.5 to 0.9 (step 0.1) and for ev-
ery value, the same number of task sets has been generated.

Experiment parameters are the task number n, the uti-
lization factor U and the accuracy parameter ε. For fixed
parameters, every experiment is replicated 100 times in or-
der to achieve unbiased statistics. We compared our first
bound (denoted FHGR) with two known upper bounds
computed in linear time for every task τi: SHi is an up-
per bound computed using the rounding principle presented
in [17] and BBi is an improvement of this upper bound pre-
sented in [3]:

SHi =

∑i
j=1 Cj

1 − ∑i−1
j=1 Uj

(11)

BBi =
Ci +

∑i−1
j=1 Cj(1 − Uj)

1 − ∑i−1
j=1 Uj

(12)

In order to compare these bounds, only tasks accepted
by our approximate feasibility tests have been considered
(otherwise, no upper bound can be computed using our
method). We monitored two indicators: the average error in
comparison with exact values of worst-case response times
(i.e., (ub − Ri)/Ri, where ub is an upper bound) and the
rate of tasks stated “infeasible” using the upper bound (i.e.,
ub > Di) for feasible tasks (i.e., Ri ≤ Di). Numerical
results are presented in Figure 2. In the first graph, the aver-
age errors are presented for various values of k; the results
show that our method clearly improves the previous known
bounds, even if k = 2 (i.e., the smallest possible value since
k = �1/ε� and 0 < ε < 1). The average error is less than
1% when k = 5 (i.e., 0.2 ≤ ε < 0.25). Concerning the sec-
ond graph, we see that our approach is less pessimistic since
only few feasible tasks are not accepted by our method and
less sensitive to the task number.

7. Conclusion

We define two upper bounds of worst-case response time
for static priority task subjected to release jitters. The cor-
responding algorithms are parametric in the sense that an
accuracy parameter ε is used to define the time spent before
starting an approximate analysis. If the accuracy parame-
ter is a very small number, then our experiments show that
upper bounds are very close to exact worst-case response
times, but still computable in polynomial time according to
task parameters and the constant 1/ε.



Average Error in comparison of exact wcrt

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

5 10 15 20

#Tasks

A
ve

ra
g

e 
E

rr
o

r SH

BB

FHGR k=2

FHGR k=3

FHGR k=4

FHGR k=5

feasible tasks stated infeasible using wcrt upper bounds

0%

5%

10%

15%

20%

25%

30%

5 10 15 20

#tasks

%
ta

sk
s SH

BB

FHGR

Figure 2. Simulation Results

We must mention that the existence of an algorithm for
approximating worst-case response time in polynomial time
is still an interesting open problem, even if basic task sets
are considered (e.g., deadlines equal periods). Another in-
teresting issue is to study if the approach presented in this
paper can be extended to EDF scheduling.

References

[1] K. Albers and F. Slomka. An event stream driven approxi-
mation for the analysis of real-time systems. In Euromicro
Conference on Real-Time Systems, pages 187–195, 2004.

[2] K. Albers and F. Slomka. Efficient feasibility analysis for
real-time systems with edf scheduling. In Design, Automa-
tion and Test in Europe, 2005.

[3] E. Bini and S. Baruah. Efficient computation of response
time bounds under fixed-priority scheduling. In Real-Time
and Network Systems, 2007.

[4] E. Bini and G. Buttazzo. Measuring the performance of
schedulability tests. Journal of Real-Time Systems, 30(1–
2):129–154, 2005.

[5] E. Bini, G. Buttazzo, and G. Buttazzo. Rate monotonic
scheduling: The hyperbolic bound. IEEE Transactions on
Computers, 2003.

[6] S. Chakraborty, S. Kunzli, and L. Thiele. Approximate
schedulability analysis. In Real-Time Systems Symposium,
2002.

[7] D. Chen, A. Mok, and T. Kuo. Utilization bound revisited.
IEEE Transactions on Computers, 2003.

[8] N. Fisher and S. Baruah. A fully polynomial-time approxi-
mation scheme for feasibility analysis in static-priority sys-
tems with arbitrary relative deadlines. In Euromicro Confer-
ence on Real-Time Systems, pages 117–126, July 2005.

[9] C. Han and H. Tyan. A better polynomial-time schedulabil-
ity test for real-time fixed-priority scheduling algorithm. In
Real-Time Systems Symposium, 1997.

[10] S. Lauzac, R.Melhem, and D. Mossé. An improved rate-
monotonic admission control and its applications. IEEE
Transactions on Computers, 2003.

[11] J. Lehoczky. Fixed priority scheduling of periodic tasks with
arbitrary deadlines. In Real-Time Systems Symposium, pages
201–209, 1990.

[12] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic
scheduling algorithm: exact characterization and average
case behavior. In Real-Time Systems Symposium, pages
166–171, 1989.

[13] Y. Manabee and S. Aoyagi. A feasible decision algorithm for
rate monotonic and deadline monotonic scheduling. Real-
Time Systems Journal, pages 171–181, 1998.

[14] D.-W. Park, S. Natarajan, A. Kanavsky, and M. Kim. A
generalized utilization bound test for fixed-priority real-time
scheduling. In Workshop on Real-Time Systems and Appli-
cations, 1995.

[15] P. Richard. Polynomial time approximate schedulability
tests for fixed-priority real-time tasks: some numerical ex-
perimentations. In Real-Time and Network Systems, 2006.

[16] P. Richard and J. Goossens. Approximating response times
for static-priority tasks with release jitters. In Euromicro
Conference on Real-Time Systems (WiP session), 2006.

[17] M. Sjodin and H. Hansson. Improved response time analysis
calculations. In Real-Time Systems Symposium, 1998.

[18] K. Tindell. Fixed Priority Scheduling of Hard Real-Time
Systems. PhD thesis, University of York, 1994.


