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Abstract—One of the primary factors that encourage devel-
opers to contribute to open source software (OSS) projects
is the collaborative nature of OSS development. However, the
collaborative structure of these communities largely remains
unclear, partly due to the enormous scale of data to be gathered,
processed, and analyzed.

In this work, we utilize the World Of Code dataset, which
contains commit activity data for millions of OSS projects, to
build collaboration networks for ten popular programming lan-
guage ecosystems, containing in total over 290M commits across
over 18M projects. We build a collaboration graph representation
for each language ecosystem, having authors and projects as
nodes, which enables various forms of social network analysis
on the scale of language ecosystems. Moreover, we capture the
information on the ecosystems’ evolution by slicing each network
into 30 historical snapshots. Additionally, we calculate multiple
collaboration metrics that characterize the ecosystems’ states.

We make the resulting dataset publicly availablg’| including
the constructed graphs and the pipeline enabling the analysis of
more ecosystems.

I. INTRODUCTION

Over the last few years, research on open source software
(OSS) development has become more active [1]. Companies
like DigitalOcean and StackOverflow publish yearly reports
about the state of OSS development [2f], and several aca-
demic studies review the state of OSS hosting platforms like
GitHub [3], [1]. Research of OSS development is crucial not
only for understanding how the OSS community functions, but
also for making informed decisions about development plans
for big projects [4] and for policy-making [S]].

Open source software development is often collaborative.

Collaboration of OSS developers has been extensively stud-
ied on the small scale. Numerous studies have focused on col-
laboration in individual projects, such as the Linux kernel [6],
or small samples of projects from GitHub [7]]. Such works
shed light on the collaboration process in individual small
teams and projects and help the project owners to organise
the development in a more efficient way [6].

Several existing studies are focused on collaboration net-
works of big codebases [§]], or sets of projects united by one
technology [9]. The bigger scale of such studies helps the
researchers to test the applicability of general social science
phenomena to the OSS community. However, to our knowl-
edge, no existing studies explored collaboration on the scale
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of entire programming language ecosystems. One possible
reason for the lack of such studies is the technical challenge
of processing such a large volume of collaboration data.

Research on the scale of the language ecosystems is promis-
ing, as it presents an opportunity to understand collaboration
on a larger scale. Programming language ecosystems are a
rare example of enormous collaborative communities united by
common context and knowledge. Similarly to how studies of
collaboration in scientometrics yielded important ideas such as
theories of citation [[10], large-scale studies of collaboration in
OSS could benefit the software engineering research commu-
nity. The choice of programming language is listed among the
factors that best explain the growth of OSS projects in terms
of new contributions [[11l]. Therefore, considering ecosystems
of programming languages independently enables reasoning
about the particulars of collaboration structure and patterns
inherent to these languages, which might be crucial for both
developers and those responsible for language development.

In this work, we focus on developer collaboration in pro-
gramming language ecosystems — socio-technical networks of
projects and authors united by using the same programming
language. To expand the scope of existing research of collabo-
ration in software engineering, we construct a temporal collab-
oration network and trace the evolution of the ecosystem for
each of the ten selected popular programming languages. To
build such networks and overcome the challenges of collecting
data, we use the World of Code dataset [12], which contains
full history of contributions to almost all OSS projects hosted
on multiple platforms. The total computation time to process
this data and build collaboration networks exceeded 170 hours
using a standard 4-core Intel processor with 32 GB of RAM.
The resulting network dataset with full collaboration history
for ten programming language ecosystems along with multiple
collaboration metrics is publicly available on Zenodd¥. Addi-
tionally, we provide an interactive demonstration to inspect
and compare the metrics’ values’}

We believe that our work will be useful for other researchers
analysing the collaborations within OSS development, as well
as for the core language developers. The provided dataset and
metrics could help to determine the current ecosystem state,
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while historical slices might be used to analyze the ecosystem
changes and predict further evolution. Contributor-centered or-
ganization of the data enables comprehensive analysis of social
networks of collaborators. By performing all the technically
challenged and time-consuming operations, we expanded the
field of research it might be applicable to, including social and
collaboration science.

II. BACKGROUND AND RELATED WORK
A. Studies on Collaboration In OSS

Several notable works formulated the approach to construc-
tion of collaboration networks and use of network proper-
ties [13], [L4]. Lopez et al. suggested the method to build a
collaboration network from version control systems data and
proposed a set of network properties for analysis. They found
that collaboration networks of these projects fit to the small-
world network model. The same findings were revealed by
Xu et al. [14] on a bigger scale — in their analysis, collabo-
ration networks of more than 80K projects from SourceForge
also demonstrated the properties of small-world networks.
They argue that dense structure of collaboration networks
ensures efficiency of the open source development.

The more recent studies of collaboration networks look
deeper into the collaboration data, searching for various social
and organisational phenomena [6], [15]. A notable work
involving collaborative network analysis on a project scale
is done by Gote et al. [15] with git2net — a toolkit for
constructing temporal co-editing networks from Git history.
Such insights are useful for the organisation of open source
projects: knowing how collaboration structure is linked to
the work process and specifics of OSS contribution dynamics
could help set up an efficient development process.

B. Language ecosystem datasets

There exist several works that leverage datasets with almost
all publicly available source code for particular programming
languages [16], [17]. However, such datasets are not designed
for reasoning about the collaborations within language ecosys-
tems, which requires not only code but also information about
authors and version control history. Several datasets contain
most of this data for multiple programming languages: GH
Archive [[18], Software Heritage dataset [19], GHtorrent [20]
and WoC [12] being the most complete data sources of the
whole OSS. The latter, collected and maintained by Ma et
al., features open-source projects available on major VCS
hosting platforms, combined into a dataset with 12B git objects
including information about projects, authors, files, and their
historical changes. This information should be sufficient to
build network representations of various OSS ecosystems. For
example, Mockus et al. [21] build a graph representation of
the WoC data to run community detection algorithms. As a
result, they found that the biggest cluster of projects contains
around 400K interconnected repositories.

However, to the best of our knowledge, there are no
works aimed at building collaboration networks for multiple
ecosystems of programming languages at once, especially

together with their historical changes over time. While being a
technically challenging task, building these networks enables
reasoning about collaborative structure and patterns inherent
to each language ecosystem, highlighting the unique features
of each language and its community.

III. METHODOLOGY

A. Ecosystem selection

Our work focuses on OSS ecosystems that encompass
programming language communities. We use the definition of
an ecosystem by Manikas et al. [22]] — ecosystems are holistic
networks of projects and contributors united by the use of the
same technology. In these ecosystems, we consider every type
of project: software, educational, data storage, and others, as
they all contribute to the ecosystem’s structure.

The main source of data for our work is the World of Code
project [12]. It provides information on every collected com-
mit, including the commit’s author, project, timestamp, and
programming languages of the files affected by the commit.
For this paper, we use the version of the dataset that includes
all data identified by the WoC project until February 12, 2021.

The first step of our work is choosing the target language
ecosystems to be included in the data. However, not all of
the ecosystems in WoC are sufficiently large or active to be
of interest when constructing a network dataset. Because of
this, we select language ecosystems with a total number of
commits in WoC exceeding one million. Because of limited
computational power, we could not analyse some of the
most popular programming languages such as Python and
JavaScript. Additionally, due to an overlap in file extensions of
C and C++ source code, distinguishing these two ecosystems
would require an analysis of the entirety of the source files,
which is beyond our computational resources.

Ultimately, we select 10 programming language ecosystems
to be included in the dataset. In Table [, we present statistics
for each of the chosen languages ecosystems.

Projects  Authors 2;:::?;859 d) Commits
Java 9.61M 7.59M 6.02M 157.7M
C# 3.78M 2.94M 2.35M 53.9M
Ruby 2.36M 1.48M 1.14M 25.8M
Go 0.85M 0.77M 0.6M 22.9M
Kotlin  0.61M 0.45M 0.38M 7.9M
Perl 0.36M 0.36M 0.31M 7.6M
Rust 0.33M 0.31M 0.26M 7.4M
Scala 0.22M 0.23M 0.18M ™
R 0.63M 0.5M 0.42M 5.6M
Dart 0.37M 0.25M 0.21M 3.6M

TABLE I: Basic statistics for the language ecosystems
featured in this study.



B. Slicing temporal data

After selecting the ecosystems, we proceed with extracting
temporal information by slicing the data on each ecosystem
into subsets, each corresponding to a time period. Because
we are interested in capturing the dynamics of ecosystem
networks for further comparison, we need to have the same
number of slices for each ecosystem. At the same time, we
need to avoid creating slices that are too small, during which
the chosen ecosystem is static.

To this end, we use the following slicing metholodology:
each slice is made when % of the total commit count has
occurred. We use NV = 30 as a middle ground between the
computationally expensive higher rate of discretization and the
less informative lower rate. Thus, a slice is made when 3.33%
of the total commit count has occurred. However, because of
the high activity density in mature ecosystems, the distribution
of commits is highly non-uniform and grows exponentially.
Thus, we have set a minimum time period 7" which a slice
must span: in our case, following a common practice in social
link studies [23]], it is a minimum time span of 6 months. This
helps us look at ecosystems with more granularity when the
rate of change is high.

This approach solves both of our problems: (1) we guarantee
that for every ecosystem there is an equal number of slices, and
(2) each slice is guaranteed to be non-static. While the chosen
slice points correspond to points in time, caution should be
exercised when viewing the slices as even evolution units, due
to the length of the time periods being affected by the commit
frequency. However, this notion of “commit-based time” has
been actively used before, such as by Lewis et al. [24].

C. Graph construction

For the purposes of network analysis, we construct an
undirected graph for each slice of the ecosystem. We create
nodes of two types: author nodes and project nodes. These
nodes denote the authors and the projects attached to a commit
in a slice of an ecosystem, and both are uniquely identified by
the MD5 hash of their name in the WoC data.

To merge different version control system (VCS) aliases of
the same contributors we use the author deduplication maps
provided by WoC, the construction of which is explained in
detail in the work of Fry et al. [25]. Additionally, because
of a standard open-source contribution procedure of forking
the project and opening the pull request using the commits
to the fork, we use the “fork-normalized” project identifiers
provided by the WoC to take into account this form of collab-
oration. Deforking is done by applying community detection
algorithms based on shared commits [21], with all references
to the forked projects replaced by references to the project at
the root of the fork tree.

After constructing the project and author nodes, we con-
struct two types of relationships:

A contribution edge connects an author A and a project P
if and only if there is a commit C' in a slice that has been
authored by A and created on project P (or one of its forks).

A collaboration edge connects two authors A and A, if and
only if there exist commits C; and C5 (authored by A; and A,
respectively) to a project P, and if C; and C> include changes
to the same files. As there are files with an abnormally large
number of contributors, such as coding tasks where thousands
of people work on the same files, we discard files that have
more authors than 99.99% of all files in a given slice, as these
are unlikely to be a meaningful indicator of collaboration. We
assume that the resulting links indicate that two authors may
have communicated, collaborated, and shared knowledge.

D. Choosing the metrics

For each constructed graph, we calculate several metrics. We
aim to not only collect basic quantitative metrics but also use
the graph nature of our data to explore the network metrics of
the graph. To this end, we have selected a number of metrics,
for both the entire graph and individual nodes.

1) Metrics For The Entire Graph:

Author and Project counts: represent the number of au-
thors and projects in a graph, respectively. They reflect the
size of an ecosystem slice and provide a baseline to normalize
other metrics for comparisons between languages with vastly
different levels of popularity.

Collaboration and Contribution Counts: represent the
total number of edges of the two types. These metrics can
as well be used for a general estimation of ecosystem size.

Component sizes: a list of node counts of each connected
component of a graph. The distribution of these sizes and
especially the size of the largest component relative to the
size of the entire graph, can serve as a measure of overall
network connectivity.

Collaboration and Contribution densities: denote the frac-
tions of all possible collaborations and contributions respec-
tively that are present in our set of edges. These metrics show
how close the graph is to a complete one, and can likewise be
viewed as a measure of graph connectivity.

2) Metrics for individual nodes:

Collaboration and Contribution degrees: the number of
edges of a certain type connected to the node. As collaboration
edges only connect authors with authors, collaboration degree
is skipped for the project nodes. These metrics can also be used
as a measure of node importance — degree centrality [26].

Betweenness centrality: in its precise form, this node
importance metric is a sum of fractions of shortest paths
between each pair of vertices that contain a given node.
Because finding the shortest paths between each pair of
nodes is extremely computationally intensive on our scale,
we use an implementation of Brandes’ betweenness centrality
approximation algorithm [27]] provided by the Neo4j Graph
Data Science librar

Local clustering coefficients: a metric quantifying how
close is a given node to forming a complete graph with its
neighbours. We calculate this metric only for the author nodes
and collaboration edges, as there are no relations between

3Neo4j GDS Betweenness centrality: https:/neodj.com/docs/graph-data-
science/current/algorithms/betweenness-centrality/


https://neo4j.com/docs/graph-data-science/current/algorithms/betweenness-centrality/
https://neo4j.com/docs/graph-data-science/current/algorithms/betweenness-centrality/

projects in our model, and thus a complete graph is impossible.
Clustering coefficient C,, of a node n with a degree d,, and
a number of triangles (complete graphs on three vertices) 7;,
containing the node n can be calculated as

27T,
dp, (d, — 1)

Our choice of metrics is based on common network analysis
practices. Betweenness centrality and the clustering coefficient
are used by Lopez et al. [[13] specifically for OSS developer
network analysis. The clustering coefficient can be used for
community detection [28] and as a measure of risk in fi-
nancial networks [29]. Degree and betweenness centrality are
widely used in social network analysis [30] and scientometrics
[31]. Connected components, especially the largest connected
component, are important for measuring the network’s ability
to propagate information among developers, similarly to how
these metrics are used in epidemiology [32].

Cp, =

E. Technical details

The graphs are exported as database archives and are
provided as part of the reproducibility packagem. The resulting
dataset consists of 10 parts, each corresponding to a single
language. Each part contains 30 extracted slices as Neo4j
database dumps, a TSV file with per-node metrics for every
slice, and a JSON file with per-network metrics for every slice.
Additionally, we provide a JSON file with component size
distribution for all slices of each ecosystem.

To use the dataset, import the Neo4j dump using the built-in
tool. This results in a graph database with two types of nodes:
PROJECT and AUTHOR, and two types of edges: author-
project edges CONTRIBUTED_TO and author-author edges
COLLABORATED. More detailed notes on usage, along with
all the scripts used in the dataset creation are available in the
reproducibility packagem.

IV. DATASET DEMONSTRATION AND FUTURE WORK

To showcase our dataset, we have built an interactive
demonsration pagdZ, allowing the viewers to explore collabo-
ration metrics for various slices and languages. We hope that
this work spurs further research into large scale OSS analysis
and social networks with utilization of our dataset:

Programming language analysis This dataset may be used
to investigate the consequences of language evolution on the
project development, be it the release frequency, new language
features, or an overall change in language popularity. Another
avenue lies in the deeper analysis of the languages that fall
into similar categories or have related use cases.

Cluster analysis Among other metrics, we include largest
component size and clustering coefficients for each program-
ming language. One can go further and apply clustering
techniques to the temporal graph networks. Such study will
help to detect stable clusters and reason about the process of
ecosystem emergence and communities within it.

Link prediction Another way of utilizing a set of networks’
time slices is to predict the future appearance or disappearance

of links between nodes, be it a collaboration between two
authors or a contribution to a project.

Key nodes The analysis of the key nodes (e.g. nodes with
high centrality) in each ecosystem can shed light on the ways
the most influential authors and projects for each language
affect the open source community.

Comparison with the developer survey results A com-
mon approach for evaluating the overall state of software
development is conducting developer surveys, gathering com-
prehensive results with a rather small but diverse sample of
participants [33].

Our dataset may serve both as a method of survey validation
as well as an additional source of information. To illustrate
it, we explore languages’ popularity and its correlation with
collaborative metrics (Figure [I). More details can be found on
the demonstration pagem.
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Fig. 1: Correlation matrix of network metrics and language
popularity metrics. Bigger cells indicate p-values < 0.05

V. THREATS TO VALIDITY

There are possible detrimental factors stemming from the
original WoC dataset and the nature of open-source software
in general. WoC collects data from multiple sources and may
include author and project duplication. We are overcoming
this challenge by using WoC deduplication maps, although,
being heuristic-based, they might be error-prone. Commit
timestamps can likewise be a source of errors, as they depend
on the possibly inaccurate local machine clock. We alleviate
this problem by disregarding commits that have a timestamp
beyond the dataset collection date, but precise detection of
these commits is beyond the scope of this paper. Since
public git repositories are not only used for collaborative
software development, but also for online course platforms
and knowledge storages, this may introduce noise to analysis
of OSS development using WoC data.

Our file-based approach to detecting collaborations does not
reflect all the real-life steps such as forking a repository and
opening pull requests due to lack of various metadata and
inability to distinguish forks made for collaboration. Another
important consideration is our slicing approach, since the
choice of these time periods is based not on a fixed time scale,



but on the rate of commits made to an ecosystem. Among
other advantages, these slices still reflect the dynamics of the
ecosystems, but caution should be exercised when transitioning
from our commit-based slices to the standard notion of time.

VI. CONCLUSION

In this paper, we present and detail an approach to construct-
ing a temporal network dataset from OSS commit information.
Our main contribution is a dataset consisting of 10 sliced
networks, each describing the evolution of collaboration and
contribution in an OSS ecosystem of a programming language.
The dataset is public and can be obtained from our repro-
ducibility package on Zenodd™. Additionally, we calculate a
number of quantitative and network-based metrics for each
slice of the dataset, allowing for a temporal view of some
ecosystem characteristics on a large scale. To showcase pos-
sible applications of these metrics, we provide an interactive
demo where one can inspect and compare various metrics for
all provided languages.
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