
CapNet: A Real-Time Wireless Management
Network for Data Center Power Capping

Abusayeed Saifullah∗, Sriram Sankar†, Jie Liu‡, Chenyang Lu∗, Ranveer Chandra‡, and Bodhi Priyantha‡

Washington University in St louis, St louis, Missouri 63130, USA∗

Microsoft Corporation, Redmond, Washington 98052, USA†

Microsoft Research, Redmond, Washington 98052, USA‡

Abstract—Data center management (DCM) is increasingly
becoming a significant challenge for enterprises hosting large
scale online and cloud services. Machines need to be monitored,
and the scale of operations mandates an automated management
with high reliability and real-time performance. Existing wired
networking solutions for DCM come with high cost. In this
paper, we propose a wireless sensor network as a cost-effective
networking solution for DCM while satisfying the reliability and
latency performance requirements of DCM. We have developed
CapNet, a real-time wireless sensor network for power capping, a
time-critical DCM function for power management in a cluster of
servers. CapNet employs an efficient event-driven protocol that
triggers data collection only upon the detection of a potential
power capping event. We deploy and evaluate CapNet in a
data center. Using server power traces, our experimental results
on a cluster of 480 servers inside the data center show that
CapNet can meet the real-time requirements of power capping.
CapNet demonstrates the feasibility and efficacy of wireless
sensor networks for time-critical DCM applications.

I. INTRODUCTION

The continuous, low-cost, and efficient operation of a
datacenter heavily depends on its management network and
system. A typical data center management (DCM) system
handles physical layer functionality such as powering on/off
a server, motherboard sensor telemetry, cooling management,
and power management. Higher level management capabilities
such as system re-imaging, network configuration, (virtual)
machine assignments, and server health monitoring [1], [2]
depend on DCM to work correctly. DCM is expected to
function even when the servers do not have a working OS
or the data network is not configured correctly [3].

Today’s DCM is typically designed in parallel to the pro-
duction data network (in other words, out of band), with a
combination of Ethernet and serial connections for increased
redundancy. There is a cluster controller for a rack or a group
of racks, which are connected through Ethernet to a central
management server. Within the clusters, each server has a
motherboard microcontroller (BMC - Baseboard Management
Controller) that is connected to the cluster controller via point-
to-point serial connections. For redundancy reasons, every
server is typically connected to two independent controllers
on two different fault domains, so there is at least one
way to reach the server under any single point of failure.
Unfortunately, this architecture does not scale. The overall
cost of management network increases super-linearly with the

number of servers in a data center. At the same time, massive
cabling across racks increases the chance for human errors and
prolongs the server deployment latency.

This paper presents a different approach to data center
management network at the rack granularity, by replacing
serial cable connections with low cost wireless links. Low
power wireless sensor network technology such as IEEE
802.15.4 has intrinsic advantages in this application.
• Cost: Low-power radios (i.e., IEEE 802.15.4) are cheaper

individually than wired alternatives and the cost scales
linearly with the number of servers.

• Embedded: These radios can be physically small and be
integrated onto motherboard to save precious rack space.

• Reconfigurability: Wireless sensor networks can be self-
configuring and self-repairing with the broadcast media
to prevent human cabling error.

• Low power: With a small on-board battery, the DCM
based on wireless can continue to function on batteries
providing monitoring capabilities even when the rack
experiences a power supply failure.

However, whether a wireless DCM can meet the high relia-
bility requirement for data center operation is not obvious for
several reasons. The amount of sheet metals, electronics, and
cables may completely shield RF signal propagation within
racks. Furthermore, although typical traffic on a DCM is low,
emergency situations might need to be handled in real time,
which could require the design of new protocols.

Power capping is an example of emergency event that
imposes real-time requirements. Today, data center operators
commonly oversubscribe the power infrastructure by installing
more servers to an electric circuit than it is rated. The rationale
is that servers seldom reach their peak at the same time.
By over-subscription, the same data center infrastructure can
host more servers than otherwise. In the rare event when
the aggregate power consumption of all servers exceeds the
circuit’s power capacity, some servers must be slowed down
(i.e. power capped), through dynamic frequency and voltage
scaling (DVFS) or CPU throttling, to prevent the circuit
breaker from tripping. Every magnitude of oversubscription is
associated with a trip time which is a deadline by which power
capping must be performed to avoid circuit breaker tripping.

This paper studies the feasibility and advantages of using
low-power wireless for DCM. In two data centers, we empir-
ically evaluate IEEE 802.15.4 link qualities in server racks to

show that the overall packet reception rate is high. We further
dive into the power capping scenario and design CapNet,
a wireless Network for power Capping, that employs an
event-driven real-time control protocol for power capping over
wireless DCM. The protocol uses distributed event detection
to reduce the overhead of regularly polling all nodes in the
network. Hence, the network throughput can be used by
other management tasks when there is no emergency. When
a potential power surge is detected, the controller uses a
sliding window and collision avoidance approach to gather
power measurements from all servers, and then issues power
capping commands to a subset of them. We deployed and
evaluated CapNet in a data center. Using server power traces,
our experimental results on a cluster of 480 servers in the data
center show that CapNet can meet the real-time requirements
of power capping. It demonstrates the feasibility and efficacy
in power capping like wired DCM with a fraction of the cost..

II. THE CASE FOR WIRELESS DCM (CAPNET)

Typical wired DCM solutions in data centers scale poorly
with increase in number of servers. The serial-line based point-
to-point topology incurs additional costs as we connect more
of them together. Here, we compare the costs of the wired
DCM to our proposed wireless based solution (CapNet) by
considering the cost of the management network, and by
measuring the quality of in-rack wireless links.

A. Cost Comparison with Wired DCM

To compare the hardware cost, we consider the cost of
the DiGi switches ($3917/48port [4]), controller cost (approx.
$500/rack [5]), cable cost ($2/cable [6]) and additional man-
agement network switches ($3000/48port on average [7]). We
do not include the labor or management costs for cabling for
simplicity of costing model, but note that these costs are also
significant with wired DCMs. We assume that there are 48
servers per rack, and there can be up to 100,000 servers that
need to be managed, which are typical for large data centers.
For the wireless DCM based CapNet solution, we assume
IEEE 802.15.4 (ZigBee) technologies for its low cost benefits.
The cost of network switches at the top level layer stays, but
the cost of DiGi can be significantly reduced. We assume
$10 per wireless controller, which is essentially an Ethernet
to ZigBee relay. For wireless receivers on the motherboard,
we assume $5 per server for the RF chip and antenna as the
motherboard controller is already in place [8].

of servers Wired-N Wired-2N CapNet-N CapNet-2N
10 7450 14900 3060 6070
100 16560 33120 3530 6560
1000 98820 197640 8210 11420
10000 980780 1961560 79090 108180
100000 9772280 19544560 781840 1063680

TABLE I
SYSTEM COST (IN US DOLLAR) COMPARISON AND SCALABILITY

We develop a simple cost model based on these individual
costs and compute the total devices needed for implementing
management over number of servers ranging from 10 to

Fig. 1. Mote placed in bottom sled

100,000 (in order to capture how cost scales with the number
of servers). We consider solutions across two dimensions 1)
Wired vs Wireless, and 2) N-redundant vs 2N-redundant (A 2N
redundant system consists of two independent switches, DiGis
and paths through the management system). Table I shows the
cost comparison across these solutions. We see that a wired
N-redundant DCM solution (Wired-N) for 100,000 servers
is 12.5× the cost of a wireless N-redundant DCM solution
(CapNet-N). If we increase the redundancy of the management
network to 2N, the cost of a wired solution (between Wired-
2N and Wired-N) doubles. In contrast, the cost of a wireless
solution increases only by 36% (due to 2N controllers and
2N switches at the top level). The resulting cost of Wired-
2N is 18.4× that of CapNet-2N. Given the significant cost
difference between wired DCM and CapNet, we next explore
whether wireless is feasible for communication within racks.

B. Choice of Wireless - IEEE 802.15.4

We are particularly interested in low bandwidth wireless
like IEEE 802.15.4 instead of IEEE 802.11 for a number of
reasons. First, the payload size for data center management is
small and hence a ZigBee (IEEE 802.15.4) network bandwidth
is sufficient for control plane traffic. Second, in WiFi (IEEE
802.11) there is a limit on how many nodes an access point can
support in the infrastructure mode since it has to maintain an
IP stack for every connection, and this impacts scalability in
a dense deployment. Third, to support management features,
the data center management system should still work when
the rack is unpowered. A small backup battery can power
ZigBee longer at much higher energy efficiency. Finally,
ZigBee communication stack is simpler than WiFi so the moth-
erboard (BMC controller) microcontroller can remain simple.
Although we do not rule out other wireless technologies, we
chose to prototype with ZigBee in this paper.

C. Radio Environment inside Racks

We did not find any previous study that evaluated the signal
strength within the racks through servers and sheet metal.
The sheet metals inside the enclosure are known to weaken
radio signal, giving a harsh environment for radio propagation
inside racks. RACNet [9] studied wireless characteristics in
data centers, but only across racks when all radios are mounted

−80 −75 −70 −65 −60 −55
0

0.2

0.4

0.6

0.8

1

RSSI (dBm)

C
D

F
 o

f
R

S
S

I

 0dBm

−3dBm

−7dBm

−15dBm

(a) RSSI when Tx power varies (channel 26)

−90 −80 −70 −60 −50 −40 −30
0

0.2

0.4

0.6

0.8

1

RSSI (dBm)

C
D

F
 o

f
R

S
S

I

Channel 26
Channel 20
Channel 15
Channel 11

(b) RSSI on various channels (Tx power -3dBm)

26 20 15 11
0

20

40

60

80

100

Channel

P
R

R
 (

%
)

 0dBm
−3dBm
−7dBm
−15dBm

(c) PRR at a receiver

Fig. 2. Downward signal strength and PRR in bottom sled

at the top of the rack. Therefore, we first perform an in-depth
802.15.4 link layer measurement study based on in-rack radio
propagation inside a data center of Microsoft Corporation.
Setup. The data center used for measurement study has racks
that consist of multiple chassis in which servers are housed.
A chassis is organized into two columns of sleds. In all
experiments, one TelosB mote is placed on top of the rack
(ToR), inside the rack enclosure. The other motes are placed in
different places in a chassis in different experiments. Figure 1
shows the placement of 8 motes inside a bottom sled (which
is open in the figure but was closed during the experiment).
While measuring the downward link quality, the node on ToR
is the sender and the nodes in the chassis receive. Then we
reverse the sender and the receiver to measure the upward link
quality. In each setup, the sender transmits packets at 4Hz. The
payload size of each packet is 29 bytes. Through a week-long
test capturing the long-term variability of links, we collected
signal strengths and packet reception rate (PRR).
Results. Figure 2(a) shows the cumulative distribution func-
tion (CDF) of Received Signal Strength Indicator (RSSI) val-
ues at a receiver inside the bottom sled for 1000 transmissions
from the node on ToR for different transmission (Tx) power
using IEEE 802.15.4 channel 26. For -7dBm or higher Tx
power, RSSI is greater than -70dBm in 100% cases. RSSI
values in ZigBee receivers are in the range [−100, 0]. Previous
study [10] on ZigBee shows that when the RSSI is above
−87dBm (approx.), PRR is at least 85%. As a result, we see
that signal strength at the receiver in bottom sled is quite
strong. Figure 2(b) shows the CDF of RSSI values at the
same receiver for 1000 transmissions from the node on ToR on
different channels at Tx power of -3dBm. Both figures indicate
a strong signal strength, and in each experiment the PRR was
at least 94% (Figure 2(c)). We observed similar results in all
other setups of the measurement study, and omit those results.

The measurement study reveals that low-power wireless,
such as IEEE 802.15.4, is viable for communication within
data center racks and can be reliable for telemetry purpose.
We now focus on the power capping scenario and CapNet
design for real-time power capping over wireless DCM.

III. CAPNET DESIGN OVERVIEW

Power infrastructure bears huge capital investment for a
data center, up to 40% of the total cost of a large data
center that can cost hundreds of millions of US Dollars [11].
Hence, it is desirable to use the provisioned infrastructure to

!"##

$%#

%

#&$

$ % ! ' $# %#

(
)*
+
,-
*.
/
,0
1
/
2
3

45))/6-,67).89*:/;,-7,)8-/;,25))/6-

Not Tripped

Tripped

Long-delay

Conventional
Tripping

Short Circuit

%$

!

(79/)862/,<86;

Fig. 3. The trip curve of Rockwell Allen-Bradley 1489-A circuit breaker at
40◦C [16]. X-axis is oversubscription magnitude. Y-axis is trip time.

its maximum rated capacity. The capacity of a branch circuit
is provisioned during design time, based on upstream trans-
former capacity during normal operation or UPS/Generator
capacity when running on backup power. To improve data
center utilization, a common practice in enterprise data centers
is to do oversubscription [12]–[15]. This method allocates
servers in a circuit exceeding the rated capacity (i.e. cap),
since not all servers reach their maximum power consumption
at the same time. Hence, there is a circuit breaker (CB)
that trips to protect expensive equipment. The peak power
consumption above the cap has a specified time limit, called
a trip time, depending on the magnitude of over-subscription
(as shown in Figure 3 for Rockwell Allen-Bradley 1489-A
circuit breaker). If the over-subscription continues for longer
than the trip time, the CB will trip and cause undesired server
shutdowns and power outages disrupting data center operation.
Power capping is the mechanism to bring the aggregate power
consumption back to the cap. An overload condition under
practical current draw trips the CB on a time scale from several
hundred milliseconds to hours, depending on the magnitude
of the overload [16]. These trip times are the deadlines for
the corresponding oversubscription magnitudes within which
power capping must be done to prevent CB tripping to avoid
power loss or damage to expensive equipment.

A. The Power Capping Problem

To enable power capping for a rack or cluster, a power
capping manager (also called controller) collects all servers’
power consumption and determines the cluster-level aggregate

Server
with

wireless

Rows of racks in data center

ToR

A cluster of
3 racks

A cluster of 3 racks

ToRToR

Wireless power
capping manager

Fig. 4. Wireless DCM architecture

power consumption. If the aggregate consumption is over the
cap, the manager generates control messages asking a subset
of the servers to reduce their power consumptions through
CPU frequency modulation (and voltage if using DVFS) or
utilization throttling. The application level quality of service
may require different servers to be capped at different levels.
So the central controller needs all individual server readings.
In some graceful throttling policies, the control messages are
delivered by the BMC Controller to the host OS or VMs,
which introduce additional latency due to OS stack [14],
[17]. To avoid abrupt changes to application performance, the
controller may change the power consumption incrementally
and require multiple iterations of the feedback control loop
before the cluster settles down to below the power cap [14],
[18]. These control policies have been studied extensively by
previous work and are out of the scope of this paper.

B. Power Capping over Wireless DCM

Servers in a data center are stacked and organized into
racks. One or more racks can comprise a power management
unit, called a cluster. Figure 4 shows the wireless DCM
architecture inside a data center. All servers in a cluster
incorporate a wireless transceiver that connects to the BMC
microcontroller. Each server is capable of measuring its own
power consumption. A cluster power capping manager can
either directly measure the total power consumption using
a power meter, or, to achieve fine-grained power control,
aggregates the power consumption from individual servers.
We focus on the second case due to its flexibility. When the
aggregate power consumption approaches the circuit capacity,
the manager issues capping commands over wireless links
to individual servers. The main difference compared to a
wired DCM is the broadcast wireless media and challenge
of scheduling communication to meet the real-time demands.

To reduce extra coordination and to enable spatial spec-
trum reuse, we assume a single IEEE 802.15.4 channel for
communication inside a cluster. Using multiple channels,
multiple clusters can run in parallel. Channel allocation can
be done using existing protocols that minimize inter-cluster
interference (e.g. [19]), and is not the focus of our paper. For
protocol design, we focus on a single cluster of n servers.

C. A Naive Periodic Protocol

A naive approach for a fine-grained power capping policy
is to always monitor the servers by periodically collecting

the power consumption readings from individual servers. The
manager periodically computes the aggregate power. When-
ever the aggregate power exceeds the cap, it generates a control
message. Upon finishing the aggregation and control in η
iterations, it resumes the periodic aggregation again.

D. Event-Driven CapNet

Oversubscribing data centers may provision for the 95-th (or
more) percentile of the peak power, and require capping for 5%
(or less) of the time, which may be an acceptable hit on per-
formance in relation to cost savings [17]. Thus power capping
is a rare event, and the naive periodic protocol is an overkill
as it saturates the wireless media by always preparing for the
worst case. Other delay-tolerant telemetry messages cannot get
enough network resources. An ideal wireless protocol should
generate significant traffic only when a significant power surge
occurs. Therefore, CapNet employs an event-driven policy
that is designed to trigger power capping control operation
only when a potential power capping event is predicted. Due
to the rareness and emergency nature of power surge, the
network can suspend other activities to handle power capping.
It provides real-time performance and a sustainable degree
of reliability without consuming much network resource. The
details of the protocol is explained in the next section.

IV. POWER CAPPING PROTOCOL

We design a distributed event detection policy, where we
assign local caps to each individual server from their global
(cluster-level) cap. When a server observes a local power surge
based on its own power reading, it can trigger the collection of
the power consumption of all the servers to detect a potential
surge in the aggregate power consumption of cluster. If a
cluster-level power surge is detected, the system initiates a
power capping action. As many servers can simultaneously
exceed their local caps, a standard CSMA/CA protocol can
suffer from significant packet loss due to excessive contention
and collisions. Similarly, a slot stealing TDMA (Time Division
Multiple Access) protocol such as Z-MAC [20] would suffer
from the same problem as those servers will try to steal
slot simultaneously. Furthermore, pure TDMA based protocols
do not fit well for our problem since they need to have
a predefined communication schedule for all nodes. Finally,
as power aggregate consumption can be quite dynamic, it
may be infeasible to predict an upcoming power peak based
on historical readings. This observation leads us to avoid a
predictive protocol that proactively schedule data collection
based on historical power readings.

While a global detection is possible by just monitoring at
the branch circuit level, say using a power meter, it cannot
support fine-grained and flexible power capping policies such
as those based on individual server-priority or reducing powers
of individual servers based on their power consumptions. Also,
a centralized measurement introduces a single point of failure.
That is, if the power meter fails, power oversubscription will
fail also. In contrast, our distributed approach is more resilient
to failure. If individual measurement fails, the system can

Aggregation
phase

collect all
server readings

Control
phase

control();
k++;

k < ηpagg > c

Cond (1)

satisfied in this

interval?

The manager sends heartbeat
after each detection interval

 server i sends alarm

at i-th slot of detection

interval, if pi > local cap

Detection phase

false alarm

k=0;
yesno

yes

no

Start
Each server is given
a unique ID i=1, ..., n

no

yes

Fig. 5. CapNet’s event-driven protocol flow diagram

always assume a maximum power consumption at that server
and keep the whole cluster going.

The event-driven protocol runs in 3 phases as illustrated
in Figure 5: detection, aggregation, and control. The event
detection phase generates alarms based on local power surges.
Upon detecting a potential event, CapNet runs the second
phase which invokes a power aggregation protocol. False
detection may happen when some servers generate alarms
exceeding the local caps, but the aggregate value is still under
the cap. This is corrected in the aggregation phase, where the
controller determines the aggregate power consumption. The
impact of a false positive case is that the system runs into the
aggregation phase which incurs additional wireless traffic. The
control phase is executed only if the alarms are true.

We normalize each server’s power consumption value be-
tween 0 and 1 by dividing its instantaneous power consump-
tion by the maximum power consumption of an individual
server. This normalized power consumption value of server i
is denoted by pi, where 0 ≤ pi ≤ 1, and is used in this paper
as a server’s power consumption. The cap of a cluster of n
servers is denoted by c, and the total power consumption of
n servers is considered as the aggregate power consumption
and is denoted by pagg .

Assigning local cap. If pagg > c, a necessary condition is
that some servers’ (at least one) individual power consumption
values locally exceed the value c

n . Therefore, a possible way
is to assign c

n as each server’s local cap. However, there
can be situations where only one server exceeds c

n while all
other servers are under c

n , thereby triggering an aggregation
phase upon a single server’s alarm. As a result, this policy
will generate many false alarms. Therefore, to suppress false
alarms, we assign a slightly smaller local cap, and consider
alarms from multiple servers before aggregation phase. Thus
we use a value 0 < α ≤ 1 close to 1 and assign αc

n as the
local cap for each server. A server i reports alarm if pi > αc

n .

Each server is assigned a unique ID i, where i =
1, 2, · · · , n. The manager broadcasts a heartbeat packet at
every h time units called detection interval. The detection
interval of length h is slotted among n slots, with each slot
length being

⌊
h
n

⌋
. The value of h is selected in a way so that

a slot is long enough to accommodate one transmission and
its acknowledgement. After receiving the heartbeat message,
the server clocks are synchronized.

A. Detection Phase

Each node i, 1 ≤ i ≤ n, takes its sample (i.e., power
consumption value pi) at the i-th slot in the detection phase.
If its reading is over the cap i.e. pi > αc

n , it generates
an alarm and sends the reading (pi) to the manager as an
acknowledgement of the heartbeat message. Otherwise, it
ignores the heartbeat message, and does nothing. If an alarm
is received at the s-th slot, the manager determines, based on
whether the network is reliable or not, whether an aggregation
phase has to be started. Let the servers who have sent alarms
in the current detection window so far be denoted by A.

Reliable Network. Let an alarm be generated in the s-th slot
of a detection interval. Considering a reliable network we can
consider that no server message was lost. Therefore, each of
the other s−|A| servers among the first s servers has a power
consumption reading of at most αcn as it has not generated an
alarm. Each of the remaining n− s servers can have a power
consumption value of at most 1. Thus based on the alarm
at s-th slot, the manager can estimate an aggregate power of∑
j∈A pj+(s−|A|)αcn +(n−s). Hence, if an alarm is generated

at the s-th slot, the manager will start aggregation phase if∑
j∈A

pj + (s− |A|)αc
n

+ (n− s) > c (1)

Unreliable Network. Now we consider a scenario where some
server alarms were lost. As a result, if an alarm is generated
in the s-th slot of a detection window, each of the other
s − |A| servers among the first s servers may have a power
consumption reading of at most 1 as its alarm is assumed to
be lost. Therefore, each of the n−|A| servers can have power
consumption of at most 1, making an estimated aggregate
power of

∑
j∈A pj +(n−|A|). Thus, if an alarm is generated

in the s-th slot, the manager will start aggregation phase if∑
j∈A

pj + (n− |A|) > c (2)

If there are no alarms in the detection phase or all alarm
messages were lost due to transmission failure, the controller
resumes the next detection phase (to detect the surges again
using the same mechanism) when the current phase is over.

B. Aggregation Phase

To minimize aggregation latency, CapNet adopts a sliding
window based protocol to determine aggregate power con-
sumption denoted by pagg . The controller uses a window
of size ω. At anytime, it selects ω servers (or, if there are
fewer than ω servers whose readings are not yet collected,
then selects all of them) in a round-robin fashion who will
send their readings consecutively in the next window. These
ω server IDs are ordered in a message. In the beginning of
the window, the controller broadcasts this message, and starts
a timer of length τd + ωτu after the broadcast, where τd
denotes the maximum downward communication time (i.e.,
the maximum time required for a controller’s packet to be
delivered to a server) and τu denotes the maximum upward

communication time (server to controller). Upon receiving
the broadcast message, any server whose ID is in order i,
1 ≤ i ≤ ω, in the message transmits its reading after (i−1)τu
time. Other servers ignore the message. If the timer fires or
packets from all ω nodes are received, the controller creates
the next window of ω servers that are yet to be scheduled
or whose packets were missed (in the previous window). A
server is scheduled in at most γ consecutive windows to
handle transmission failures, where γ is the worst-case ETX
(expected number of transmissions for a successful delivery) in
the network. The procedure continues until all server readings
are collected or there is no server that was retried γ times.

C. Control Phase

Upon finishing the aggregation phase, if pagg > c, where c
is the cap, it starts the control phase. The control phase gener-
ates a capping control command using a control algorithm, and
then the controller broadcasts the message requesting a subset
of the servers to be capped. To handle broadcast failures,
it repeats the broadcast γ times (since the broadcast is not
acknowledged). The servers react to the capping messages by
DVFS or CPU throttling that incurs an operating system (OS)
level latency as well as a hardware-induced delay [17]. If the
control algorithm requires η-iteration, then after the capping
control command is executed in the first round, the controller
will again run the aggregation phase to reconfirm that capping
was done correctly. The procedure iterates up to (η− 1) more
iterations. Upon finishing the control, or after the aggregation
phase upon a false alarm, it resumes the detection phase.

D. Latency Analysis

Given the time criticality for power capping, it is important
for CapNet to achieve bounded latency. Here, we provide an
analytical latency upper bound for CapNet’s power capping
latency that consists of detection phase latency, aggregation
latency, OS level latency, and hardware latency. In practice, the
actual latency is usually lower than the bound. The analysis
can be used by system administrators to configure the cluster
to ensure power capping meets the timing constraints.
Aggregation latency. For n servers in the cluster, the total
aggregation delay Lagg under no transmission failure can be
upper bounded as follows. Note that each window of ω trans-
missions can take at most (τuω+τd) time units. There can be at
most

⌊
n
ω

⌋
windows where in each window ω servers transmit.

Then, the last window will take only (n mod ω+ τd) time to
accommodate the remaining (n mod ω) servers. Hence,

Lagg ≤ (τuω + τd)
⌊n
ω

⌋
+ (n mod ω + τd)

Considering γ as the worst-case ETX in the network,

Lagg ≤
(
(τuω + τd)

⌊n
ω

⌋
+ (n mod ω + τd)

)
γ (3)

The above value is only an analytical upper bound, and in
practice the latency can be a lot shorter.
Latency in detection phase. The time spent in the detection
phase is denoted by Ldet. In a detection window the protocol

never will need the readings from the last bcc − 1 servers as
an aggregation phase must start before this should a power
capping needed (assuming that not all alarms were lost).
Therefore the alarms generated within the first (n− bcc+ 1)
slots must trigger aggregation phase. Hence,

Ldet ≤
⌊
h

n

⌋
(n− bcc+ 1) (4)

Total power capping latency. To handle a power capping
event, a detection phase and an aggregation phase are followed
by a control message that is broadcasted γ times and takes τdγ
time. In addition, once the control message reaches a server,
there is an operating system level latency, and after processor
frequency changes, there is a hardware-induced delay. Let the
OS level latency and the hardware level latency in the worst
case be denoted by Los and Lhw, respectively. Thus, the total
power capping latency in one iteration, denoted by Lcap, is
bounded as

Lcap ≤ Ldet + Lagg + τdγ + Los + Lhw

A η-iteration control means that once power capping command
is executed, the controller will again need to collect all
readings from servers, and reconfirm that capping was done
correctly in (η − 1) more iterations. Therefore, for η-iteration
control, the above bound is given by

Lcap ≤ Ldet + (Lagg + τcγ + Los + Lhw)η (5)

V. EXPERIMENTS

In this section, we present the experimental results of
CapNet. The objective is to evaluate the effectiveness and
robustness of CapNet in meeting the real-time requirements
of power capping under data center realistic settings.

A. Implementation

The wireless communication side of CapNet is implemented
in NesC on TinyOS [21] platform. To comply with realistic
data center practices, we have implemented the control man-
agement at the power capping manager side. In our current
implementation, wireless devices are plugged to the servers
directly through their serial interface.

B. Workload Traces

We use workload demand traces from multiple geo-
distributed data centers run by a global corporation over a pe-
riod of six consecutive months. Each cluster consists of several
hundreds of servers that span multiple chassis and racks. These
clusters run a variety of workloads including Web-Search,
Email, Map-Reduce jobs, and cloud applications, catering to
millions of users around the world. Each cluster uses homo-
geneous hardware, though there could be differences across
clusters. We use workload traces of 2 representative server
clusters: C1 and C2. In both clusters each individual server
has CPU utilization data of 6 consecutive months in every 2
minutes interval. While we recognize that full system power
is composed of storage, memory and other components, in
addition to CPUs, several previous works show that a server’s

utilization is roughly linear to its power consumption [22]–
[25]. Hence, we use server’s CPU utilization as a proxy for
power consumption in all experiments.

C. Experimental Setup

1) Experimental Methodology: We experiment with Cap-
Net using TelosB motes for wireless communication. First we
deployed 81 motes (1 for manager, 80 for servers) in Mi-
crosoft’s data center in Redmond, WA. When we experiment
with more than 80 servers to test scalability, one mote emulates
multiple servers and communicates for them. For example,
when we experiment for 480 servers, mote 1 works for first
6 servers, then mote 2 works for next 6 servers, and so on.
We place all 80 motes in racks. The manager node is placed
on ToR and connected through its serial interface to a PC that
works as the manager. No mote in the rack has direct line of
sight with the manager. Using the workload demand traces,
CapNet is run in a trace-driven fashion. For every server the
reading at a time stamp sent from its corresponding wireless
mote is taken from these traces at the same time stamp. While
the data traces are of 6-month long, our experiment does not
run for actual 6-month. When we take a subset of those traces,
say for 4 weeks, the protocols skip the long time intervals
where there is no peak. For example, when we know (looking
ahead into the traces) there is no peak between time t1 and
t2, the protocols skip the times between t1 and t2. Thus our
experiments finish in several days instead of 4 weeks.

2) Oversubscription and Trip Time: We use the trip times
from Figure 3 as the basis, in order to determine the different
caps required in various experiments. X-axis shows the ratio
of current draw to the rated current and is the magnitude of
oversubscription. Y-axis shows the corresponding trip time.
The trip curve is shown as a tolerance band. The upper curve
of the band indicates upper bound (UB) trip times above which
is the tripped area, meaning that the circuit breaker will trip
if the duration of the current is longer than the UB trip time.
The lower curve of the band indicates lower bound (LB) trip
times under which is the not-tripped area. This band between
2 curves is the area where it is non-deterministic if the circuit
breaker will trip. LB trip time is a very conservative bound.
In our experiments we use both LB and UB of conventional
trip times to verify the robustness of CapNet.

3) CapNet Parameters: For all experiments, we use channel
26 and Tx power of -3dBm. The payload size of each packet
sent from the server nodes is 8 bytes, which is enough for
sending power consumption reading. The maximum payload
size of each packet sent from the manager is 29 bytes, the
maximum default size in IEEE 802.15.4 radio stack for TelosB
motes. This payload size is set large to contain the schedules as
well as control information. For aggregation protocol, window
size ω is set to 8. A larger window size can reduce aggregation
latency, but requires the payload size of the manager’s message
to be larger (since the packet contains ω node IDs indicating
the schedule for next window). In the aggregation protocol
both τd and τu were set to 25ms. The manager sets its timeout
using these values. These values are relatively larger compared

0 1 2 3 4

x 10
4

0

10

20

30

40

50

Time

A
g

g
re

g
a

te
 p

o
w

e
r

(a) Aggregate power (2 Months)

0 1000 2000 3000 4000
0

10

20

30

40

50

Time

A
g

g
re

g
a
te

 p
o

w
e

r

(b) Aggregate power (1st 6 days zoomed-in)

Fig. 6. 60 Servers on Rack R1 in Cluster C1

to the maximum transmission time between two wireless
devices. The time required for communication between two
wireless devices is in the range of several milliseconds. But
in our design the manager node is connected through its serial
interface to a PC. The TelosB’s serial interface does not always
incur a fixed latency for communication between PC and the
mote through serial. Upon experimenting and observing a wide
variation of this time, we have set τd and τu to 25ms.

4) Control Emulation: In our experiments, we emulate the
final control action since we use workload traces. We assume
that one packet is enough to contain the entire control message.
To handle control broadcast failure, we repeat control broad-
cast γ = 2 times. Our extensive measurement study through
data center racks indicated that this is also the maximum ETX
for any link between two wireless motes. Upon receiving the
control broadcast message, the nodes generate an OS level
latency and hardware level latency. We use the maximum
and minimum OS level and hardware level time required for
power capping experimented on three servers with different
processors: Intel Xeon L5520 (frequency 2.27GHz, 4 cores),
Intel Xeon L5640 (frequency 2.27GHz, dual socket, 12 cores
with hyper-threading), and an AMD Opteron 2373EE (fre-
quency 2.10GHz, 8 cores with hyper-threading), each running
Windows Server 2008 R2 [17]. The ranges of OS level and
hardware level latencies are in the range of 10-50ms and 100-
300ms, respectively [17]. We generate OS and hardware level
latencies using a uniform distribution in this range.

D. Power Peak Analysis of Data Centers

We first analyze whether CapNet protocol is consistent with
the data center power behavior leveraging our data traces. For
brevity, we present the trace analysis results of 3 racks: Racks
R1 and R2 from Cluster C1, and Rack R3 from Cluster C2.
To give an idea on how power consumption varies over time
in a data center, Figure 6(a) shows the aggregate power of 60
servers on RACK R1 in cluster C1 for 2 consecutive months
which is zoomed in for 6 consecutive days in Figure 6(b). For

0 0.5 1 1.5 2 2.5

x 10
4

0

0.2

0.4

0.6

0.8

1

Interval between 2 peaks (minutes)

C
D

F

Rack R3−C2
Rack R2−C1
Rack R1−C1

(a) Time interval between 2 peaks

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Power jump

C
D

F

Rack R3−C2
Rack R2−C1
Rack R1−C1

(b) Power jump

Fig. 7. Power characteristics (2 month data)

each rack, we use the 95-th percentile of aggregate power over
2 consecutive months as the power cap.

We first explore the power dynamics of the servers and
the unpredictability of power capping events. Using 2-month
long data, Figure 7 shows that the time intervals between
two consecutive peaks can range between few minutes to
several hundred hours. We define power jump as the difference
between the power that exceeds the cap and the preceding
measurement that is below the cap. As Figure 7(b) shows that
power jumps can vary between 0 to 51 for 60 servers in each
rack (while their aggregate power is in range [0, 60]). This
result shows the motivation for an event-driven protocol.

Figure 8 illustrates the correlations across 180 servers from
different racks and clusters using their raw power consumption
data over 1 week. The image is a visualization of a 180×180
matrix, indexed by the server number. That is, the entry
indexed at [i, j] in this matrix is the correlation coefficient
of the values (5040 samples) between the i-th and the j-
th server. We can clearly see that the servers in the same
rack are strongly positively correlated, and those in the same
cluster are also positively correlated. But the servers between
clusters are less or negatively correlated. This usually happens
because the servers in the same cluster hosts similar workloads
leading to synchronous power characteristics [25]. We further
assume a local cap of c

60 (considering α = 1) for each
individual server, and show in Figure 8(b) the CDF of the
number of servers that exceed local caps when the cluster
level aggregate power exceeds cap c. The figure shows that
in 80% cases when the rack level aggregate power exceeds
cap c, the numbers of servers (among 60 servers per rack)
that are over the local cap are 43, 55, and 50 for Rack R3,
R1, and R2, respectively. The strong intra-cluster synchrony
in power surge suggests the feasibility of detecting a cluster-
level power surge based on local server-level measurements.
Figure 8(c) shows probabilities of different racks in 2 clusters
to be at peak simultaneously. The entry indexed at [i, j] in

this 2D matrix is the probability that the i-th rack in cluster
1 and the j-th rack in cluster 2 are at peak simultaneously.
The probabilities were found in the range [0, 0.0056]. This
strong inter-cluster asynchrony implies that using an event-
driven protocol (that performs wireless communications only
upon detecting an event) significantly minimizes inter cluster
interference caused by transmissions generated by the event-
driven CapNet in different clusters.

We observe strong synchrony in power behavior among
the servers in the same cluster and strong asynchrony among
between different clusters. The major implication of the trace
analysis is that CapNet protocol is consistent with real data
center power behavior. As the intra-cluster synchrony suggests
the potential efficacy of a local event detection policy, our
protocol is particularly effective in the presence of strong
intra-cluster synchrony that exists in enterprise data centers as
observed in our trace analysis. However, in absence of intra-
cluster synchrony in power peaks, CapNet will not cause un-
necessary power capping control or more wireless traffic than
a periodic protocol. The synchrony only enhances CapNet’s
performance.

E. Power Capping Results

Now we present our experimental results with CapNet’s
event-driven protocol. First we compare its performance with
the periodic protocol and a representative CSMA/CA protocol.
We then analyze its scalability in terms of number of servers.
First we experiment only for the simple case, where a single
iteration of control loop can settle to a sustained power level,
and then we also analyze scalability in terms of number of
control iterations, where multiple iterations are needed to settle
to a sustained power level. We have also experimented it under
different caps and in presence of interfering clusters. In all
experiments, detection phase length, h, was set to 100 ∗n ms,
where n is the number of servers. We set this value because
this makes each slot in the detection phase equal to 100ms,
which is enough for receiving one alarm as well as for sending
a message from the manager to the servers. Setting a larger
value reduces the number of cycles of detection phase, but
reduces the granularity of monitoring. For assigning a local
cap of αc

n to the servers, we first experiment with α = 1.
Later, we experiment under different values of α. Condition 1
is used for detection and starting an aggregation phase. In the
results, slack is defined as the difference between the trip time
(i.e. deadline) and the total latency required for power capping.
That is, a negative value of slack implies a deadline miss.
We use LB slack and UB slack to define the slack calculated
considering LB trip time and UB trip time, respectively. In
our results, in cases timing requirement can be loose, while
there are cases where these are very tight, and the results are
shown for all cases. We particularly care for tight deadlines,
and want to avoid any deadline misses.

1) Performance Comparison with Base Lines: Figure 9
presents the results using 60 servers on one rack for single-
iteration control loop. We used 4 weeks long data traces for
this rack. We set the 95-th percentile of all aggregate powers

180 servers (5040 reading per server)

R
3
 C

lu
s
te

r
C

2

 |
 R

2
 C

lu
s
te

r
C

1
 |

R

1
 C

lu
s
te

r
C

1

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

−0.2

0

0.2

0.4

0.6

0.8

1
Rack R1 Cluster C1 Rack R2 Cluster C1 Rack R3 Cluster C2

(a) Correlations among 180*180 server pairs in 3
racks in 2 clusters

25 30 35 40 45 50 55 60
0

0.2

0.4

0.6

0.8

1

Number of servers over cap

C
D

F

Rack R3−C2
Rack R2−C1
Rack R1−C1

(b) Total number (out of 60) of servers that exceed
local cap c

60

Racks in Cluster C2

R
a
c
k
s
 i
n
 C

lu
s
te

r
C

1

1 2 3 4 5

1

2

3

4

5

0

1

2

3

4

5

x 10
−3

(c) Probability of simultaneous peak between two
different clusters

Fig. 8. Correlations among servers, racks, and clusters

3 4 5 6 7 8 9

x 10
4

0

0.2

0.4

0.6

0.8

1

Lower bound slack value (ms)

C
D

F
 o

f
L
B

 s
la

c
k
 v

a
lu

e
s

Periodic
Event−driven

(a) CDF of lower bound slack

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Detection slot in detection phase

C
D

F

(b) CDF of detection slots in detection phase

1 2 3 4 5 6
0

20

40

60

80

100

Power capping event #

P
a

c
k
e
t

lo
s
s
 r

a
te

 (
%

)

BoxMAC
Event−driven

(c) Packet Loss Rate

Fig. 9. Performance of Event-Driven protocol on 60 servers (4 weeks)

values of all data points in every 2-minute interval as its cap c.
For assigning local cap we use α = 1. In running the protocols
using these traces, the protocols observe all peaks. The upper
bound of aggregation latency (Lagg) given in (3) was set as
the period of the periodic protocol. Figure 9(a) shows the
LB slacks for both the event-driven protocol and the periodic
one. The figure only plots the CDF for the cases where
the magnitude of oversubscription was above 1.5 for better
resolution as the slack was too big for a smaller magnitudes
(which are not of interest). Since UB trip times are easily met,
we also omit those results. The non-negative LB slack values
for each protocol indicate that it easily meets the trip times.
Hence there is no benefit in using non-stop communications
(i.e., the naive periodic protocol).

While the slacks in event-driven protocol are shorter than
those in the periodic protocol because the former spends some
time in the detection phase, in 80% cases event-driven protocol
can provide a slack of more than 57.15s while the periodic
protocol provides 57.88s. The difference is not significant
because as shown in Figure 9(b) in 90% cases among all
power capping events the detection happened in the first slot
of the detection cycle. Only in 10% cases, it was after the
first slot of the detection phase, and all detection happened
within the 6-th slot, although the phase had a total of 60 slots
(for 60 servers, one slot per server). These results indicate
that CapNet’s local detection policy can quickly determine the
events. This is also an implication that experimental values
of power capping latencies are quite different (or shorter)
from the pessimistic analytical values derived in (5). Also,
in this experiment, 94.16% of the total detection phases did
not have any transmission from the servers. Therefore, if we
compare with the periodic protocol that needs to continue com-
munication always in the network, the event-driven protocol

0 2 4 6 8 10

x 10
5

0

0.2

0.4

0.6

0.8

1

Lower bound slack values (ms)

C
D

F

120 servers
240 servers
480 servers

Fig. 10. CDF of LB slack under various numbers of servers (4 weeks)

suppresses transmissions at least by 94.16% while the real-
time performance of two protocols are similar.

We also evaluate the performance when BoxMAC (the
default CSMA/CA based protocol in TinyOS [21]) is used
for power capping communication for up to first 6 capping
events in the data traces. Figure 9(c) shows that it experiences
packet loss rate over 74% while performing communication
for a power capping event. This happens because all 60 nodes
try to send at the same time, and the back-off period in
802.15.4 CSMA/CA under default setting is too short, which
leads to frequent repeated collisions. Since we lose most of
the packets, we do not consider latency under CSMA/CA.
Increasing the back-off period reduces collisions but results
in long communication delays. In subsequent experiments, we
exclude CSMA/CA as it does not fit for power capping.

2) Scalability in Terms of Number of Servers: In our data
traces each rack has at most 60 active servers. To test with
more servers, we combine multiple racks in the same cluster
since they have similar pattern of power consumption (as
we have already discussed in Subsection V-D. For sake of
experimentation time, in all subsequent experiments we set
cap at 98-th percentile (that would result in a smaller number
of capping events). The lower bound slack distribution are

0.8 0.85 0.9 0.95 1
0

10

20

30

40

50

α

R
a
te

 (
%

)

 False alarm rate

 Miss rate

Fig. 11. Deadline (trip time) miss rate and false alarm rate under varying α

shown in Figure 10 for 120, 240, and 480 servers by merging
2, 4, and 8 racks, respectively (for single iteration capping).
Hence, for single iteration, the deadlines are easily met for
even 480 servers (since in each setup, 100% of all slack values
are positive).

3) Experiments under Varying α: Now we experiment with
different values of α for assigning a local cap of αc

n to the
servers using 480 servers. The results in Figure 11 show the
tradeoff between false alarm rate and power capping latency
under varying α. As we decrease the value of α from 1 to 0.80,
the false alarm rate decreases from 45% to 2%. This happens
because with decreased value of α, CapNet considers multiple
alarms before detecting a potential event. Note that this alarm
rate is very small compared to the whole time window since
power capping happens in at most 5% cases. Therefore alarms
are also generated rarely. Since waiting for multiple alarms
increases the latency in detection, the total power capping
latency increases as the value of α decreases. However, as this
latency increase happens only in the detection phase which
is negligible compared to the total capping latency, there is
hardly any impact on deadline miss rates. The figure shows a
deadline miss rate of 0 under varying α.

4) Scalability in Number of Control Iterations: Now we
consider a conservative case where multiple iterations of con-
trol loop are required to settle to a sustained power level [14],
[17], [18]. The number of iterations required for the rack-level
loop as experimented in [18] can be up to 16 in the worst
case (which happens very rarely). Hence, we now conduct
experiments considering multiple numbers of control iterations
(up to 16 assuming a pessimistic scenario). We plot the results
in Figure 12 for various numbers of servers under various
number of iterations. As shown in Figure 12(a), for 120 servers
under 16-iteration case, we have 13% cases with negative
slack meaning that the LB trip times were missed. However,
the UB trip times were met in 100% cases. Note that we
have considered a quite pessimistic set up here because using
16-iteration as well as trying to meet the lower bound of
trip times are both very conservative considerations. For 120
servers under 8 iterations, in 0.13% cases slacks were negative.
However, in 80% cases the slacks were 92.492s, 66.694s, and
22.238s for 4, 8, and 16 iterations, respectively indicating that
the trip times were easily met, and the system could oversub-
scribe safely. For 4-iteration, the minimum slack was 23.2s.
To preserve figure resolution, we do not show the UB slacks
since they were all positive. For 480 servers (Figures 12(b),
12(c)), 98.95%, 97.86%, 94.93%, and 67.2% LB trip times

were met for 2, 4, 8, and 16 iterations, respectively. For 240
nodes, we miss deadlines in 5% cases under 8-iteration and
13.94% cases under 16-iteration.

For all cases we met UB trip times in 100% cases. Note that
assuming 16-iteration and considering the LB trip times are
very conservative assumption as it can rarely happen. Hence,
the above results show that, even for 480 servers, the latencies
incurred in CapNet for power capping remain within even the
conservative latency requirements in most cases.

5) Experiments under Varying Caps: In all experiments
we have performed so far, CapNet was able to meet UB
trip times. Now we make some setup changes to encounter
some scenario where UB trip times can be smaller, by making
oversubscription magnitude higher. For this purpose, we now
decrease the cap to decrease the trip times so as to make
scenarios to miss upper bound trip times to see the robustness
of the protocol. Now again we set the 95-th percentile of ag-
gregate power as the cap. This would give the previous capping
events shorter deadlines since a smaller cap implies a larger
magnitude of oversubscription. For the sake of experiment
time, we only tested with 120 servers and their 4 week data
traces. Figure 13 shows that we now miss more LB trip times
and miss some UB trip times as well since the deadlines now
become shorter. However, UB trip times are missed only in
0.11% and 1.02% cases under 8 and 16 iterations, respectively,
while LB deadlines were missed in 2.14%, 6.84%, and 26.56%
cases under 4, 8, and 16 iterations, respectively. All deadlines
were met for up to 3 iterations (and not shown in the figures).
We have shown the results only for higher number of iterations
that rarely happen. These results demonstrate the robustness
for larger magnitude of oversubscription in that even when we
use 16-iteration only 1.02% UB trip times are missed.

6) Experiments in Presence of Multiple Clusters: We have
shown through data center trace analysis in Figure 8(c) that the
probability that two clusters are over the cap simultaneously is
no greater than 0.0056. Yet, in this section we perform some
experiment from a pessimistic point of view. In particular, we
perform an experiment and see the performance of CapNet
under an interfering cluster.

We mimic an interfering cluster of 480 servers in the
following way. We select a nearby cluster and place a pair
of motes in the rack: one at the ToR and the other inside the
rack. We set their Tx power at maximum (0dBm). The mote
at the ToR represents its manager and carries on a pattern of
communication like a real manager to control 480 servers. The
mote inside the rack responds as if it were connected to each
of 480 servers. Specifically, the manager executes a detection
phase of 100 ∗ 480ms, and the node in the rack randomly
selects a slot between 1 and 480. On that slot, it generates an
alarm with probability 5% since capping happens in no more
than 5% cases. Whenever the manager receives the alarm, it
generates a burst of communication in the pattern like what it
would have done for 480 servers. After finishing this pattern
of communication it resumes the detection phase.

We run the main cluster (system used for experiment)
using 4 weeks data traces, and plot the results in Figure 14.

−1.5 −1 −0.5 0 0.5 1

x 10
6

0

0.2

0.4

0.6

0.8

1

LB slack (ms)

C
D

F

4 iterations
8 iterations
16 iterations

(a) LB slack for 120 servers

−1 −0.5 0 0.5 1

x 10
6

0

0.2

0.4

0.6

0.8

1

LB slack (ms)

C
D

F

4 iterations
8 iterations
16 iterations

(b) LB slack for 480 servers

0 5 10 15
0

5

10

15

20

25

30

35

Number of control iterations

L
B

 t
ri
p

 t
im

e
 m

is
s
 r

a
te

 (
%

)

120 servers
240 servers
480 servers

(c) Miss rate (LB trip time)

Fig. 12. Multi-iteration capping under event-driven protocol (4 weeks)

−2 0 2 4 6 8

x 10
6

0

0.2

0.4

0.6

0.8

1

Slack (ms)

C
D

F

UB Trip time (8 iterations)
LB Trip time (8 iterations)
UB Trip time (16 iterations)
LB Trip time (16 iterations)

(a) CDF of slack values (Cap: 95-th percentile)

4 8 16
0

5

10

15

20

25

30

Number of iterations

M
is

s
 r

a
te

 (
%

)

Cap: 95−th percentile
Cap: 98−th percentile

(b) LB trip time miss rate

4 8 16
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of iterations

M
is

s
 r

a
te

 (
%

)

Cap: 95−th percentile
Cap: 98−th percentile (values are 0 here)

(c) UB trip time miss rate

Fig. 13. Capping under different caps on 120 servers (4 weeks)

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2x 10
5

Capping event #

L
a
te

n
c
y
 (

m
s
)

1 interfering cluster
No interfering cluster

(a) Capping latency

4 8 16
0

10

20

30

40

50

Number of iterations

M
is

s
 r

a
te

 (
%

)

LB Trip time (No interfering cluster)
LB Trip time (1 interfering cluster)
UB Trip time (No interfering cluster)
UB Trip time (1 interfering cluster)

(b) Miss rate

Fig. 14. Capping for 480 servers under interfering cluster

Figure 14(a) shows the latencies for different capping events in
4 weeks data both under interference and without interference
(when there was no other cluster). Under interfering cluster,
the delays mostly increase. This happens because the event-
driven protocol experiences packet loss and uses retransmis-
sion for those, thereby increasing network delays. While the
maximum increase was 124.63s, in 80% cases the increase was
less than 15.089s. We noticed that such big increase happened
due to the loss of alarms in a detection phase that resulted in
a detection in the next phase (i.e., while the phase length is
48s). Still power capping was successful in all cases but those
when the control broadcast was lost. Among 375 events, 4
broadcasts were lost at some server even after 2 repeatations,
resulting in control failure in 1.06% cases. This value became
0 in multi-iteration cases. For multi-iteration cases, at least one

control broadcasts was successful that resulted in no capping
failure for control message loss. However, as the delay due to
transmission failure and recovery increased in detection phase,
we experienced capping failure. For 16-iteration, we missed
the upper bound of trip time in 40.27% cases and lower bound
of trip times in 32.08% cases. However, we use a conservative
assumption here. For 4 iteration miss rate was 5.06% and
8.26% only. And for 2-iteration they are only 2.13% and 2.4%
which are very marginal. The result indicates that even under
interference, CapNet demonstrates robustness in meeting the
real-time requirements of power capping.

VI. DISCUSSIONS AND FUTURE WORK

While our paper addresses feasibility, protocol design and
implementation, several engineering challenges such as secu-
rity, EMI and fault tolerance needs to be addressed.
Fault Tolerance. One important challenge is handling the
failure of power capping manager in a cluster. To address this,
power capping managers can be connected among themselves
either through a different band or through a wired backbone.
As a result, when some manager fails, a nearby one can
take over its servers. This paper focuses on communication
within a single cluster. DCM fault detection, isolation, and
node migration need to be studied in future work.
Security. Another challenge is the security of the management
system itself. Since the system relies on wireless control,
someone might be able to maliciously tap into the wireless
network and take control of the data center. There are two
typical approaches to handle this security issue: First, the
signal itself should be attenuated by the time it reaches outside
the building. We can identify secure locations inside the data
center from which the controller can communicate, and iden-
tify a signature for the controllers which would be known to
the server machines. Second, it is possible to encrypt wireless
messages, for example, using MoteAODV (+AES) [26]. We

can also use shielding within the data center to keep the RF
signals contained within the enclosed region.
EMI & Compliance. While less emphasized in research
studies, a practical concern of introducing wireless commu-
nications in data centers is that they do not adversely impact
other devices. There are FCC certified IEEE 802.15.4 circuit
design available(e.g. [27]). Previous work has also used WiFi
and ZigBee in live data centers for monitoring purposes [9].

VII. RELATED WORK

In order to reduce the capital spending on data centers,
enterprise data centers use an over-subscription approach as
studied in [12]–[15], which is similar to over-booking in
airline reservations. Server vendors and data center solutions
providers have started to offer power capping solutions [28],
[29]. Power capping using feedback control algorithms [30]
has been studied for individual servers. In contrast, the study
of this paper concentrates to coordinated power capping which
is more desirable in data centers as it allows servers to exploit
power left unused by other servers. While such power capping
has been studied before [14], [18], [31]–[34], all existing
solutions rely on wired network for controller-server com-
munication. In contrast, we focus on wireless networking for
power capping. We have outlined the advantages of wireless
management in Section II.

Previous work on using wireless network in data centers ex-
ists on applications to high bandwidth (e.g. with 60GHz radio)
production data network [35]. In contrast, CapNet is targeted
at data management functions that have much lower band-
width requirement while demanding real-time communication
through racks. RACNet [9] is a passive monitoring solution in
the data center that monitors temperature or humidity across
racks where all radios are mounted at the top of the rack. Our
solution enables active control and requires communication
through racks and server enclosures, and hence encounters
fundamentally different challenges. Also, RACNet also does
not have real-time features, while CapNet is designed to meet
the real-time requirements in power capping.

VIII. CONCLUSION

Power capping is a time-critical management operation for
data centers that commonly oversubscribe power infrastructure
for cost savings. In this paper, we have designed CapNet,
a low-cost, real-time wireless management network for data
centers and validated its feasibility for power capping. We
deployed and evaluated CapNet in an enterprise data center.
Using server power traces, our experimental results on a
cluster of 480 servers inside the data center show that CapNet
can meet the real-time requirements of power capping. CapNet
represents a promising step towards applying low power
wireless networks to time-critical, close-loop control in DCM.

ACKNOWLEDGMENT

This work was supported, in part, by Microsoft Research
and NSF through grants CNS-1320921 (NeTS) and 1144552
(NeTS).

REFERENCES

[1] M. Isard, “Autopilot: automatic data center management,” Operating
Systems Review, vol. 41, pp. 60–67, 2007.

[2] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in SIGCOMM ’08.

[3] Private communication with data center operators.
[4] www.cdwg.com/shop/products/Digi-Passport-48-console-server/1317701.aspx.
[5] http://www.cdwg.com/shop/search/Servers-Server-Management/

Servers/x86-Based-Servers/result.aspx?w=S62&pCurrent=1&p=
200008&a1520=002200.

[6] http://www.cdwg.com.
[7] http://www.cdwg.com/shop/search/Networking-Products/

Ethernet-Switches/Fixed-Managed-Switches/result.aspx?w=
N11&MaxRecords=25&SortBy=TopSellers.

[8] http://www.digikey.com/us/en/techzone/wireless/resources/articles/
comparing-low-power-wireless.html.

[9] C.-J. M. Liang, J. Liu, L. Luo, A. Terzis, and F. Zhao, “RACNet: a
high-fidelity data center sensing network,” in SenSys ’09, 2009.

[10] K. Srinivasan and P. Levis, “RSSI is under appreciated,” in EmNets ’06.
[11] Hamilton, 2008, http://perspectives.mvdirona.com.
[12] S. Pelley, D. Meisner, P. Zandevakili, T. F. Wenisch, and J. Underwood,

“Power routing: Dynamic power provisioning in the data center,” in
ASPLOS ’10.

[13] X. Fu, X. Wang, and C. Lefurgy, “How much power oversubscription
is safe and allowed in data centers?” in ICAC ’11.

[14] H. Lim, A. Kansal, and J. Liu, “Power budgeting for virtualized data
centers,” in USENIXATC ’11.

[15] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a
warehouse-sized computer,” in ISCA ’07.

[16] http://literature.rockwellautomation.com/idc/groups/literature/
documents/sg/1489-sg001 -en-p.pdf.

[17] A. Bhattacharya, D. Culler, A. Kansal, S. Govindan, and S. Sankar, “The
need for speed and stability in data center power capping,” in IGCC ’12.

[18] X. Wang, M. Chen, C. Lefurgy, and T. Keller, “SHIP: A scalable
hierarchical power control architecture for large-scale data centers,”
IEEE Transactions on Parallel and Distributed Systems, vol. 23, 2012.

[19] A. Saifullah, Y. Xu, C. Lu, and Y. Chen, “Distributed channel allocation
protocols for wireless sensor networks,” IEEE Transactions on Parallel
and Distributed Systems.

[20] I. Rhee, A. Warrier, M. Aia, and J. Min, “Z-MAC: a hybrid MAC for
wireless sensor networks,” in SenSys ’05, 2005.

[21] “TinyOS Community Forum,” http://www.tinyos.net/.
[22] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a

warehouse-sized computer,” in ISCA ’07, 2007.
[23] J. Choi, S. Govindan, B. Urgaonkar, and A. Sivasubramaniam, “Pro-

filing, prediction, and capping of power consumption in consolidated
environments,” in MASCOTS ’08.

[24] P. Ranganathan, P. Leech, D. Irwin, J. Chase, and H. Packard,
“Ensemble-level Power Management for Dense Blade Servers,” in ISCA ’06.

[25] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao, “Energy-
aware server provisioning and load dispatching for connection-intensive
internet services,” in NSDI ’08.

[26] W. Backes and J. Cordasco, “Moteaodv – an aodv implementa-
tion for tinyos 2.0,” in WISTP ’10.

[27] http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en535967.
[28] http://www.intel.com/content/dam/doc/case-study/

data-center-efficiency-xeon-baidu-case-study.pdf.
[29] http://h20000.www2.hp.com/bc/docs/support/SupportManual/

c01549455/c01549455.pdf.
[30] Z. Wang, C. McCarthy, X. Zhu, P. Ranganathan, and Talwar, “Feedback

control algorithm for power management of servers,” in ASPLOS ’08.
[31] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu, “No

power struggles: coordinated multi-level power management for the data
center,” in ASPLOS ’08.

[32] M. E. Femal and V. W. Freeh, “Boosting data center performance
through non-uniform power allocation,” in ICAC ’05.

[33] V. Kontorinisy, Zhangy, Aksanliy, and Sampson, “Managing distributed
UPS energy for effective power capping in data centers,” in ISCA ’12.

[34] Y. Zhang, Y. Wang, and X. Wang, “Capping the electricity cost of cloud-
scale data centers with impacts on power markets,” in HPDC ’11.

[35] X. Zhou, Z. Zhang, Y. Zhu, Y. Li, S. Kumar, A. Vahdat, B. Y. Zhao,
and H. Zheng, “Mirror mirror on the ceiling: flexible wireless links for
data centers,” in SIGCOMM ’12.

