TinyXXL: Language and Runtime Support for
Cross-Layer Interactions

Andreas Lachenmann, Pedro José Marrén, Daniel Minder, Matthias Gauger, Olga Saukh, Kurt Rothermel

Universitat Stuttgart, IPVS
Universitatsstr. 38, 70569 Stuttgart, Germany
{lachenmann, marron, minder, gauger, saukh, rothermel } @ipvs.uni-stuttgart.de

Abstract—1In the area of wireless sensor networks, cross-layer
interactions are often preferred to strictly layered architectures.
However, architectural properties such as modularity and the
reusability of components suffer from such optimizations. In
this paper we present TinyXXL that provides programming
abstractions for data exchange, a form of cross-layer interaction
with a large potential for optimizations. Our approach decouples
components providing and using data, and it allows for automatic
optimizations of applications composed of reusable components.
Its runtime representation is efficient regarding memory con-
sumption and processing overhead.

I. INTRODUCTION

Given the resource constraints typical of sensor networks
and the properties of wireless communication that cannot be
handled well by a strictly layered architecture, cross-layer
interactions are often regarded as a necessity [1]. They are
needed when developing complex applications for platforms
with only a few kilobytes of RAM or running a sensor node
for months with a single set of batteries. In component-based
architectures cross-layer interactions can be performed even
more easily [2], since there is no explicit notion of layers. If
cross-layer interactions are used in an unbridled way, however,
they can have negative effects on desirable properties of the
software architecture [3]. They reduce modularity and limit the
reusability of software components. We argue that cross-layer
interactions have to be supported by programming language
abstractions and system software in order to alleviate these
negative side-effects. Therefore, we do not focus on specific
instances of cross-layer interactions but provide a framework
that reduces the effort when applying them. This approach
allows for reusability of components and performs automatic
optimizations at compile-time.

In previous work [4] we analyzed several nontrivial sensor
network applications and identified different forms of cross-
layer interactions: merging of components, replacement of
system components, global variables, function calls, and data
exchange. In this paper, however, we focus on programming
and language support for cross-layer data exchange, i.e., data
jointly used by components which are on possibly different
logical layers. The term “data exchange” comprises two dis-
tinct sub-classes of cross-layer interactions: parametrization
and data sharing. Parametrization is used to adapt the behavior
of components with well-defined switches that change the
functionality, execution path, etc. There is usually only one

component that offers an interface for parametrization, and a
series of components that use it to provide values. For exam-
ple, in TinyOS the MAC layer component can be parametrized
at a fine granularity (e.g., turn on acknowledgments, set the
length of the preamble). For data sharing there is usually
only one component that provides its data to a set of other
components that might be interested in it. Here the shared
data gives a view on the component’s internal data (e.g., the
neighbor list or the current routing parent for the routing
component).

Data exchange is a technique that offers a large potential
for optimizations. First, parametrization is essential to tailor
system components to the specific requirements of an appli-
cation. Secondly, because of data sharing there is no need
to keep redundant data in stringently constrained RAM and
to acquire it twice with possibly high energy costs (e.g., for
sending messages).

In current programming languages such as nesC [5] data
exchange is often implemented with function calls. As we
show in Section III, such an approach creates considerable
overhead for the developers, especially when the application
evolves. In addition, it hinders component reuse because the
components forming the application have to be optimized by
hand in order to prevent separate components from providing
the same data twice. Therefore, we have created TinyXXL
(“Exchange of Cross-Layer Data for TinyOS”) that provides
programming language support for data exchange.! TinyXXL
is composed of two parts: a compile-time and a runtime
component. For compile-time support of data exchange, we ex-
tended the nesC programming language to include abstractions
for data definition and exchange. At runtime this language
extension is complemented by the TinyStateRepository that
stores all cross-layer data and provides efficient access to it.

With TinyXXL and the TinyStateRepository we pursue the
goal of creating language and system support for highly
optimized applications while fostering component reuse and
independent software development. First, we try to decrease
the effort of application developers when exchanging data.
Secondly, our approach automatically optimizes applications
at compile-time by removing redundant data provision code
and selecting a data provider that meets the non-functional

I First ideas on TinyXXL have been outlined in [4].

© 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising
or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.

requirements of the data users best. Therefore, unharmonized
reusable components can be combined to form an optimized
application without any data redundancies. Thirdly, since most
of the checks are performed at compile-time, there is only little
runtime overhead associated with the TinyStateRepository.
Finally, the TinyStateRepository incurs no RAM overhead
compared to manually optimized applications and allocates
often less RAM than unoptimized ones.

TinyXXL has been developed as a part of the TinyCubus
project [6], whose goal is to ease the development of adaptive
sensor network applications. If TinyXXL is used in the context
of the TinyCubus framework, some optimizations usually
performed at compile-time have to be done on the sensor nodes
at runtime. This is necessary because at compile-time there is
no global view of the application due to 7inyCubus’s dynamic
adaptation capabilities.

The rest of this paper is organized as follows. Section II
gives a brief overview of the TinyCubus framework. Section III
describes TinyXXL, our extension of the nesC programming
language to support cross-layer data exchange. In Section IV
we then present the TinyStateRepository, TinyXXL’s runtime
representation. In Section V we evaluate both 7inyXXL and the
TinyStateRepository and describe their advantages. Section VI
gives an overview of related work. Finally, Section VII con-
cludes this paper and describes possibilities to further extend
TinyXXL.

II. OVERVIEW OF TINYCUBUS

In order to support the requirements of flexibility, adap-
tation and reconfiguration needed by typical sensor network
applications, we are developing a generic reconfigurable sys-
tem software for sensor networks called TinyCubus. TinyXXL
and the TinyStateRepository have been created as part of
this framework. In this section we give a brief overview of
the architecture of TinyCubus. This description is based on
previous work [7], [6] and is provided for convenience and
completeness.

TinyCubus is implemented on top of TinyOS [8]. It consists
of three parts: the Tiny Data Management Framework, which
supports the adaptation of components, the Tiny Configuration
Engine, which allows for the exchange and reconfiguration of
components at runtime, and the Tiny Cross-Layer Framework,
where TinyXXL and the TinyStateRepository are part of.

A. Tiny Data Management Framework

The Tiny Data Management Framework is a set of adapta-
tion system components that also provides data management
functionality. For each type of standard data management
component such as replication, caching, hoarding, prefetching
or aggregation, as well as each type of system component, such
as time synchronization and broadcast algorithms, TinyCubus
assumes that several implementations of each component type
providing the same interface exist. The Tiny Data Management
Framework is then responsible for the selection of the correct
implementation based on the current information available in
the system.

B &

oo | |8
cew | 8|l
= QO T
® E B B mm | 55|
S oA
—;%2 o B = i
£

9A1§EE L\:H EPHED
s, s, S,

System parameters

Fig. 1. Components in the Tiny Data Management Framework

The cube of Fig. 1, called ’Cubus’, combines optimization
parameters (O1,Oo,...), such as energy, communication la-
tency and bandwidth; application requirements (A;, Ao, ...),
such as reliability or consistency level; and system parameters
(S1,S52,...), such as mobility or node density. For each
component type, algorithms are statically classified in advance
according to these three dimensions. For example, TinyAg-
gregation [9] implements a tree-based routing algorithm used
for aggregation in sensor networks that operates efficiently in
static environments, but cannot be used effectively in highly
mobile scenarios with strict reliability requirements. In such a
setting, a flooding-based algorithm would probably do much
better. Therefore, the component implementing the algorithm
is tagged with the combination of parameters and requirements
for which the algorithm is most efficient. The mapping of
components to parameter values is performed off-line using
experimental evaluations of each component in combination
with the corresponding parameters. This way it is possible
to know which components and/or groups of components
perform best for a given parameter combination.

The Tiny Data Management Framework selects the best
suited set of components based on current system parameters,
application requirements, and optimization parameters. This
adaptation has to be performed throughout the lifetime of the
system and is a crucial part of the optimization process.

B. Tiny Configuration Engine

When new functionality such as a new processing or anal-
ysis function for sensed data is required by the application,
it is necessary to install new components or swap functions.
The Tiny Configuration Engine addresses this problem by
distributing and installing code in the network. Its goal is
to support the configuration of arbitrary components with the
assistance of its two main parts: the topology manager and an
in-place linking mechanism.

The topology manager 1is rtesponsible for the self-
configuration of the network and the assignment of specific
functionality to each node. It also publishes topology informa-
tion using the state repository that describes the neighborhood
of sensor nodes, the status of communication links and the
availability of components in other neighboring nodes. This
and other cross-layer information contained in the TinyState-

Subscriber 1
Get Interface
Get Interface

Subscriber 2

Subscriber 2

Get Interface

Get Interface [
Publisher 1 :

Variable Declarations
(a) Data stored in publisher

Fig. 2.

Repository can be used for the selection of more efficient
routes for data and code dissemination, as shown in [7].

The linking mechanism allows for the reconfiguration of
sensor nodes by providing the necessary bootstrapping code
and the ability to load and install components on the fly. Using
this approach the energy spent for code updates is largely
reduced. In addition, it provides the flexibility needed for
adaptation [10].

C. Tiny Cross-Layer Framework

The Tiny Cross-Layer Framework provides a generic inter-
face to support the use of cross-layer interactions. It offers
data exchange functionality with TinyXXL and the TinyState-
Repository, which are described in the rest of this paper. The
TinyStateRepository implements an efficient state repository
that at runtime stores all data that is to be exchanged. The
developer declares this data using TinyXXL, an extension of
the nesC programming language, that facilitates cross-layer
data exchange while largely preserving the modularity of
components.

II1. DATA EXCHANGE WITH TINYXXL

Current programming languages do not provide explicit and
adequate support for data exchange. For example, nesC only
allows the implementation of data exchange using function
calls, which can lead to a significant development overhead
and possibly unoptimized applications. First, the developer
has to create an interface, implement this interface within a
component, and “wire” all users of the piece of data to this
component. Secondly, if two components provide the same
piece of data, this data is stored and acquired twice, which
might require energy-intensive operations such as sending
messages. For example, if both MAC layer, routing, and
application-level components maintain neighbor tables, they
allocate limited memory space for redundant data. In addition,
they waste processing time and energy, if they send beacon
messages to update these tables.

Manually optimizing the components that form an appli-
cation increases the development efforts significantly. With
sensor network applications becoming more and more com-
plex, inefficiencies due to duplicate data are hard to detect
and even more so to fix. For example, TinyDB, an application
providing a generic query interface, consists of almost 30,000

E Set Interface

(b) Data stored separately

Subscriber 1
Data 1 Use
Subscriber 2
Data 1 Use
Publisher 1
Data 1 Provide

(c) Data declared with TinyXXL

Variable Declarations

Variable Declarations

Possibilities to declare shared data with nesC and TinyXXL

lines of code grouped in 176 components. Therefore, when
developing such a complex application, it is difficult to detect
components with duplicate data. It is even more difficult to
optimize the application by removing data gathering code so
that the same data is not stored and acquired twice. Often this
code is not isolated in a special function but interwoven with
other functionality needed for the component to work properly.
In addition, as we describe in the following paragraphs,
such modifications hinder reuse and independent development
of components, two approaches often used to significantly
decrease the development costs of software.

Basically, there are two common solutions to properly
implement data exchange with nesC: The first one stores the
data in the component sharing its data whereas the second
solution uses a separate component to store the data that is
wired to both its providers and subscribers.

Storing the data within the providing component (see
Fig. 2(a)) is most often used in existing applications. However,
this solution introduces tight coupling between components
accessing and providing a given piece of data, which hinders
maintainability. If a component providing some data is to be
replaced, not only the wirings of its functional interface have
to be adjusted but also those of the components that use its
data. These wirings (the arrows in the figure) can be distributed
across all application and system components. For example, an
application component that does not send any radio messages
may need to access the network neighborhood information of
the routing component.

If data is stored in a separate component that has been
exclusively created for data storage (such as in Fig. 2(b)),
components accessing and providing some piece of data are
decoupled; so the aforementioned maintainability problems do
not appear with this solution. However, the compiler cannot
guarantee automatically that there is a component in the
system providing the data. In addition, to avoid duplicate
data provision, publisher components have to check whether
or not they have to acquire the data. This check is difficult
to implement without runtime overhead, especially if non-
functional requirements have to be considered. For example,
such requirements could be a certain accuracy level or an
update frequency needed by the data user.

We address these issues by extending nesC with TinyXXL
in the following way:

xldata NeighborData(cost_type buildCost(<)) {
NeighborNode neighborTbl [ROUTE_-TABLE_SIZE];
int8_t neighborCount;

}

Fig. 3. Declaration of shared data with TinyXXL

e TinyXXL decouples the components providing and using
data (see Fig. 2(c)) by automatically creating wirings
between them and by using a publish/subscribe scheme,
which eases the process of data exchange.

o For shared data TinyXXL ensures that there is only a
single component providing each data item. In contrast,
with parametrization several components can provide
values to modify the behavior of a specific one, such
as the MAC layer component.

o TinyXXL adds capabilities for the specification of non-
functional properties of data providers so that the system
can select the one component that meets the requirements
of data users best.

o TinyXXL provides efficient automatic notifications of sub-
scribers after changes to the data.

o TinyXXL offers optimization capabilities that remove the
data gathering code from all but one provider of a
single kind of data. This way, no processing time and
energy is spent for acquiring redundant data. Thus it is
possible to develop optimized applications from reusable
components without manual intervention. For example,
both a generic MAC layer and a routing component can
provide information about the quality of network links.
With TinyXXL only one of them gathers this data; thus
the size of allocated memory and — possibly — energy
consumption are reduced.

A. TinyXXL Language Description

The changes to nesC needed to achieve the benefits men-
tioned above are relatively simple. Our additions and mod-
ifications include the ability to declare data definition files,
specify data dependencies, specify ifproviding blocks for data
publishers, and use virtual data items.

1) Data Definition: Within TinyXXL data is defined in a
separate file similar to the way interfaces are specified in
nesC. In such a file the developer groups all the data items
that logically belong together. For example, an array with
information about the neighboring nodes is declared in the
same file as a counter for the number of elements in it (see
Fig. 3).

The syntax of the definition of individual data items resem-
bles the declaration of variables. Unlike interfaces, which can
be implemented by several components, there is only a single
instance of a data file. This way the data can be identified by
its unique name. As the example above shows, it is possible
to declare parameters for non-functional requirements (in this
case “buildCost”), which are used by the system to select
a publisher component that meets the requirements of the
subscribers. The “less than” sign in the example expresses

module MultiHopRouter {
provides {
xldata NeighborData (COST_PERIODIC_MSG);

}

uses {
xlparam RoutingParam;
interface ReceiveMsg;

}
}

implementation {
event TOS_Msgx ReceiveMsg.receive (TOS_Msg*x Msg) {
ifproviding (NeighborData) {

NeighborData.neighborTbl[iNbr]. address
= pRP—>source ;

NeighborData.neighborTbl[iNbr]. refresh
= NBRMOST_RECENT;

}

event void RoutingParam.changed () {
call Timer.stop ();
call Timer. start (TIMER_REPEAT,
RoutingParam . updatelnterval * 1024L);

Fig. 4. Provision of data and use of parameters with TinyXXL

that the publisher with the smaller values for this parameter
should be preferred if several ones fulfill these requirements.
This structure provides hints to TinyXXL regarding possible
optimization strategies. Depending on the kind of data, other
requirements (e.g., concerning the update frequency of a data
item or its accuracy) can be added.

In the case of parametrization several components may set
the values influencing a single parameter. Therefore, there is
no need to select a publisher meeting non-functional require-
ments; such requirements have to be defined only for shared
data.

2) Specification of Data Dependencies: Components ex-
changing data declare this property in their header similar to
the interfaces provided. However, in contrast to interfaces there
is no need to create wirings for data dependencies because they
are automatically resolved by the TinyXXL compiler. If data
definition files specify non-functional properties, components
providing data have to give values for those here. Components
subscribing to the data may specify an arbitrary condition that
uses a data item’s non-functional requirements. This condition
has to be met by the publisher component. For example, a data
subscriber can specify that the cost for acquiring some data
may not exceed a given limit and that the accuracy has to be
better than some threshold.

Fig. 4 shows an example for a component publishing some
data and subscribing to a parameter. From the developers’
point of view data is accessed like global variables. The
difference is, however, that each variable name has to be
preceded by the name of the data definition it is contained in
(e.g., “NeighborData.neighborTbl). Again, this is analogous
to the use of interfaces in nesC. Another difference compared

to global variables is that data accesses of publishers have to
be included in an ifproviding block (see below).

If problems from concurrency can arise, developers have
to enclose accesses to shared data in standard nesC atomic
statements (not shown in the code example). Therefore, they
can use the constructs that they are already familiar with from
nesC.

Neither publishers nor subscribers can access the data via
pointers to guarantee that only components declaring correctly
their dependencies are able to access the data. Our experience
after modifying and creating several nontrivial applications
using TinyXXL shows that this limitation does not severely
restrict the developer.

When a component subscribes to some data, the developers
have to implement a special function named ‘“changed” (see
Fig. 4). This is a notification function called after data has
been modified. If this functionality is not needed, the compiler
removes this code. As we describe in Section III-C, data
subscriptions themselves cannot be changed at runtime but
are statically created at compile-time.

3) “ifproviding” Blocks for Data Publishers: For com-
ponents publishing some data we added another language
construct: the ifproviding blocks. All the code related to data
provision has to be included in such a block (see Fig. 4). This
is necessary for two reasons. First, if the component does not
have to provide the data because another one supplies the same
data, the code inside this block is removed by the compiler.
So there are no unnecessary processing steps to provide the
same data twice and no overhead at runtime to check if the
component has to acquire the data. Secondly, at the end of
such a block subscribers are automatically notified of the
change. These notifications cannot be accidentally omitted by
the developer and this solution offers higher efficiency than
notifications after each variable assignment. There is no need
for ifproviding blocks if a component just subscribes to some
data; it may access the data anywhere in the code.

Obviously, code that is needed to fulfill a publisher’s
functional purpose cannot be encapsulated in an ifproviding
block. Otherwise, the component could not work properly if
another component publishes this data and the code within
the ifproviding block is removed by the compiler. In this
case the component also has to specify a dependency on the
data as a subscriber so that it can access the data outside the
ifproviding blocks. For example, a routing component that
makes its internal neighborhood information available to other
components also has to subscribe to this data if it uses it for
routing.

4) Virtual Data Items: Besides data stored in RAM, we
have added support for dynamically generated data with virtual
data items. Virtual data items declare how the data can be
computed dynamically from some other data already present.
For subscribers, this is completely transparent; they cannot tell
whether data is stored in RAM or generated on-the-fly.

Using virtual data items, operators known from databases
can be implemented for cross-layer data. This functionality can
include projections from several data definitions into a single

xlvirtual NeighborCountAggregator {
provides xldata NeighborCount();
uses xldata RoutingData ();
}
implementation {
xldata void NeighborCount.count(uint8_tx result) {

uint8_t i;
sresult = 0;
for (i=0; i<MAXELEMENT_COUNT;

i+4) {
if (RoutingData.neighbors[i]. flag !=
(xresult)++;

EMPTY)

Fig. 5.
neighbors

Sample virtual data item that aggregates the number of network

one and aggregation functions that perform some computation
on the data. For example, Fig. 5 shows a virtual data item that
aggregates the number of neighboring nodes by counting the
elements in some other data structure. Similarly, if there is no
data publisher for the kind of data needed by a subscriber in the
system, virtual data can be used to convert some other data to
the required format. For example, a component just interested
in neighborhood information does not want to process complex
routing information, although the requested data could be
inferred from that. Therefore, a virtual data item can distill this
information from the more complex internal data of the routing
component. These conversion capabilities can also be used
with evolving data definitions, as new versions of a component
are developed. Here components still expecting the old data
format can use virtual data instead of the actual representation
in RAM. The decisions on whether to store some data in RAM
or to provide it using virtual data is made by the TinyXXL
compiler based on the publishers and subscribers available.

There are several advantages of virtual data items. First, it
is possible to provide additional data besides just the internal
representation of the publisher components. This way data
that is not directly provided by the components in the system
can still be used by subscribers. Secondly, using virtual data
reduces the amount of data that is stored in limited RAM and
does not impose the overhead of acquiring similar data twice.
Thirdly, instead of requiring every publisher or subscriber to
convert the data, the system provides the data already in an
immediately usable format.

To implement a virtual data item, the dependencies on other
data have to be specified just like with data accesses. Then
for each variable declared in the represented data a function
like the “NeighborCount.count” function in Fig. 5 has to be
provided. Obviously, this function can incur some processing
overhead. However, this processing overhead would also exist
with conversions being implemented in pure nesC code and is
often less than acquiring equivalent data twice.

B. Impact on the life cycle of applications

Using TinyXXL influences the whole life cycle of sen-
sor network applications, including design, implementation,
and operation. In the design phase the developer can select

reusable components of which the application is composed
without making sacrifices regarding cross-layer optimizations.
In addition, despite the use of cross-layer interactions, the
modularity of the application is preserved and components are
decoupled. Thus, when the application evolves, components
can be exchanged more easily.

In the implementation phase the developer does not have
to manually optimize data exchange, e.g., by ensuring that no
redundant data is gathered and stored. This is something that
is already done by TinyXXL. Therefore, the implementation
effort is largely reduced.

During the operation phase of a sensor network appli-
cation TinyXXL helps in reducing resource consumption by
automatically performing cross-layer data exchange. Although
the developer does not have to deal with optimizations, the
performance of an application built from reusable components
is comparable to a manually optimized one, since no redundant
data is acquired and stored.

C. TinyXXL Compiler

The TinyXXL compiler is a pre-compiler that outputs pure
nesC code. It has been implemented in Java using JavaCC
as a parser generator. From the data definitions and the data
dependencies the TinyXXL compiler generates the files that
implement the TinyStateRepository (see Section IV). It ensures
that only components declaring their dependencies can access
the data in the specified way. The compiler resolves non-
functional requirements on publishers by adding preprocessor
directives that select the data provider satisfying the require-
ments best.

Since the TinyXXL compiler resolves all data dependencies
at compile-time, it is not possible that components subscribe
to some data dynamically. We selected this approach for two
reasons. First, our analysis of existing sensor network applica-
tions [4] did not show much need for dynamic subscriptions.
Secondly, this approach does not incur any RAM overhead
and notifications can be implemented more efficiently because
there is no list of current subscribers to check.

The TinyXXL compiler translates all data accesses into
function calls to the TinyStateRepository. This way it ensures
that the data cannot be accessed via pointers. Like almost all
nesC functions these function calls are later inlined by the
nesC compiler so that the compiled code closely resembles
direct variable accesses. Furthermore, each ifproviding block
is translated into a regular if-statement that can be evaluated
at compile-time. Thus none of the TinyXXL concepts imposes
the runtime overhead of a function call.

IV. RUNTIME SUPPORT FOR DATA EXCHANGE

At runtime the TinyStateRepository provides support for
cross-layer data exchange. It consists of a set of components
generated by the TinyXXL compiler and stores the data and pa-
rameters specified using TinyXXL. For each data and parameter
declaration the TinyXXL compiler creates a nesC component
that declares data as variables within this component. This
file also contains access functions to get and set the values

of variables in a controlled way. So the code generated is
similar to the example shown in Fig. 2(b). The subscribing
components are automatically wired to the get interface and
one of the publishers is selected to provide this data, which
is wired to the set interface. The TinyStateRepository then
automatically notifies all subscribers after the publisher has
finished writing data.

In the TinyStateRepository the system keeps information
about the name of the data item, its type of cross-layer in-
teraction (parametrization or data sharing), a list of publishers
of each data item, a list of subscribers, its data type, and the
value of the shared data or parameter. Only the data values
themselves are kept in RAM; all other information is translated
at compile time and implicitly stored in the code image of the
application.

The solution described so far requires the compiler to do
most of the work like checking data dependencies. In addition,
with its global view of the application the compiler is able to
remove code that is not needed. However, such compile-time
optimizations are not possible when using adaptation within
the TinyCubus framework [6]. If such adaptation capabilities
are to be supported, there is no longer a global view at
compile-time, since binary components can be linked to the
code image individually. However, the linker on the sensor
node can be modified to do most of the optimizations during
adaptation, which are performed by the compiler in the static
case. For example, just like functional dependencies it can
also check if all data dependencies are fulfilled and use the
non-functional requirements to select a publisher that meets
the requirements of the subscribing components best. By
directly changing parts of the program code (i.e., the values
of some constants) the linker can perform these changes
without increasing RAM consumption and with only little
runtime overhead for accesses to the TinyStateRepository (see
Section V-D). The only difference is that, since TinyCubus
does not compile any code on the sensor nodes, the code
within the ifproviding blocks is not removed but simply not
executed if it is not needed.

Storing data in the TinyStateRepository can even be of ad-
vantage for adaptation with TinyCubus. Since the sensor node
has to be rebooted to install the new code, all the contents of
RAM are lost during the adaptation process. However, storing
the complete contents of RAM in non-volatile flash memory
is not practical because the linker cannot necessarily relate an
old memory location to a new one and thus cannot handle
pointer variables, for example. Because of the development
overhead it does not seem practical, either, to require each
component to implement a serialization interface to store and
load the component’s data. However, with TinyXXL the data
in the TinyStateRepository can be written to flash memory
with little effort. As there are no pointers to data in the
TinyStateRepository, no problems can arise from data changing
its physical representation if a virtual data item is used after
reboot instead of direct accesses to memory, for example. In
addition, the compiler knows the data format and can generate
appropriate serialization functions for almost all cases. In

TABLE I
COMPLEXITY OF SAMPLE APPLICATIONS

Application # components | # LOC
Sense-R-Us 116 18,714
TinyDB 176 29,559
AcousticLocalization 69 11,359

TABLE II
NUMBER OF CHANGED LINES OF CODE (ADDED, REMOVED, AND
MODIFIED) AND TOTAL NUMBERS IN THE MODIFIED COMPONENTS

Changed # LOC LOC mod.
Application Add. | Rem. | Mod. | components
TinyDB 391 332 297 6,318
AcousticLocalization 40 24 8 1,468

summary, because of the serialization facilities offered by the
TinyStateRepository the application can leverage data gathered
before adaptation and thus can be fully functional again faster.

V. EVALUATION

In this section we evaluate both the benefits for developers
using TinyXXL (i.e., the development costs and maintainabil-
ity) and the run-time overhead on the sensor nodes regarding
space requirements and processing.

A. Development Costs

To show the development costs of 7inyXXL we have created
a nontrivial application and modified parts of two other ones
available from the TinyOS CVS repository at SourceForge.net?
to use it. These applications contain between 11,000 and
30,000 lines of code (see Table I). Our newly created ap-
plication is called Sense-R-Us; it uses a sensor network to
determine the position of research assistants and to detect
the location and duration of meetings. The modified applica-
tions are TinyDB and AcousticLocalization. TinyDB provides
generic query processing capabilities whereas AcousticLocali-
zation determines the geographic positions of nodes using the
difference in the speed of radio waves and sound. In TinyDB
our changes to use 7inyXXL focus on the components related
to communication. Nevertheless, the rest of the application
also provides some opportunities to apply them.

Table II summarizes how many lines of code had to
be added, removed, or modified to add data sharing and
parametrization capabilities using TinyXXL. It also shows the
total number of lines of code of all components that were
modified. In TinyDB we have created 24 shared data variables
and parameters, but in AcousticLocalization just 4 parameters,
because in this application the components work mostly on
internal data. Therefore, as Table II shows, in TinyDB by far
more lines had to be changed. In general, the lines that were
added are quite simple such as the variable declaration and
the specification of data dependencies. Correspondingly, the
lines of code that were removed were used to declare and
share the variables with specialized interfaces. Modified lines

’http://tinyos.cvs.sourceforge.net/tinyos/

TABLE III
LINES OF CODE IN A MINIMAL APPLICATION AND NUMBER OF CHANGED
LINES WHEN ADDING ANOTHER PUBLISHER

Total Changed # LOC
Version #LOC | Add. | Rem. | Mod.
Pure nesC, data in publisher 46 1 9 1
Pure nesC, data separate 65 1 2 1
TinyXXL 39 1 0 1

of code were mostly changed so that accesses to shared data
and parameters refer to the 7inyXXL variables. One reason why
the number of lines added is greater than those removed is
that our modified versions publish more data than the original
implementations because this data could also be useful for
other components.

If applications are developed from scratch with TinyXXL, the
development costs are much smaller. In fact, there are fewer
lines of code necessary than in pure nesC-based solutions.
To show this, we have implemented a minimal application
that shares a single variable between two components. We
have created three versions of this application. Using just
nesC, the first one stores the shared data in the publisher
component (see Fig. 2(a)) whereas the second one stores it
in a separate component (see Fig. 2(b)). Finally, the third
version uses TinyXXL for data exchange (see Fig. 2(c)). All
three variants offer the same functionality, use 20 bytes of
RAM, and compile to 452 bytes of code.

Table III compares the code length of the different variants,
which is one of the best predictors of understandability and
maintainability [11]. The results in Table III show that the
TinyXXL variant requires the smallest number of lines of code.
In particular, it needs 40% fewer lines than the nesC approach
that keeps the data in a separate component and still 15%
fewer lines than the nesC variant storing the variable within
the publisher component. Although these numbers depend on
the number of shared data variables, the number of accesses
to them, as well as the number of publishers and subscribers,
this example gives some idea about what we expect to find in
more complex applications.

Sense-R-Us shows that complex applications can be devel-
oped with TinyXXL. This application makes extensive use of
data sharing. For example, during the first 60 seconds after
power-on — when information about neighboring nodes is gath-
ered — data from the TinyStateRepository is accessed almost
3,300 times. In retrospect TinyXXL has made developing this
application much easier.

B. Maintainability

To show the benefits to maintainability, we modified the
different versions of the minimal application introduced in
Section V-A. We added another component that provides the
same data as the publisher already present. We then tried to
optimize the application so that only one of the publishers
writes the shared data and that no redundant variables are
stored in RAM. As shown in Table III, in all three versions
of the application one line had to be added and one had to be

TABLE IV
CODE SIZE OF THE EXAMPLE APPLICATIONS (IN BYTES)

Application Original | TinyXXL
TinyDB 62,144 61,894
AcousticLocalization 24,272 23,996

modified. Besides that, in the two pure nesC versions code had
to be removed manually because it would have been redundant.
In the variant with the data stored directly in the publisher
these were nine lines of code because the declaration of the
redundant variable, all accesses, and the code providing the
shared data to other components had to be removed. In the
version that keeps the shared variable in a separate component
only the accesses and the unused interface had to be deleted
(two lines of code). In the TinyXXL version, however, nothing
had to be changed.

C. Space Requirements

Table IV shows the size of the code in program memory
for both the original applications and the ones built with
TinyXXL. The numbers are almost identical because most
function calls to the TinyStateRepository are inlined by the
compiler and, therefore, the code is mostly equivalent. Due to
slight differences in the implementation and the optimizations
performed by the compiler there are some variations (about
1%). Howeyver, they are too small to derive a general trend.

TinyXXL does not increase the size of allocated memory
in RAM. The data in the TinyStateRepository is the same as
in pure nesC-based approaches, since the TinyStateRepository
does not store any meta-data in limited RAM. If the application
makes use of TinyCubus’s adaptation capabilities, there is no
RAM overhead for the TinyStateRepository, either, since all
information about data providers and subscribers is written to
the code in program memory.

It should be noted that both TinyDB and AcousticLocali-
zation have already been optimized by hand. Therefore, this
setting is the worst case where 7inyXXL is not able to add
benefit via its optimizations. With less optimized applications
than our sample applications (e.g., those built from reusable
components), we expect both code size and RAM consumption
to decrease since the TinyXXL compiler includes only one
instance of the data in memory and removes redundant data
gathering code.

D. Runtime Overhead

To find out the runtime overhead of 7inyXXL compared to
a pure nesC approach, we measured the number of processor
cycles needed for data exchange. For this purpose we used
ATEMU [12], an emulator for Mica2-based sensor networks.
We instrumented both the original and our modified versions
of TinyDB and ran both versions of the application for 60
simulated seconds. During this time the nodes periodically
exchanged messages and updated their routing tables several
times.

The numbers in Table V show that the overhead of TinyXXL
for read accesses is about 24%. Although this overhead seems

TABLE V
RUNTIME OVERHEAD OF TinyXXL/TinyStateRepository

CPU Cycles Time (s)
Original | TinyXXL | Original | TinyXXL
Read access 6.49 8.05 0.88 1.09
Write access 10.19 10.34 1.38 1.40

to be significant, it is not noticeable when running applications
in practice; in absolute numbers it is just 0.21us. Furthermore,
the speed of the processor and the clock cycles available are
usually not regarded as a limiting factor in existing sensor
network applications. In fact, compared to radio bandwidth the
CPU is fast enough to process incoming messages without a
need for receive queues [2].

We attribute the overhead of read accesses mainly to fewer
optimizations performed by the nesC compiler. Although most
function calls can be inlined, there are some situations where
in the original version of TinyDB a variable is already stored in
one of the processor’s registers and does not have to be loaded
again. The compiler does not always perform this optimization
with data from the TinyStateRepository so that the average
cycle count is slightly increased.

For write accesses the numbers of both versions of TinyDB
are almost identical. In general, the compiler performs the
same optimizations in all cases since it always has to write
the value to the variable. Note that for this comparison the
notification functions were not included, since they provide
some additional functionality. In any case, the overhead of
these functions is not associated with every write access but
with ifproviding blocks because the subscribers are only
notified once for each block. In our modified version of
TinyDB, for example, about 2.5 write statements are enclosed
in such a block on average.

If support for dynamic adaptation within TinyCubus is
needed, the optimizations usually performed by the TinyXXL
compiler are done by the TinyCubus linker. Since, compared
to the number of data accesses, applications are only adapted
infrequently and since the linking process already takes a few
seconds [10], applying these optimizations is not performance-
critical. However, with this approach there is also some extra
overhead at runtime: for each ifproviding block an additional
check is required, because the code of such a block cannot be
removed by the compiler in this case. In TinyDB this overhead
is just 3.94 cycles (0.53us) on average. Because typically some
computation or even the transmission of radio messages is
included in such a block, the benefits of not executing this
code — if it is not needed — clearly outweigh this overhead.

Even small processing overheads at runtime can sum up in
the course of time and influence the lifetime of the sensor
network. However, only if an application has been optimized,
it provides better overall performance. Such manual optimiza-
tions are less and less feasible as applications become more
complex and are increasingly developed by experts in the
application domain rather than experts in sensor networks.
Compared to unoptimized applications that gather the same

kind of data twice, the small runtime overhead of ZinyXXL
and the TinyStateRepository can be neglected. For example,
if TinyXXL avoids sending unnecessary radio packets, this
alone will outweigh the energy consumed by the CPU for
the TinyStateRepository’s small runtime overhead.

E. Advantages

The use of TinyXXL exhibits several advantages compared
to pure nesC solutions.

o TinyXXL ensures the modularity of applications by hav-
ing components explicitly declare their dependencies on
shared data and parameters. Therefore, it is not necessary
to directly wire components accessing some data to those
that provide it.

o The components exchanging data are decoupled from
each other and, when the application evolves, can be
replaced independently.

o The TinyXXL compiler automatically reduces resource
consumption by removing code that acquires redundant
data and by selecting a single publisher component that
fulfills the requirements of the subscribers with the least
costs.

o Since redundant data is automatically removed from ap-
plications, components, which — in addition to their actual
functional purpose — provide some of their data to other
components, can be developed without wasting memory
and energy. These components can then be reused in new
applications, regardless of other components that possibly
provide the same types of data.

o TinyXXL’s tight integration in a programming language
allows us to perform checks at compile time without
any runtime overhead and with only little overhead if
support for dynamic adaptation is needed. For example,
the TinyXXL compiler ensures important properties such
as type safety as well as access control so that only
components declaring their dependencies correctly on
some data or parameter can access it.

o The integration in the programming language allows
for an efficient publish/subscribe mechanism without
any RAM overhead and with automatic notifications of
changes.

VI. RELATED WORK

Blackboard architectures [13] have been widely used in
artificial intelligence systems. In this kind of architecture a
blackboard is used to structure and store knowledge as a
global database. Logically independent modules modify the
data in order to incrementally solve a problem; they use the
blackboard as the only form of interaction. Thus, similar to
TinyXXL the modules are decoupled. However, there is no
clear specification of data dependencies and all modules may
modify the data. Furthermore, with TinyXXL there is still the
possibility to employ the standard nesC forms of interaction.

In the realm of mobile ad-hoc networks (MANETS) the
MobileMan project [14] creates a cross-layer architecture for
the protocol stack. Although the concepts used for data sharing

are similar to TinyXXL, MobileMan does not pursue the goal
of easing the usage of cross-layer interactions and, therefore, is
not part of a programming language. Furthermore, it assumes
hardware platforms typical of MANETSs, which are, in the
general case, not so resource-constrained.

Part of the link abstraction SP for sensor networks [15] is a
neighbor table data structure that can be accessed by protocols
of several layers. However, with SP data sharing is limited to
some a priori selected data items; unlike 7inyXXL it does not
allow for the definition of arbitrary shared data.

Kopke et al. [16] have created a publish/subscribe-based
system for sensor nodes. However, their work does not provide
many of the features of TinyXXL because it is not integrated
into a programming language. For example, it does not guar-
antee type safety when accessing data and does not deal with
multiple publishers providing possibly inconsistent, duplicate
data. Unlike our approach this system needs some meta-data
to be stored in limited RAM.

TinyGUYS [17] is a global data storage that deals with
concurrency problems; it guards accesses to the variables by
writing all changes in a buffer and having the scheduler copy
this data to the real variables later. Such synchronization of ac-
cesses is not considered by our approach. We rather rely on the
developer to add the standard nesC atomic statements when
synchronization problems can occur. Obviously, TinyGUYS
adds some memory overhead for the buffers which can be a
problem with resource-constrained sensor nodes.

SNACK [18] is a configuration language, component library,
and compiler based on the nesC language. Similar to our
approach it tries to ease the development of efficient sensor
network applications. However, it deals with the creation of
service libraries that can be combined to form an application
rather than focusing on the problems of cross-layer data
exchange. Likewise, Hood [19] is a programming abstraction
for nesC-based sensor networks that provides support for data
exchange between neighboring nodes rather than components
on a single node. Furthermore, Hood hides the cost of com-
munication from the programmer which may lead to some
additional message overhead. TinyXXL, in contrast, strives at
optimizing applications and avoiding redundant messages for
data acquisition.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have described and evaluated TinyXXL,
our extension to the nesC programming language for cross-
layer data exchange. TinyXXL strives to ease the develop-
ment of cross-layer optimized applications built from reusable
components. It allows for the declaration of components’
dependencies on data, decouples components providing and
using some data, and automatically optimizes applications
by avoiding redundant data provision. With TinyXXL data
dependencies become first-class citizens similar to functional
interfaces. TinyXXL is complemented by the TinyStateRepos-
itory, an efficient state repository generated by the TinyXXL
compiler that stores all cross-layer data at runtime.

As shown in the evaluation, complex applications can be
developed using TinyXXL. For example, we have modified
TinyDB and AcousticLocalization, two nontrivial existing ap-
plications, to make use of 7inyXXL and developed Sense-R-
Us from scratch with our programming language abstractions.
With our approach fewer lines of code are needed for data
sharing and parametrization while profiting of additional ben-
efits such as the selection of the “best” component to publish
the data. We have also shown that the TinyStateRepository is
an efficient implementation of a state repository that imposes
no RAM overhead and only little runtime overhead.

Based on our experience with Sense-R-Us, we expect
TinyXXL to encourage the use of cross-layer interactions
in new applications. For newly developed components we
anticipate that the number of data items provided grows
even more in the future when all the benefits of TinyXXL
are fully available within 7inyCubus. For example, if data
in the TinyStateRepository is automatically serialized during
adaptation, this alone offers enough incentives to publish the
internal data of components. As the number of data providers
grows, we expect the number of components using this data
to increase as well. We are convinced that 7TinyXXL will lead
to a large number of reusable components that use cross-
layer interactions for optimizations. This will allow for more
reuse in sensor network application and decrease development
overhead while — concerning RAM and energy optimizations
— achieving similar results as manually optimized applications.

Regarding future work, we are still in the process of fully
integrating TinyXXL in TinyCubus. In addition, we are explor-
ing possibilities to combine TinyXXL with approaches such as
Hood. So cross-layer data would not only be exchanged among
components on a single node but also among neighboring
nodes. Furthermore, we plan to make 7inyXXL available to
the public.

REFERENCES

[1] A. J. Goldsmith and S. B. Wicker, “Design challenges for energy-
constrained ad hoc wireless networks,” IEEE Wireless Communications,
vol. 9, no. 4, pp. 8-27, 2002.

[2] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo,
E. Brewer, and D. Culler, “The emergence of networking abstractions
and techniques in TinyOS,” in Proc. of the Ist Symposium on Network
Systems Design and Implementation, 2004.

[3] V. Kawadia and P. R. Kumar, “A cautionary perspective on cross layer
design,” IEEE Wireless Communications, vol. 12, no. 1, pp. 3—11, 2005.

[4]

[5

—_

[6]

[7]

[8

—

[9]

[10]

(11]
[12]

[13]
[14]

[15]

[16]

(17]

(18]

[19]

A. Lachenmann, P. J. Marrén, D. Minder, and K. Rothermel, “An
analysis of cross-layer interactions in sensor network applications,” in
Proc. of the Second International Conference on Intelligent Sensors,
Sensor Networks and Information Processing, 2005, pp. 121-126.

D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler,
“The nesC language: A holistic approach to networked embedded
systems,” in Proc. of the Conference on Programming Language Design
and Implementation, 2003, pp. 1-11.

P. J. Marrén, D. Minder, A. Lachenmann, and K. Rothermel, “Tiny-
Cubus: An adaptive cross-layer framework for sensor networks,” it -
Information Technology, vol. 47, no. 2, pp. 87-97, 2005.

P. J. Marrén, A. Lachenmann, D. Minder, J. Hahner, R. Sauter, and
K. Rothermel, “TinyCubus: A flexible and adaptive framework for sensor
networks,” in Proc. of the Second European Workshop on Wireless
Sensor Networks, 2005, pp. 278-289.

J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,
“System architecture directions for networked sensors,” in Proc. of the
9th International Conference on Architectural Support for Programming
Languages and Operating Systems, 2000, pp. 93—104.

S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TAG: A
tiny aggregation service for ad-hoc sensor networks,” SIGOPS Oper.
Syst. Rev., vol. 36, no. SI, pp. 131-146, Dec 2002.

P. J. Marr6n, M. Gauger, A. Lachenmann, D. Minder, O. Saukh, and
K. Rothermel, “FlexCup: A flexible and efficient code update mechanism
for sensor networks,” in Proc. of the Third European Workshop on
Wireless Sensor Networks, 2006, pp. 212-227.

I. Sommerville, Software Engineering, 6th ed. Addison-Wesley, 2001.
J. Polley, D. Blazakis, J. McGee, D. Rusk, J. S. Baras, and M. Karir,
“ATEMU: A fine-grained sensor network simulator,” in Proc. of the
First IEEE Communications Society Conference on Sensor and Ad Hoc
Communications and Networks (SECON), 2004, pp. 145 — 152.

P. Nii, “The blackboard model of problem solving,” Al Magazine, vol. 7,
no. 2, pp. 38-53, 1986.

M. Conti, G. Maselli, G. Turi, and S. Giodano, “Cross-layering in mobile
ad hoc network design,” IEEE Computer, vol. 37, no. 2, pp. 48-51, 2004.
J. Polastre, J. Hui, P. Levis, J. Yhao, D. Culler, S. Shenker, and 1. Stoica,
“A unifying link abstraction for wireless sensor networks,” in Proc. of the
3rd International Conference on Embedded Networked Sensor Systems,
2005, pp. 76-89.

A. Kopke, V. Handziski, J.-H. Hauer, and H. Karl, “Structuring the
information flow in component-based protocol implementations for
wireless sensor nodes,” in Proc. of Work-in-Progress Session of the
Ist European Workshop on Wireless Sensor Networks (EWSN), ser.
Technical Report TKN-04-001 of Technical University Berlin, Telecom-
munication Networks Group, 2004, pp. 41-45.

E. Cheong, J. Liebman, J. Liu, and F. Zhao, “TinyGALS: A program-
ming model for event-driven embedded systems,” in Proc. of the 2003
ACM Symposium on Applied Computing, 2003, pp. 698-704.

B. Greenstein, E. Kohler, and D. Estrin, “A sensor network application
construction kit (SNACK),” in Proc. of the 2nd International Conference
on Embedded Networked Sensor Systems, 2004, pp. 69-80.

K. Whitehouse, C. Sharp, E. Brewer, and D. Culler, “Hood: a neighbor-
hood abstraction for sensor networks,” in Proc. of the 2nd International
Conference on Mobile Systems, Applications, and Services, 2004, pp.
99-110.

