
HAL Id: hal-01213907
https://inria.hal.science/hal-01213907v1

Submitted on 6 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving pattern tracking with a language-aware tree
differencing algorithm

Nicolas Palix, Jean-Rémy Falleri, Julia Lawall

To cite this version:
Nicolas Palix, Jean-Rémy Falleri, Julia Lawall. Improving pattern tracking with a language-aware tree
differencing algorithm. SANER 2015 - 22nd IEEE International Conference on Software Analysis, Evo-
lution, and Reengineering, Mar 2015, Montreal, Canada. pp.43-52, �10.1109/SANER.2015.7081814�.
�hal-01213907�

https://inria.hal.science/hal-01213907v1
https://hal.archives-ouvertes.fr


Improving Pattern Tracking with a Language-Aware
Tree Differencing Algorithm

Nicolas Palix
Grenoble - Alps University/UJF, LIG-Erods

France
nicolas.palix@imag.fr

Jean-Rémy Falleri
Univ. Bordeaux, LaBRI, UMR 5800

France
falleri@labri.fr

Julia Lawall
Inria/LIP6/UPMC/Sorbonne University

France
Julia.Lawall@lip6.fr

Abstract—Tracking code fragments of interest is important
in monitoring a software project over multiple versions. Various
approaches, including our previous work on Herodotos, exploit
the notion of Longest Common Subsequence, as computed by
readily available tools such as GNU Diff, to map corresponding
code fragments. Nevertheless, the efficient code differencing algo-
rithms are typically line-based or word-based, and thus do not
report changes at the level of language constructs. Furthermore,
they identify only additions and removals, but not the moving of
a block of code from one part of a file to another. Code fragments
of interest that fall within the added and removed regions of code
have to be manually correlated across versions, which is tedious
and error-prone. When studying a very large code base over a
long time, the number of manual correlations can become an
obstacle to the success of a study.

In this paper, we investigate the effect of replacing the current
line-based algorithm used by Herodotos by tree-matching, as
provided by the algorithm of the differencing tool GumTree.
In contrast to the line-based approach, the tree-based approach
does not generate any manual correlations, but it incurs a high
execution time. To address the problem, we propose a hybrid
strategy that gives the best of both approaches.

Keywords—code tracking, tree-matching, code metrics

I. INTRODUCTION

Recent years have seen the development of numerous tools
that scan a code base for fragments of code with particular
properties. Such tools include, for example, fault finding tools
[1], [2], [3], [4] that identify fragments of code that represent a
fault, and clone detection tools [5], [6], [7], [8] that find regions
of code that occur at multiple positions across a code base.
Fully realizing the benefit of these tools, however, requires
not simply applying them to a single version of the software,
but applying them to the software repetitively as the software
evolves. Doing so will reveal new faults, new clones, etc. But the
tool will also generate reports based on code that is preserved
from one version to the next. In order to both not bother the
user with reports that he has already seen and to be able to
track properties of the software over time, it is necessary to
distinguish between reports relating to code fragments that have
been removed, that have been preserved, and that have been
added over time. So that the process will scale to large code
bases, over many versions, this correlation of reports generated
for one version with reports generated for the next must be, as
much as possible, automatic.

In this paper, we focus on faults, and assume that a fault to
track is represented by a pair of a keyword, i.e., some free text

obtained from the source code, and a single position within the
code, i.e., the file name, starting and ending line numbers, and
starting and ending column offsets of a term that is critical to
the presence of a fault. Based on this assumption, one strategy
to determine whether a code fragment is preserved from one
version to the next is to check whether the identified position
is in the code that has not changed, i.e., the Longest Common
Subsequence (LCS), between the two versions. If it is, we
conclude that the represented code fragment is preserved from
one version to the next. On the other hand, if the code position
is not in the LCS, it may be the case that the fault has been
removed, or that it remains, perhaps in a slightly different form.
For example, one may consider that a null pointer dereference
is not removed by the systematic renaming of the variables
involved in the dereference expression, even if the variables
are deeply intertwined with the dereference expression itself.
To make this distinction, a human must intervene.

An off-the-shelf, efficient tool for computing the LCS
between two files is GNU Diff [9]. Based on the results of an
LCS calculation, GNU Diff produces a line-based edit script
containing the lines in which at least one character is removed
and the lines in which at least one character is added.1 In
previous work [10], [11], the first and third authors have studied
the faults in the versions of the Linux kernel of the 2.6 series,
from 2003 to 2011. Their work uses the open-source tool
Coccinelle2 [1] to find occurrences of faults in each version of
the Linux 2.6 C source code. Obtaining an accurate view of the
lifetime of these faults requires correlating fault occurrences
from one version to the next. For this, they used another open-
source tool, Herodotos3 [12], to reconstruct the history of each
fault through the different versions. Herodotos uses GNU Diff
to identify lines in the LCS. Specifically, given the position of
a fault in one version, Herodotos predicts the position of the
fault in the next version, based on the information obtained
using GNU Diff about the lines that were added and removed
earlier in the file. If the predicted position is in an unchanged
region of the code, and if Coccinelle finds the same kind of
fault at that position, Herodotos considers that the fault in the
former version is the same as the fault in the latter one. On the
other hand, if the predicted position is found in the changed
code, Herodotos considers that it is not known whether the
fault is preserved across versions, and the user has to perform
the correlation manually.

1We describe the so-called “unified diff format” of GNU Diff.
2https://github.com/coccinelle/coccinelle
3https://github.com/coccinelle/herodotos

978-1-4799-8469-5/15 c© 2015 IEEE SANER 2015, Montréal, Canada

Accepted for publication by IEEE. c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

43



The algorithm used by GNU Diff is very efficient and
reasonably effective. Nevertheless, the results are very coarse-
grained. If a simple modification such as adding a comment
or renaming a variable occurs on a line that contains a fault,
the line is considered to be removed and added. In this case,
Herodotos’s prediction mechanism fails and no correlation is
automatically performed. The same occurs when a block of
code is moved, for instance to create a new function. When
prediction fails, Herodotos proposes to the user a set of possible
correlations between all of the faults that disappear from a given
file in one version, and all of the faults that appear in the same
file in the next version. This two-phase process has allowed
large studies to be carried out [10], [11], [12], [13]. However,
it does not scale well and the manual phase is time-consuming
and error-prone.

The core of the problem is the line-based nature of GNU
Diff and the limited set of kinds of changes identified, consider-
ing only adds and removes, but not moves and updates. There
exists another class of approaches to compute modifications,
based on abstract syntax trees (ASTs) [14]. An AST-based
approach produces results at the level of individual nodes in
the AST, which are generally more fine-grained than results
based on lines. One such tool is the open-source GumTree
tool4 [15]. GumTree specifically takes into account additions,
deletions, updates and moves of individual tree nodes, and
has the goal of producing results that are easier for users to
understand than those of GNU Diff.

In this paper, we present how we have integrated the tree-
based comparison performed by GumTree with the correlation
algorithm of Herodotos. In doing so, we have improved the
rate of success of the automatic correlation of positions across
multiple versions of C source code. We evaluate the benefits of
this approach for tracking software faults in a large software
project, Linux 2.6, with over 8 MLOC. While in our previous
study we had to manually correlate over 800 pairs of faults,
this new approach fully automates the process in practice. This
fully automated correlation, however, comes at the price of a
higher computing time: from 30 to 123 times more CPU time
depending on the complexity of the changes in faulty files. To
address this issue, we propose a hybrid approach, combining
GNU Diff and GumTree, that, while still fully automating the
correlation process, has an overhead of about 3 times in terms
of CPU time.

The contributions of our work are as follows:

• We extend GumTree to treat C code.
• We propose an approach to position prediction in C code

based on a tree-based comparison.
• We develop an associated toolchain that removes all

manual correlations in practice, but at the cost of a high
computing time.

• We design a hybrid strategy that reduces the computing
time, while still achieving a fully automated correlation
process. We observe speedups ranging from 6 to 11 times
compared to a pure tree-matching based strategy.

The rest of this paper is organized as follows. Section II
presents the tools used in our approach, including the current
state of GumTree and Herodotos. Section III presents the

4https://github.com/GumTreeDiff/gumtree

improvements of the approach, and the integration of the tools
that we have used or developed. Section IV evaluates the
benefits of our new approach in terms of the number of manual
correlations to perform and the time taken for the automatic
ones. Finally, Section V presents related work and Section VI
concludes.

II. BACKGROUND

In this section, we present the tools used by our approach:
GumTree, to produce a tree-based description of code mod-
ifications, and Herodotos, to correlate fault reports and thus
reconstruct the fault history.

A. Overview of GumTree

GumTree, developed in previous work [15], is a differencing
algorithm that works on abstract syntax trees (ASTs) extracted
from source code. While classical text diff algorithms, such as
GNU Diff, consider source code as a sequence of text lines
and present differences as sequences of added or removed
lines, GumTree considers source code as an AST and presents
differences as a sequence of added, removed, updated or
moved nodes. Since differences are computed at the tree
level, they are naturally aligned on the code structure and
easier to subsequently process automatically. Additionally, since
differences are expressed with a richer set of edit operations on
nodes, including update and move as well as add and remove,
they are usually easier to understand and closer to the initial
developer’s intent than the text-based ones.

A detailed description of the algorithm, including an
example, is available in the original article on GumTree [15].
Here, we give only an overview. The GumTree differencing
algorithm works in two steps: first it establishes mappings
between the nodes of two abstract syntax trees (AST) and then it
deduces a edit script. The edit script contains the edit operations
that, when applied to the first tree, yield the second tree. The
GumTree algorithm focuses on the first step: computing the
mappings between two ASTs. The output of this algorithm
can then be used by the optimal and quadratic algorithm of
Chawathe et al. [16] to compute the edit script.

GumTree’s mapping algorithm is inspired by the way
developers manually look at changes between two files. First,
they search for the biggest unmodified chunks of code. These
chunks are usually located in code containers (functions, classes,
modules, etc.). Then, developers deduce from the unmodified
chunks how the code containers can be mapped to each
other. Finally, when two code containers are mapped together,
developers look at the modified code they contain to see if there
are additional correspondances, such as renamings. Following
this model, GumTree’s algorithm to compute the mappings
between two ASTs is composed of two successive phases:

1) A greedy top-down algorithm to find isomorphic subtrees
of decreasing height. Mappings are established between
the nodes of these isomorphic subtrees. These mappings
are called anchor mappings.

2) A bottom-up algorithm in which two nodes are considered
to match (called a container mapping) if their descendants
(their children, their children’s children, etc.) include a
large percentage of common anchor mappings. When two
nodes match, the GumTree algorithm finally applies a

44



1 #include <stddef.h>
2

3 struct point {
4 int x;
5 int y;
6 };
7 struct point *a = NULL;
8

9 int fct(void) {
10 struct point *p = NULL;
11

12 return p->x;
13 }

Fig. 1. C program in its initial version

very expensive and accurate tree differencing algorithm to
search for additional mappings (called recovery mappings)
among their descendants. This algorithm is applied only if
the number of descendants of the nodes is below a certain
threshold.

The GumTree algorithm has been validated on many real
differencing scenarios. Its evaluation shows that the GumTree
algorithm produces more comprehensible results for human
developers than GNU Diff, and produces shorter edit scripts
than other tree-based diff tools.

B. Overview of Herodotos and our Code-Tracking Application

Herodotos is a tool for tracking positions of interest in
a source code file across multiple versions of the software,
even when code nearby in the same file has been modified.
We use Herodotos to track positions that denote software
faults. By tracking faults, Herodotos reconstructs fault histories,
independently of the code modifications occurring before or
after the fault position.

In the context of our Linux 2.6 experiments [10], [11],
we first used the program matching tool Coccinelle [1]
to automatically find potential faults in the Linux kernels.
Coccinelle fault patterns were applied to every studied version
of a project, producing a list of fault reports for each version.
Each report contains some text describing the fault and the
position of the fault, comprising the file name, the starting and
ending line numbers, and the starting and ending columns of a
term that is key to the presence of the fault. For example, for
the code in Figure 1, the Coccinelle null pointer dereference
fault-finding rule would generate a report for line 12, columns
8-9, corresponding to the reference to p,5 as p is dereferenced
at this point even though its value is null. If the patch shown in
Figure 2 were then applied to this code, resulting in the code
shown in Figure 3, the report would indicate a dereference of
the pointer on line 13 from column 9 to 10. We then used
Herodotos to correlate the fault reports between versions [12].

To illustrate the reasoning captured by Herodotos, we again
consider the source code shown in Figure 1, the patch on this
code, shown in Figure 2, and the result of applying this patch,
shown in Figure 3. A GNU Diff patch is composed of hunks,
which describe a local change. Each hunk starts with a @@ line
giving the edited positions in the source and destination files,

5Following Linux conventions, indentation is implemented using tabs, not
spaces, when possible.

1 --- ver1/code.c 2015-01-24 14:39:54 +0100
2 +++ ver2/code.c 2015-01-24 14:40:04 +0100
3 @@ -1 +1 @@
4 -#include <stddef.h>
5 +#include <stdlib.h>
6 @@ -4,2 +4 @@
7 - int x;
8 - int y;
9 + int x, y;

10 @@ -12 +11,5 @@
11 - return p->x;
12 + a = malloc(sizeof(struct point));
13 + if(a) {
14 + return p->x;
15 + } else
16 + return -1;

Fig. 2. Patch to the C program

1 #include <stdlib.h>
2

3 struct point {
4 int x, y;
5 };
6 struct point *a = NULL;
7

8 int fct(void) {
9 struct point *p = NULL;

10

11 a = malloc(sizeof(struct point));
12 if(a) {
13 return p->x;
14 } else
15 return -1;
16 }

Fig. 3. C program in its modified version

with a summary of the edited lines. These lines are interpreted
by Herodotos. The remaining lines of a hunk describe the
modification; Herodotos does not use these lines.

By interpreting the line 3, Herodotos determines that the
first change specification removes and adds the same number
of lines of code, and thus does not affect the line numbering
of subsequent code lines. Similarly, because the second hunk
(lines 6 to 9) removes one more line than it adds, any code in
the original source code between the second and third hunks is
pulled back by one line. Finally, the pointer dereference reported
by the Coccinelle rule is part of the third hunk. Herodotos is
thus unable to predict the position of the dereference in the
next version. In that case, Herodotos will look for the faults of
the same kind in the next version. If any are found, Herodotos
will propose the set of pairs of the uncorrelated fault in the
original source file with each uncorrelated fault in the patched
source file as possible correlations. In the subsequent manual
correlation phase, the user will have to review each proposed
pair of faults, and annotate at most one of them as being correct.
If there is no fault of the same kind in the next version of the
file, the current fault is assumed to be fixed.

The above approach is quadratic in the number of faults of
a given kind in a file, and thus when there is a high number of
such faults, this approach produces a high number of correlation
propositions. We thus decided to limit the set of proposed
correlations to the set of reports for which the positions describe

45



two pieces of code of the same length, in the common case
where the starting and ending line numbers are the same. Here,
the length is being used as an approximation of the content,
because the content is not always available in our fault reports.
This extension handles easily the cases where a faulty position
is moved elsewhere in the file, without renaming.

III. OUR APPROACH

To improve the precision of Herodotos, we propose to
replace its use of the line-based GNU Diff with the tree-based
code differences generated by GumTree. While GNU Diff works
on a pair of raw source code files, GumTree expects a pair of
ASTs. Thus, our first challenge in integrating GumTree is to
produce a parser for C files that generates ASTs in the format
that GumTree expects. We then describe some extensions to
GumTree and Herodotos that were required to allow them to
work together. Finally, as the resulting tool is much slower
than the GNU Diff-based version of Herodotos, we propose a
number of performance improvements.

A. Cgum, a Parser for C Code

The GumTree algorithm is language independent, and
requires only two ASTs, which can be furnished in a number
of formats, including XML. GumTree requires that each node
in the AST be associated with a node type that is represented
as an integer, and that each node contain the position of the
associated code in the original source code file. GumTree also
allows a node to optionally contain a string value; for instance,
an identifier node would likely contain the name of the identifier
that it represents, such as p. To use GumTree on a previously
unsupported language, we must therefore write a parser that is
capable of producing such ASTs. For Linux kernel code, we
needed to create such a parser for C code.

To create such a GumTree AST for Linux kernel code,
we reuse the parser of Coccinelle [17], extending this parser
to a tool called cgum.6 The parser of Coccinelle has been
specifically designed to not require expansion of preprocessor
macros, to handle the peculiarities of Linux kernel code, and
to be robust in the face of parse errors. In particular, if a
parse error is encountered, the Coccinelle parser skips to the
next top-level code unit and continues, allowing it to parse a
high percentage of the code. In practice, the Coccinelle parser
parses completely 89.56% of the Linux 3.0 files, and overall
parses around 99.08% of the Linux 3.0 code tokens. For the
set of files relevant to the Lock, NullRef and Null fault types
studied in Section IV, i.e. the set of files with at least one
fault, independently of the Linux version, the Coccinelle parser
parses completely 84.85% of the files, and overall parses around
99.52% of the code tokens.

Figure 4 shows an example of the cgum XML output. This
XML document is composed of nested tree tags, which
correspond to the nodes of the AST. The nesting of these tags
represent the parent-child relationship in the AST. To be able
to relate a node to the position of the corresponding code in
the source code file, each node has a pos (position) attribute.
This position is given, for conciseness, in Figure 4 as a string
of four integers, representing the beginning line and column
and the ending line and column of the corresponding code.

6https://github.com/GumTreeDiff/cgum

1 <tree type="231400" typeLabel="RecordPtAccess"
2 pos="12 8 12 12">
3 <tree type="230100" typeLabel="Ident"
4 pos="12 8 12 9" label="p"/>
5 [...]
6 </tree>

Fig. 4. Excerpt of the cgum output

1 <tree type="231400" typeLabel="RecordPtAccess"
2 pos="12 8 12 12" next_pos="13 9 13 13">
3 <tree type="230100" typeLabel="Ident"
4 pos="12 8 12 9" label="p"
5 next_pos="13 9 13 10"/>
6 [...]
7 </tree>

Fig. 5. The annotated cgum output produced by GumTree

The extension to create cgum amounts to developing a
recursive pretty printer for the Coccinelle C AST that generates
the GumTree XML notation. This extension represents around
1,300 lines of OCaml code.7 For position information and for
the optional string values contained in the nodes, we reuse
information already collected by the Coccinelle parser. For the
node-type numbers, we exploit the union tag numbers available
in the internal data representation of OCaml, as made available
by the OCaml Obj interface [18]. The data set used for the
experiment represents 19,456 C files that use 939MB of disk
space. Once expanded by cgum into an XML representation,
this represents 34GB of data. The complete XML representation,
however, is neither stored on disk nor entirely in memory as
each GumTree process treats only one pair of files at a time,
and Herodotos launches only one GumTree process per CPU.
There is typically at most around 46MB of memory used per
CPU to store the XML representation of the C files at any
given time.

B. Extensions to GumTree and Herodotos

The original GumTree implementation takes as input two
source code files, and produces as output an edit script. However,
in our approach we are interested in being able to track the
position of a particular AST node, i.e., to know its position
after the edit, rather than the edit operation itself. To make this
information readily apparent, we introduce a new kind of output
for the GumTree implementation, called an annotated source
tree, which exposes positions instead of edits. An annotated
source tree amounts to the XML generated by cgum for the
first source code file, with an optional additional attribute,
next_pos, in the tree element. If present, this attribute
gives the position of the node in the second source code file,
in the same format as pos. If this attribute is not present, it
means that GumTree considers that the node has been deleted
in the next version. The annotated source tree associated with
the AST shown in Figure 4 is given in Figure 5.

To integrate GumTree with Herodotos, we first use cgum
to produce a GumTree AST of versions n and n+ 1. These
two ASTs are then used by GumTree to find the mappings

7Computed with David Wheeler’s SLOCCount.

46



between the nodes of these ASTs. Based on this information,
GumTree produces an annotated source tree for version n. For
each fault report, Herodotos then traverses the annotated source
tree of version n to find a node whose position is the same as
the position of the fault. From this node, Herodotos tries to
obtain the position of the fault in version n+1. Two cases can
arise, depending on whether the node contains a next_pos
attribute. If the attribute is present, GumTree has considered
that the code is either unchanged or moved. In both cases the
attribute indicates to Herodotos the location of the fault in
the next version. If the attribute is not present, GumTree has
considered that the associated code has been removed. In this
case, Herodotos considers that the fault has been corrected.
Herodotos also considers that the fault has been corrected if
there is a next_pos attribute, but no fault is reported at the
new position.

As an example, for the fault reported in Section II-B at
position "12 8 12 9" and the subtree shown in Figure 5,
Herodotos descends through the RecordPtAccess node,
whose position "12 8 12 12" contains the desired position,
and stops at the Ident node at position "12 8 12 9",
shown on lines 3-5. This node has a next_pos attribute (line
5), which is added by GumTree when two GumTree ASTs
nodes are paired between the compared versions. From this
information, Herodotos determines that the dereferenced pointer
is now at line 13 between columns 9 and 10. The Coccinelle
null pointer dereference fault-finding rule does generate a fault
report for this position, so Herodotos considers that the fault
is preserved from the former version to the latter one.

The extension to enable the use of GumTree by Herodotos
amounts to changing 15 files and adding 4 files. The changes,
including the additions of the new files, amount to 1,569 added
lines of code and 857 removed lines of OCaml code. Regarding
GumTree, one file is changed with the addition of 53 lines
of Java code. We refer to the resulting implementation as
HeroGum, and for clarity we refer to the original GNU Diff
based version as HeroDiff.

C. Performance Improvements

Using GumTree rather than GNU Diff in Herodotos im-
proves the precision, as described in Section IV, but introduces
a lot of extra computation, for parsing the C code, creating
the XML representation, and performing the tree differencing.
While cgum takes about an hour and a quarter on a single
processor (noted CPU time hereafter) to run on all the faulty
files considered in this study, performing the tree matching
introduces a high computing cost. Indeed, as shown in Section
IV, Table I, the CPU time with GumTree is about 56 hours,
while the CPU time with GNU Diff is about an hour. To
mitigate this problem, we parallelize the computation of the
GNU Diff and GumTree edit scripts, and cache the results,
implying that regardless of the number of faults in a pair of
files, GNU Diff and GumTree are applied to that pair of files at
most once. Furthermore, as parsing the resulting XML is costly,
we parse the result of GumTree only once, before caching, and
cache the result as a serialized OCaml object. The cache is
maintained in an in-memory file system for further efficiency.

While the use of the cache greatly improves performance,
there is still the cost of running GumTree to create the initial

cache entry. To reduce this cost, we propose a third extension
that uses both GNU Diff and GumTree. This hybrid strategy
first runs the correlation based on HeroDiff and collects each
correlation failure that requires a manual correlation. Herodotos
then uses GumTree as above in parallel to create a cache for
the set of affected files. Finally, the remaining correlations are
performed with HeroGum. We refer to this hybrid strategy as
HeroDiffGum.

With the hybrid strategy, the overhead incurred by GumTree
is paid only when the GNU Diff approach fails. On the other
hand, in these cases we now have both the cost of GNU Diff
and the cost of GumTree. In practice, as shown in Section IV
and reported in previous work [12], HeroDiff fails in less than
1% of the correlations. Still, due to the very large number of
correlations, 1% of the correlations represents a large amount
of manual work for all of the fault types. As the hybrid strategy
uses HeroDiff to handle more than 99% of the cases and GNU
Diff is much faster than GumTree, there is still an overall
performance benefit.

IV. EVALUATION

We first quantitatively evaluate our new approach in terms of
the number of correlations that can be done automatically and in
terms of performance. We then present qualitatively the benefit
of the approach, and finally discuss the few differences observed
between the results produced by the various approaches.

To evaluate the performance of the three algorithms, we
consider a subset of the fault reports studied during our previous
work, specifically the reports generated by the Lock, NullRef
and Null patterns [10], [11]. The Lock pattern identifies
positions where an acquired lock is not released, and positions
where a lock is double-acquired. The NullRef pattern identifies
positions where a dereference of a pointer is followed by a
null test on the pointer. The Null pattern identifies positions
where a potentially null pointer returned from a function is not
checked. We choose these patterns because of the high number
of manual correlations we had to do for these cases in previous
studies [10], [11].

A. Performance

Table I compares three strategies: (1) the original one,
HeroDiff, based on GNU Diff and used in our previous
work [10], [11], (2) a new one, HeroGum, based purely on
GumTree, and (3) a new hybrid strategy, HeroDiffGum, first
trying GNU Diff and then falling back on GumTree when
the correlation does not succeed. The timings are given in
hours:minutes:seconds format in Table I and are the average
and the standard deviation computed on three runs. All the
runs have been performed on a 64-core 2.1GHz machine based
on AMD Opteron 6272 processors. The CPU time reports the
cumulative time used by the 64 cores, while the real time
reports the time observed by the user.

The cache is always used but we report separately the case
where it is empty before running the experiment, and the case
where it is filled by a previous run of the experiment. In a real
usage, the cache is empty at the very beginning and thus the
filled case represents an optimal performance that is unlikely
to be achieved in practice. Nevertheless, a file that contains a

47



TABLE I. COMPARISON OF THE THREE STRATEGIES PROVIDED BY HERODOTOS.

Pattern Strategy Manual
correlations

to review / kept

Automatic
correlations after
phase 1 / phase 2

Initial state
for the edit
script cache

CPU time
(hh:mm:ss ± ss)

CPU time
slowdown

versus
HeroDiff

Real time
(hh:mm:ss ± ss)

Real time
slowdown

versus
HeroDiff

Real time
speedup
versus

HeroGum

Lock HeroDiff 28 / 23 4,110 Empty 5:41 ± 3 1 0:28 ± 0.2 1
Filled 0:08 ± 0.01 0:03 ± 0.00 1

HeroGum 0 4,154 Empty 11:43:08 ± 24 123.62 12:00 ± 3 25.6 1
4,154 Filled 3:18 ± 3 0:38 ± 0.8 13.03 1

reports Hybrid 0 4,110 4,154 Empty 18:19 ± 2 3.22 1:37 ± 1 3.46 7.39
Filled 0:07 ± 0.3 0:05 ± 0.03 1.59 8.19

NullRef HeroDiff 200 / 134 14,603 Empty 34:14 ± 23 1 2:05 ± 0.9 1
Filled 0:29 ± 0.2 0:16 ± 0.1 1

HeroGum 0 14,881 Empty 17:47:29 ± 2:58 30.29 42:35 ± 12 20.46 1
14,881 Filled 16:01 ± 2:27 2:40 ± 8 10.09 1

reports Hybrid 0 14,603 14,881 Empty 1:45:13 ± 46 2.99 3:36 ± 0.1 1.73 11.85
Filled 0:30 ± 0.2 0:22 ± 0.3 1.38 7.30

Null HeroDiff 329 / 139 11,786 Empty 20:34 ± 11 1 1:19 ± 0.05 1
Filled 0:22 ± 0.2 0:10 ± 0.2 1

HeroGum 0 11,968 Empty 26:36:23 ± 50 77.64 27:19 ± 3 20.68 1
11,968 Filled 9:01 ± 1:05 1:37 ± 2 9.49 1

reports Hybrid 0 11,786 11,968 Empty 1:04:29 ± 17 3.14 2:20 ± 0.5 1.77 11.68
Filled 0:20 ± 0.3 0:15 ± 0.2 1.46 6.52

fault of one type may contain faults of other types as well, and
thus each run need not start with a completely empty cache.

In the worst case, in the case of Lock, HeroGum takes about
26 times longer than HeroDiff, when each of them runs its cache
filling phase in parallel. However, in the result of HeroGum,
there is no manual correlation to perform. As each manual
correlation may take from a few seconds to a few minutes and
is error-prone, HeroGum is an efficient and practical alternative
to automate the process.

Compared to HeroGum, the hybrid strategy HeroDiffGum
is up to 11 times faster. But it still takes up to 3.46 times
longer to perform the correlation than HeroDiff with an empty
cache, and 1.6 times longer with a filled cache. Nevertheless,
the results are obtained in less than 8 minutes for the full set
of Lock, NullRef and Null faults with an empty cache, and,
as with HeroGum, there is no manual correlation to perform.

Finally, we consider the space usage. As noted in Section
III-C, to further reduce the computing time and the space
consumption, we cache the edit scripts generated by GumTree
in the serialized form of an optimized pre-parsed OCaml
object that can be used directly by the correlation algorithm
of Herodotos. For the selected patterns, 18,804 edit scripts are
generated for the 19,456 files that have faults. Fewer edit scripts
are generated than files, because no script is generated for the
faults identified in the last considered Linux version. For our
dataset, the cache stores 5.8GB of data. We keep this cache in
an in-memory filesystem rather than on disk, for efficiency, as
a dataset this size can be easily handled by current hardware.

B. Improvements in the Correlations when using GumTree

We have studied in detail the Lock reports where HeroDiff
proposes correlations and one of the propositions turns out to
be correct. We regard these cases as failures of HeroDiff. The
reasons for these failures are summarized in Table II.

A common reason why HeroDiff fails on Lock reports is
due to whitespace changes, typically because some code is
moved under or out of a conditional. Such a case is illustrated
by our example patch of Figure 2. A solution would seem to
be to simply ignore whitespace. Nevertheless, the positions

TABLE II. HERODIFF Lock CORRELATION FAILURES

Reason Instances
changed nesting level (indentation) 6
code moved 4
confusion due to other nearby changes 2

reported by Coccinelle and tracked by Herodotos include both
line and column information. Thus, whitespace must be taken
into account in order to compute the right position prediction
and keep tracking the fault. In contrast, whitespace changes are
easily handled by HeroGum, as GumTree identifies the code
as being moved.

The second most common reason why HeroDiff fails on
Lock reports is due to blocks of code that are moved, typically
complete functions. Indeed, it is common to e.g., identify
the need for a new functionality or implementation strategy
and reorganize the contents of a file as a result. When a
function’s position changes by a large number of lines, GNU
Diff typically considers that the function is completely removed
at its original position and added at its new position. These
changes will include the tracked positions, so HeroDiff will
fail to automatically find the fault at its new position, and falls
back to the manual correlation. In contrast, HeroGum will mark
the fault and its surrounding nodes as being moved to a new
container node, and will thus be able to continue to track the
code fragment.

In the remaining two cases, there are many changes in the
surrounding code, and GNU Diff gets disoriented. In one case,8
most of the body of a function, except the lock code, is factored
out into a separate function that is inserted before the original
one. GNU Diff aligns the original function with the factored-out
one, and thus the lock calls are not aligned, resulting in them
being considered to be removed in one version and added in
the next. GumTree is able to make the correlation, probably
because the lock is only locked at two places in the file, and it
matches up the calls in the order in which they appear. In the

8drivers/gpu/drm/radeon/radeon_ring.c, versions 2.6.34 and
2.6.35, function radeon_ring_lock

48



1 --- linux-2.6.14/sound/mips/au1x00.c
2 +++ linux-2.6.15/sound/mips/au1x00.c
3 @@ -477 +475 @@
4 - spin_lock(au1000->ac97_lock);
5 + spin_lock(&au1000->ac97_lock);

Fig. 6. Locking function argument renaming

other case,9 GNU Diff is disoriented by a block of declarations
that are moved from the function containing the fault to the
previous function in the file. GNU Diff aligns on this block of
declarations, causing the fault code to be considered to be first
removed and then added. GumTree can detect the move of the
declarations independently from the other code found in the
function, and correlates the lock calls.

Not all failures of the correlation process manifest them-
selves as correlations that have to be carried out manually. There
are also false negatives. HeroDiff has a number of heuristics
that allow it to consider that fault reports match or do not
match even when the affected code is part of a changed region,
by using features such as a relevant keyword found in the
fault report (the locking operation in the case of a Lock fault)
or the length of the term at the position marking the fault
(Section II-B). These heuristics can cause a correlation not to
take place when it should, which results in a fault silently being
considered to be fixed in one version and introduced in the next
one. We have seen three such cases for the Lock faults, where
the path for accessing the lock changes. One case is illustrated
in Figure 6, where a field is changed from a pointer to an
inlined structure, leading to the addition of an & operator. This
changes the length of the tracked argument, and, as described
at the end of Section II-B, Herodotos does not propose any
correlations. In the two other cases, both in the same file, an
intermediate substructure is added, adding the need for an extra
field dereference.10 GumTree is able to overlook these minor
changes, based on the notion of container, which focuses on
larger regions of commonality in the surrounding code.

C. Degradations in the Correlations when using GumTree

GumTree intrinsically eliminates all of the manual correla-
tions, as it either proposes a unique mapping for each node, or
indicates that the node (and thus the fault) has been removed,
and thus there are no choices left for the user. This, however,
does not mean that all of the choices made by GumTree are
correct.

The main source of difficulty is GumTree’s strategy for
detecting moved fragments of code. While we have seen that
this detection can allow GumTree to resolve some cases on
which HeroDiff has to resort to manual intervention, such as
a move of a complete function, the strategy can also be too
aggressive and make incorrect choices. For the Lock faults, we
have observed 7 cases for which GumTree makes such a link
that is incorrect. Typically, this arises when a new function
is added or removed that is similar to another function that
remains in the file. GumTree may choose the wrong instance as
the counterpart of a fault. In another case, however, both calls

9mm/slab.c, versions 2.6.23 and 2.6.24, function cpuup_callback.
10net/ipv4/igmp.c, versions 2.6.8 and 2.6.9,

functions igmp_mc_get_next and igmp_mc_get_next

to a function in a file were removed and one was added, and
a fault was correlated from one of the old calls to the unique
new one, even though there was no real connection, besides the
name of the called function, between them. Many of these cases
did not require a correlation for HeroDiff, because GNU Diff
does not detect code moves and thus is highly constrained by
the linear structure of the two files. Finally, for the Lock fault,
in 3 cases, GumTree does not make a correlation, presumably
finding the code to be too different between one version and
the next. In these cases, GumTree starts a new fault report,
thus slightly inflating the overall number of fault reports. We
have noted, however, that HeroDiff is also susceptible to this
error.

We now discuss some other typical cases from the NullRef
and Null reports for which the correlation results are different
when using HeroGum than when using HeroDiff.

1) Large Hunks: In Linux 2.6.38, at line 1,008 of the
file drivers/staging/easycap/easycap_ioctl.c, a null
test of the variable file is performed after a dereference.
This test is removed, along with 38 other lines around it, and
replaced by another test, within a sequence of 5 added lines.
Moreover, the new test is about file being different from
null, rather than identical to null, as done before. GumTree
fails to correctly associate the Linux 2.6.38 test with the Linux
2.6.39 test. Indeed, the test in the version 2.6.38 is considered
removed. In the case of GNU Diff, as the test is part of the
removed lines, Herodotos falls back to the manual algorithm
to find a fault of the same kind in the next version of the file.

We observe the same problem in a rewrite of more than
350 lines in the file fs/xfs/xfs_alloc.c from Linux
2.6.34 to Linux 2.6.35. A Null report is issued at line 2,571
of the Linux 2.6.34 code. Both GNU Diff and GumTree fail
to propose the correct new position, 2,700. HeroDiff again
ultimately succeeds due to the step of manual intervention.

2) Variable/Function Renaming: In Linux 2.6.36, in the file
drivers/staging/hv/channel_mgmt.c, a large number of
functions and variables were renamed to conform to the Linux
coding standards. There are thus small changes everywhere, but
always within tokens; there is no change to the code structure.
This issue is illustrated by the test of msgInfo in the hunk
illustrated Figure 7. Here, even if the change renames only a
single variable, and the hunk is concise (only 3 lines are added
and removed), neither HeroGum nor HeroDiff automatically
correlates the reports. In the case of HeroGum, the thresholds
used by default by GumTree cause it to fail to identify these
renamings. As a result, it produces a lot of removed and
added blocks in the edit script, rather than updated code. As
Herodotos only propagates changes when code is updated or
moved, Herodotos stops the correlation and the fault is assumed
to be removed. HeroGum thus reports that the corresponding
fault in the next version is a new one. HeroDiff again reports
the need for a manual correlation, and the user can make the
correct choice.

To overcome the problem raised by GumTree where
renaming causes nodes to be annotated as removed instead
of updated, we increase the threshold on the maximum number
of descendants in the third step of the GumTree algorithm
(see Section II-A) for which the expensive but accurate tree-
differencing algorithm is launched. This change increases the

49



1 --- linux-2.6.36/drivers/staging/hv/channel_mgmt.c
2 +++ linux-2.6.37/drivers/staging/hv/channel_mgmt.c
3 @@ -809,3 +819,3 @@
4 - if (msgInfo) {
5 - kfree(msgInfo->WaitEvent);
6 - kfree(msgInfo);
7 + if (msginfo) {
8 + kfree(msginfo->WaitEvent);
9 + kfree(msginfo);

Fig. 7. Variable renaming case

number of renamings detected by GumTree, allowing HeroGum
to correctly correlate the faults.

3) Selection of the Recorded Positions: For the NullRef
pattern (dereference of a pointer followed by a null test on the
pointer), a fault is characterized by two positions: the pointer
dereference and the pointer test. The latter is highlighted in the
NullRef fault report. This poses problems if a new test on the
same value is introduced in the control flow between these two
positions; the fault remains but the reported position changes.
As the original test is preserved, both approaches successfully
compute the new position of the original test, but the fault is
no longer reported here; it is now reported at the new test.

As an example of this issue, we consider the NullRef fault
appearing in the hunk on Linux 2.6.31 shown in Figure 8.
The page->index dereference at line 13 appears before
the page test of line 26. However, after updating the code,
Coccinelle reports the fault with the dereference of line 8 and
the page test of line 15. As the line 26 is unchanged, HeroDiff
and HeroGum fail to properly track the fault. HeroDiff again
falls back on manual correlation, but HeroGum, which has no
fallback mode, considers the fault to be removed from Linux
2.6.31 and a new one to be created in Linux 2.6.32. Overall,
in this case, the issue is related to the choice of position to
be tracked, as Herodotos tracks only one position per fault.
The selection of the position to be tracked is thus crucial to
the success of the correlation process for faults that involve
multiple code fragments.

4) Code Refactoring: As shown in Figure 9, from Linux
2.6.28 to Linux 2.6.29, the file fs/ext4/mballoc.c has
been rewritten so that the kmem_cache_alloc function is
no longer called in the function ext4_mb_free_metadata
(line 4), but rather in the function ext4_mb_free_blocks
(line 23). This latter function then calls the former (line 31).
As the allocation may fail, calling the kmem_cache_alloc
function may return a NULL pointer which must be tested.
However, the pointer returned in line 4 in the old version is
directly used the next line. Similarly, the returned pointer of
the new call, on line 23, is not tested.

The kmem_cache_alloc call is part of a hunk, so GNU
Diff fails to provide useful information to HeroDiff which then
falls back on the manual process to track the Null fault. In
our previous work, it seems that the relation between the old
and new code was not obvious and the proposed correlation
was erroneously tagged. On the contrary, GumTree successfully
tracks this refactoring, and the new position reported allows
HeroGum to properly track the fault.

Similarly, we observed a Null fault involving calls to
the kvm_mmu_get_page function that may return NULL

1 --- linux-2.6.31/fs/fscache/page.c
2 +++ linux-2.6.32/fs/fscache/page.c
3 @@ -549,23 +704,35 @@
4 goto superseded;
5 page = results[0];
6 _debug("gang %d [%lx]", n, page->index);
7 - if (page->index > op->store_limit)
8 + if (page->index > op->store_limit) {
9 + fscache_stat(...);

10 goto superseded;
11 + }
12

13 - radix_tree_tag_clear(..., page->index,
14 - FSCACHE_COOKIE_PENDING_TAG);
15 + if (page) {
16 + radix_tree_tag_set(..., page->index,
17 + FSCACHE_COOKIE_STORING_TAG);
18 + radix_tree_tag_clear(..., page->index,
19 + FSCACHE_COOKIE_PENDING_TAG);
20 + }
21

22 + spin_unlock(&cookie->stores_lock);
23 spin_unlock(&object->lock);
24 - spin_unlock(&cookie->lock);
25

26 if (page) { ...

Fig. 8. Introduction of a new test for null pointers

1 --- linux-2.6.28/fs/ext4/mballoc.c
2 +++ linux-2.6.29/fs/ext4/mballoc.c
3 @@ -4419,5 +4713,0 @@ ext4_mb_free_metadata
4 - new_entry = kmem_cache_alloc(..., GFP_NOFS);
5 - new_entry->start_blk = block;
6 - new_entry->group = group;
7 - new_entry->count = count;
8 - new_entry->t_tid = handle->...->t_tid;
9 @@ -4610,4 +4890,19 @@ ext4_mb_free_blocks

10 - if (metadata) {
11 - /* blocks being freed are metadata. ...
12 - * be used until this transaction is ... */
13 - ext4_mb_free_metadata(...);
14 + err = ext4_mb_load_buddy(sb, blk_group, &e4b);
15 + if (err)
16 + goto error_return;
17 + if (metadata && ext4_handle_valid(handle)) {
18 + struct ext4_free_data *new_entry;
19 + /*
20 + * blocks being freed are metadata. ...
21 + * be used until this transaction is ...
22 + */
23 + new_entry = kmem_cache_alloc(..., GFP_NOFS);
24 + new_entry->start_blk = bit;
25 + new_entry->group = blk_group;
26 + new_entry->count = count;
27 + new_entry->t_tid = handle->...->t_tid;
28 + ext4_lock_group(sb, blk_group);
29 + mb_clear_bits(..., bitmap_bh->b_data,
30 + bit, count);
31 + ext4_mb_free_metadata(...); ...

Fig. 9. Code refactoring, displacing an untested call to kmem_cache_alloc

pointers. At line 2,247 of the file arch/x86/kvm/mmu.c
in Linux 2.6.36, this function is called from the function
mmu_alloc_roots (64 lines) without a subsequent test
of the returned value. The function mmu_alloc_roots
was refactored in Linux 2.6.37 to untangle two allocating
modes. The new version calls conditionally either the function
mmu_alloc_direct_roots (34 lines) or the function

50



mmu_alloc_shadow_roots (94 lines), according to the
allocating mode to use. The refactoring involves untangling
a simple and short version for the direct case; the remaining
code belongs to the shadow case. Additionally, new features are
added in the shadow case. With HeroDiff, the manual process
is used and the correlation was tagged properly by the user.
With HeroGum, both functions are considered mainly new by
GumTree; the nodes are marked as added. Thus, HeroGum
fails as GumTree does not correctly represent the refactoring.

In conclusion, neither HeroDiff nor HeroGum is uniformly
better for corner cases, and the better one depends on the case
considered. However, HeroGum outperforms HeroDiff in terms
of correct and automatic correlations in the general case.

V. RELATED WORK

We first present the prior work on the topic of AST
differencing, and then consider the main work that has been
done on tracking code patterns.

A. AST-Differencing

The best-known differencing algorithm that works on ASTs
is ChangeDistiller [19]. This algorithm is largely inspired by
the algorithm of Chawathe et al. [16] that computes differences
on trees representing hierarchical text documents, such as
LaTeX documents, but is tuned to work better on ASTs.
However, ChangeDistiller is based on the assumption that leaf
nodes contain a significant amount of text. Therefore, it uses
simplified ASTs where the leaves are complete code statements,
rather than raw ASTs. Therefore, ChangeDistiller will not
compute differences at a finer granularity than statements,
unlike GumTree. Since fault reports are often located in a
precise part of a statement, GumTree seems more suited to
track their positions.

Several other AST-differencing approaches have been pro-
posed. The DiffTS algorithm [20] works on raw ASTs. The
developers of DiffTS showed that it efficiently produces short
edit scripts. However the results of this algorithm have not been
validated by humans. The VDiff algorithm [21] generates edit
scripts from Verilog HDL files. It is somewhat similar to the first
phase of GumTree, but it additionally uses the lexical similarity
of the code. However, the generated edit scripts are specific
to the VHDL language. Finally, the JSync [22] algorithm is
also able to compute edit scripts that include move actions.
However it relies on a classical text differencing algorithm
applied to the text generated from the traversal of the ASTs
as a first step, which limits its ability to find moved nodes.
Additionally, it focuses on producing information about clones
rather than producing edit scripts.

B. Tracking Code Patterns

Duala-Ekolo et al. [23] have introduced a technique to
track the location of code clones across several versions of
a file. Their approach is based on a so-called Clone Region
Descriptor (CRD), which can be seen as a URL for source
code. A CRD contains information about the file, class, method
and blocks in which a code fragment is located. Using this
information, the fragment can be tracked across versions as
long as its associated block is still present in the file. However,
a CRD cannot track a code fragment at a finer granularity than

a whole block of code, such as a single expression, and is not
robust to changes in the nesting level of the containing block.
On the contrary, our approach is able to track code patterns at
any granularity.

Canfora et al. [24] have introduced an approach that tracks
code lines across two versions of a file. Their approach is more
advanced than that of GNU Diff as it is able to detect added,
deleted, changed and moved lines. The approach first applies
a classical GNU Diff algorithm to detect unchanged code
lines, and then searches for additional mappings between the
lines contained in the hunks detected by GNU Diff. Similarly,
Reiss [25] studies the effectiveness of several methods to track
code lines across two versions of a file. He finds that the most
efficient method, called W_BESTI_LINE, is to combine a line
similarity measure with a similarity measure of the context
(the four surrounding lines). Finally, Asaduzzaman et al. [26]
improve the efficiency of the W_BESTI_LINE strategy by
using GNU Diff and simhashes, i.e., hash values for which
the distance denotes the degree of similarity of the objects
being hashed, to avoid comparing every possible pair of lines.
They also add heuristics that are capable of detecting lines that
have been split. However, all these approaches work at the
granularity of text lines. On the contrary, our approach is able
to track code patterns at any granularity.

Logozzo et al. [27] have developed Verification Modulo
Versions (VMV), which is integrated into the tool cchecker
for C# programs. The goal of VMV is to reduce the number
of alarms reported by static verifiers. It does so by leveraging
the program history to eliminate false positives in the reports
of new warnings. The VMV algorithm computes conditions
on functions and compares them between versions. There is
no correlation based on LCS or tree-matching. There is thus
the strong assumption that functions are not renamed. Our
main target for Herodotos is to track faults, but we keep
the fault finding tool (Coccinelle) separate from the fault
tracking one (Herodotos). Our fault finding process thus does
not use previous fault finding results, but it does not make
any assumption about code changes. Finally, their evaluation
focuses on the reduction in false positives, without considering
the running time or the rate of success of the correlation process.

Göde and Koschke [28] propose an incremental clone
detector that leverages knowledge about clones in one version
to help find clones in the next version. This approach is reported
to be quicker than the traditional one of searching for clones
in each version independently, “if the changes do not exceed a
certain fraction of the source code.” Their approach propagates
the clones directly for the unchanged files, and then only
searches for clones in the remaining files. Our approach is
more fine-grained, in that it tracks positions across unchanged
regions within files that may contain other modifications.

VI. CONCLUSION

Using software metrics for taking development decisions is
part of the modern software engineering methodologies. Some
of the interesting metrics involve tracking code fragments over
several software versions. In previous studies, we have used
Herodotos and the LCS-based and line-oriented GNU Diff
algorithm to help accomplish this task. While this has allowed
us to efficiently track code fragments over a decade in an

51



almost automatic way, the remaining correlations have to be
done manually. This manual process is a daunting task which is
tedious and error-prone. As the size of the code base increases,
either because more versions are studied, or because each
version gets larger, the situation gets worse.

In this study, we propose the HeroGum code tracking
algorithm, which leverages the tree-based matching provided
by the GumTree tool. Our evaluation shows that HeroGum fully
automates the correlation process, but significantly increases
the computing time and introduces some miscorrelations.

To alleviate the performance problem, we propose the
HeroDiffGum hybrid strategy that first runs HeroDiff and then
runs HeroGum only for the correlations that have failed. In
doing so, our solution allows a fully automated correlation of the
code fragments, while keeping the computing time reasonable.
While HeroGum takes almost an hour and a half with 64 CPU
cores for the reports of the three fault types considered in our
evaluation, the hybrid strategy, HeroDiffGum, completes the
work in about eight minutes.

Addressing the miscorrelations of HeroGum remains future
work. We plan to consider how a level of confidence can
be introduced into GumTree, to highlight cases where it has
had to choose a matching code fragment from several similar
possibilities. In the case of lower confidence correlations,
HeroGum could report the possibilities to the user for manual
correlation, as does HeroDiff, but where the list of possibilities
would be more refined, based on code commonalities. We
furthermore note that the number of errors observed with
HeroGum in the studied Lock case is lower than the number
of correlations manually proposed to the user with HeroDiff
for the same set of reports.

As future work, we plan to compare the HeroGum and
HeroDiffGum strategies with other tree-based algorithms. It
would also be interesting to characterize the amount of
information needed in the AST for tracking different kinds
of faults. This would reduce the amount of text generated
by cgum, and should reduce the amount of work performed
during the tree-matching phase of GumTree. Alternatively, we
could consider how to specialize the output of GumTree to
the minimum information required to track positions, rather
than preserving the entire AST. This would reduce the memory
usage (for the cache in the in-memory file system) and the
position-searching process of Herodotos. Finally, it would be
interesting to generalize our code tracking approach to be able
to track multiple positions representing more complex code
artefacts.

REFERENCES

[1] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller, “Documenting
and automating collateral evolutions in Linux device drivers,” in EuroSys
2008. Glasgow, Scotland: ACM, Mar. 2008, pp. 247–260.

[2] “Static source code analysis, static analysis, software quality tools by
Coverity Inc.” http://www.coverity.com/, 2008.

[3] Y. Xie and A. Aiken, “Saturn: A SAT-based tool for bug detection,” in
Computer Aided Verification. Springer, 2005, pp. 139–143.

[4] Z. Li and Y. Zhou, “PR-Miner: Automatically extracting implicit
programming rules and detecting violations in large software code,”
in ESEC/FSE, Lisbon, Portugal, 2005, pp. 306–315.

[5] J. R. Cordy and C. K. Roy, “The NiCad clone detector,” in Program
Comprehension (ICPC), IEEE 19th International Conference on. IEEE,
Jun. 2011, pp. 219–220.

[6] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic
token-based code clone detection system for large scale source code,”
Software Engineering, IEEE Transactions on, vol. 28, no. 7, pp. 654–670,
2002.

[7] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: Finding copy-paste
and related bugs in large-scale software code,” Software Engineering,
IEEE Transactions on, vol. 32, no. 3, pp. 176–192, 2006.

[8] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “DECKARD: Scalable
and accurate tree-based detection of code clones,” in ICSE, Minneapolis,
MN, USA, 2007, pp. 96–105.

[9] Free Software Foundation Inc., “GNU diffutils,” http://www.gnu.org/
software/diffutils/.

[10] N. Palix, G. Thomas, S. Saha, C. Calvès, J. Lawall, and G. Muller,
“Faults in Linux: Ten years later,” in Sixteenth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS 2011). Newport Beach, CA, USA: ACM, Mar. 2011,
pp. 305–318.

[11] N. Palix, G. Thomas, S. Saha, C. Calvès, G. Muller, and J. Lawall,
“Faults in Linux 2.6,” ACM Trans. Comput. Syst., vol. 32, no. 2, pp.
4:1–4:40, 2014.

[12] N. Palix, J. Lawall, and G. Muller, “Tracking code patterns over multiple
software versions with Herodotos,” in AOSD. Rennes and Saint Malo,
France: ACM, Mar. 2010, pp. 169–180.

[13] S. Nadi, C. Dietrich, R. Tartler, R. C. Holt, and D. Lohmann, “Linux
variability anomalies: What causes them and how do they get fixed?”
in MSR, San Francisco, CA, USA, 2013, pp. 111–120.

[14] M. Kim and D. Notkin, “Program element matching for multi-version
program analyses,” in MSR, Shanghai, China, 2006, pp. 58–64.

[15] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Montperrus,
“Fine-grained and accurate source code differencing,” in ASE, Vasteras,
Sweden, 2014, pp. 313–324.

[16] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom,
“Change detection in hierarchically structured information,” in Proceed-
ings of the 1996 International Conference on Management of Data.
ACM Press, 1996, pp. 493–504.

[17] Y. Padioleau, “Parsing C/C++ code without pre-processing,” in Interna-
tional Conference on Compiler Construction (CC’09), York, UK, Mar.
2009, pp. 109–125.

[18] OCaml developers, “Module Obj,” http://caml.inria.fr/pub/docs/
manual-ocaml/libref/Obj.html, Nov. 2014.

[19] B. Fluri, M. Würsch, M. Pinzger, and H. Gall, “Change distilling: Tree
differencing for fine-grained source code change extraction,” IEEE Trans.
Software Eng., vol. 33, no. 11, pp. 725–743, 2007.

[20] M. Hashimoto and A. Mori, “Diff/TS: a tool for fine-grained structural
change analysis,” in WCRE. IEEE, 2008, pp. 279–288.

[21] A. Duley, C. Spandikow, and M. Kim, “Vdiff: a program differencing
algorithm for Verilog hardware description language,” Automated
Software Engineering, vol. 19, no. 4, pp. 459–490, 2012.

[22] H. A. Nguyen, T. T. Nguyen, N. H. Pham, J. M. Al-Kofahi, and
T. N. Nguyen, “Clone management for evolving software,” IEEE Trans.
Software Eng., vol. 38, no. 5, pp. 1008–1026, 2012.

[23] E. Duala-Ekoko and M. P. Robillard, “Clone region descriptors:
Representing and tracking duplication in source code,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 20, no. 1,
p. 3, 2010.

[24] G. Canfora, L. Cerulo, and M. Di Penta, “Tracking your changes: A
language-independent approach,” IEEE Software, vol. 26, no. 1, pp.
50–57, Jan. 2009.

[25] S. Reiss, “Tracking source locations,” in ICSE, May 2008, pp. 11–20.

[26] M. Asaduzzaman, C. K. Roy, K. A. Schneider, and M. Di Penta, “LHDiff:
A language-independent hybrid approach for tracking source code lines,”
in ICSM, Eindhoven, The Netherlands, 2013, pp. 230–239.

[27] F. Logozzo, S. K. Lahiri, M. Fähndrich, and S. Blackshear, “Verification
modulo versions: Towards usable verification,” in PLDI, Edinburgh, UK,
2014, pp. 294–304.

[28] N. Gode and R. Koschke, “Incremental clone detection,” in CSMR.
Genova, Italy: IEEE, Mar. 2009, pp. 219–228.

52


