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Abstract—Recent increases in the computational demands of
deep neural networks (DNNs) have sparked interest in efficient
deep learning mechanisms, e.g., quantization or pruning. These
mechanisms enable the construction of a small, efficient version of
commercial-scale models with comparable accuracy, accelerating
their deployment to resource-constrained devices.

In this paper, we study the security considerations of publish-
ing on-device variants of large-scale models. We first show that
an adversary can exploit on-device models to make attacking the
large models easier. In evaluations across 19 DNNs, by exploiting
the published on-device models as a transfer prior, the adversarial
vulnerability of the original commercial-scale models increases
by up to 100x. We then show that the vulnerability increases as
the similarity between a full-scale and its efficient model increase.
Based on the insights, we propose a defense, similarity-unpairing,
that fine-tunes on-device models with the objective of reducing
the similarity. We evaluated our defense on all the 19 DNNs
and found that it reduces the transferability up to 90% and the
number of queries required by a factor of 10–100x. Our results
suggest that further research is needed on the security (or even
privacy) threats caused by publishing those efficient siblings.

Index Terms—Deep Neural Networks, Adversarial Vulnerabil-
ity, Efficient Deep Learning

I. INTRODUCTION

Deep neural networks (DNNs) are vulnerable to adversarial
examples [1]: an adversary can craft human-imperceptible
perturbations to inputs so that models make controlled mis-
takes. Yet, conducting real-world adversarial attacks is chal-
lenging. Many existing machine learning (ML) systems, e.g.,
spam/abuse detection [2–4], that carry incentives for potential
adversaries, are deployed with server-side models that have
limited query access. To fool such systems, an attacker has to
conduct black-box adversarial attacks [5–9], which typically
requires thousands of queries to craft a single adversarial ex-
ample. Additional safety mechanisms, e.g., banning malicious
users, also hinder the adversary’s capabilities [10, 11]

A recent trend in ML deployment is to publish DNN models
to user devices. Diverse efficient deep learning mechanisms,
ranging from compression, e.g., quantization or pruning [12–
17], to designing new efficient architectures [18–21], have
been proposed to bring commercial-scale server-side models to
devices with constrained resources. Pushing on-device models
enables service continuity by making predictions offline and
reduces the operational cost of service providers. However,
this also makes it easier for an adversary to reverse-engineer
these models and use them to their advantage. Since the same
providers likely construct on-device models who trained the

server-side counterparts, they likely share many similarities,
e.g., they are trained on the same (or very similar) data or use
similar architectures (but differ in size).

In this paper, we study the additional increase in vulnerabil-
ity caused by the common practices of efficient deep learning.
Specifically, we ask the questions:

Does the publishing of on-device models make ML
systems vulnerable to adversarial attacks? And if the
answer is yes, then what can we do to remedy it?

Our work focuses on the black-box adversarial attacks as they
exploit the technique, i.e., estimating the gradients of the target
model from query outputs, applicable to other security or
privacy threats, such as model extraction/inversion [22, 23].

We begin by a comprehensive analysis that characterizes the
success of black-box adversarial attacks both with and without
access to on-device models. We examine 19 different pairs of
models constructed from six different efficient deep learning
mechanisms on two image classification benchmarks. We find
that adversarial examples crafted on on-device models transfer
with up to 100% success. Moreover, an adversary requires 10–
100× fewer queries to fool the server model and have a higher
attack success if they have access to an on-device model.

We next study and characterize this increased vulnerability
to understand why it occurs. We find that (i) training on-device
models longer reduces the vulnerability, and (ii) the more the
difference between server and on-device models’ architectures,
the less vulnerability is. This observation suggests a trade-off
between the security and the efforts in constructing on-device
models in efficient deep learning techniques. We show that
more accurate techniques induce a higher vulnerability. We
then propose three metrics to measure model similarity, and
show that our metrics effectively predict how vulnerable a
model will be by having the on-device variant.

Informed by this characterization, we propose a defense
that allows training on-device models while minimizing—but
not completely eliminating—the increased vulnerability. Our
similarity-unpairing defense fine-tunes the client model with
the objective of making it dis-similar to the server-side model.
We comprehensively evaluate the effectiveness of similarity-
unpairing in the network pairs we tested in our vulnerability
analysis. The adversarial examples crafted on the fine-tuned
models transfer 50–80% less than the attacks with the original
on-device model, and we force the adversary to use 2–10×
more queries to achieve similar or fewer successes in black-
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box attacks. While promising, future work will be necessary
to eliminate this increased vulnerability completely.

Contributions. We summarize our contributions as follows:
• We present a new threat model where an attacker exploits

on-device variants of server-side models to increase the
adversarial vulnerability. We formalize this as a security
game and identify the goals for the attacker and defender.

• We show that the attacker can increase the vulnerability
of server-side models significantly by exploiting their on-
device variants. The adversarial examples crafted on on-
device models transfer at most 100% to those models
while reducing the query complexity by 10–100×.

• We further characterize the power of using on-device
models obtained by efficient deep learning mechanisms.
We find a trade-off between security and the efforts in
constructing these on-device priors.

• We study three metrics that allow us to quantify how
much two models are similar and evaluate their effec-
tiveness in capturing the vulnerability.

• We propose a defense, similarity-unpairing, that forms an
objective function for reducing the similarities between
on-device and server models. We present three strategies
to incorporate this defense into efficient deep learning and
demonstrate their effectiveness.

II. BACKGROUND

We start by reviewing the paradigm of efficient deep learn-
ing and adversarial attacks and relates the two research fields.

A. Efficient Deep Learning

Efficient deep learning develops a wide range of mecha-
nisms for increasing the efficiency of the final trained model
while preserving its original accuracy. This is a vast research
field; we study the most popular techniques including training
new efficient architectures [18, 19, 24, 25] (possibly with neu-
ral architecture search [26–29]), knowledge distillation [30–
32] to transfer knowledge from a larger model into a smaller
model, quantization [12–15, 33] to reduce the size of the model
parameters on disk, and pruning [16, 17] to reduce the total
number of connections in a neural network. We also consider
a recent direction, once-for-all, where a single model can be
trained to support multiple different efficient scales at the same
time [21]. In §IV-A, we provide details of these methods.

B. (Black-box) Adversarial Attacks

Adversarial examples [1, 34] allow an adversary to arbi-
trarily change a neural network’s predictions by adding small
perturbations to its test-time inputs. Many adversarial-example
crafting algorithms [34–36, 36–39] have been proposed to
benchmark the worst-case sensitivity of a neural network to
input perturbations in white-box settings, where an adversary
has full knowledge of the target neural network. For a given
test-time sample (x, y), these attacks search for an input x′ that
maximizes the loss between a model’s output and the true label
L(fθ(x), y) while its perturbations are bounded ||x′−x||`p to
be human-imperceptible.

Our paper focuses on the more realistic black-box set-
tings, where an adversary can only access the target model
fθ through API accesses [6–9, 40–43], and cannot directly
compute gradients on the model. Black-box attacks introduce
a new constraint: adversaries must minimize the total number
of queries made to fθ. Prior work presented two different
strategies: transfer-based and optimization-based attacks.
Transfer-based attacks. Transfer-based attacks exploit the
transferability phenomenon of adversarial examples [40]: it
turns out that if an adversary generates an adversarial example
on one model (a “surrogate model”), this exact adversarial ex-
ample often fool another remote target model. Prior work [41]
showed that the effectiveness of transfer-based attacks depends
on how similar a surrogate is to the target.
Optimization-based attacks. If query access to the remote
system is possible, early work proposed techniques to first
reconstruct a similar model and then using that as a transfer
source [9, 44, 45]. However, future optimization-based black-
box attacks are often strictly more powerful. They generate
adversarial examples by defining an objective function and
iteratively perturbing the input to solve that objective.

There are two general attack approaches. Gradient estima-
tion attacks [5, 6, 42, 46, 47] approximate the target model’s
gradient from query outputs (i.e., softmax confidence scores),
and run standard white-box attacks using this estimated gradi-
ent. Gradient-free attacks [48–53] only rely on the model’s
hard decision (i.e., the predicted class), but often require
(many) more queries to the target. In this work, we focus on
gradient estimation attacks as we aim to give the adversary
every possible advantage when designing our defense.
Query attacks with transfer priors. A final direction unifies
the two above attack techniques [6, 7], and exploits transfer
priors to perform a query attack. In our experiments we use P-
RGF [6] which works by exploiting surrogate models available
to the adversary. We use as surrogates an on-device model that
has been reverse-engineered by the adversary.

III. PROBLEM FORMULATION AND DEFENSE GOALS

A. Threat Model

Black-box adversarial attacks are a far more practical threat
today [54–58], so we focus on them in our paper. For example,
many abuse detection tasks, e.g., spam/phishing detection
or not-safe-for-work (NSFW) detection, only allow query
access to the classifiers running on servers. For simplicity,
we consider the task of image classification because it is the
domain that has seen most research on adversarial attacks.
However, our scenario could also be easily extended to other
applications, e.g., text classification.

As mentioned in §II-B, black-box attacks can be made much
more efficient when transfer priors are available. We consider
the specific scenario where defender supplies the surrogate to
the adversary “for free” by releasing an efficient on-device
model that the adversary can use as the transfer prior. We
discuss the practical attack scenarios in Appendix A.
Notation. We use the following notation throughout the paper.



• Adversary (A): An entity who fools a model by con-
structing adversarial examples.

• Model provider (P): An entity that trains models, and
then use them to provide services to general public.

• Server-side model (fθs ): The trained model available
remotely on the server.

• On-device model (fθo ): The efficient version of fθs that
is released publicly and is on user devices.

The provider P offers two types of models:
• White-box: The adversary has complete access to the

parameters of the model, and can run arbitrary attacks;
the on-device models fall into this category.

• Black-box with limited API access: The adversary is
only allowed to access a query interface and cannot obtain
gradients from the model, as happens in the server-side
setting. For example, P is an image hosting provider and
uses a server-side model to detect NSFW images. The
model’s decision affects whether the user will be further
allowed to upload images or not. A can only observe the
outcome of uploading a few image.

Adversary objective and cost. The attacker receives an input
x, has query access to the server-side model fθs , and generates
an adversarial example x′ so that fθs misclassifies x′. In our
threat model, A has complete white-box access to the on-
device model fθo and is allowed to make a limited number
of queries to fθs . The attack cost is measured as the number
of times A queries to fθs to craft x′. In transfer-based attacks,
A only uses fθo for crafting; thus, the cost is zero.

B. Attacker and Defender Security Game

We begin by recalling the standard security game (denoted
Game A), used throughout adversarial machine learning that
defines the robust accuracy of a machine learning model fθs .
(1) The defender trains a model fθs with training algorithm
T1. This model can be arbitrarily large and is intended to
reach state-of-the-art accuracy at the desired task.

(2) The defender grants the adversary query access to fθs .
(3) The adversary samples a benign example x← X from the

data distribution, and generates an adversarial example x′

on fθs by making queries to this model. The adversary
fails if fθs correctly classifies x′; otherwise, adversary
succeeds and we measure the cost of the attack as the
number of times the adversary queries fθs .

This security game changes when we focus on the problem
of this paper and grant the adversary access to an on-device
model that the defender has also constructed. Under this
setting, the new security Game B proceeds as follows:
(1) The defender creates two models: fθs , using the same
T1, and a new model fθo with an efficient deep learning
algorithm T2. As before, fθs is large and accurate; and
this time, the on-device model fθo should be small and
efficient for inference, but still achieve high accuracy.

(2) The defender grants the adversary query access to fθs
and sends the adversary the on-device model fθo .

(3) By exploiting the white-box access to fθo , the adversary
generates a new adversarial example x′′. The success cri-
teria and the cost metric remain unchanged; importantly,
only fθs needs to be fooled and only queries to fθs count
against the cost.

Definition 1. The vulnerability increase is defined by the
difference in queries necessary to fool the model, formally:

Pr[A succeeds at Game B]− Pr[A succeeds at Game A].

A more refined analysis can be made by considering the
success rate and the reduction in queries necessary to succeed
on average. While we generally find these two to be highly
correlated, in principle, they need not be, and so we make our
definition with respect to success rate and use query count as
an additional metric if the success rates are comparable.
Defender objective. The defender’s objective is to develop
a new training algorithm T ′2 that minimizes the vulnerability
increase. Note here that T1 is a fixed function and can not
be changed: the server training algorithm is likely a complex
setup that is designed to yield the highest quality fθs possible,
and it is unacceptable to reduce the quality of the model fθs
in order to permit releasing on-device models fθo .

Note that this game is only interesting if the server model
fθs is not trivially fooled from the beginning. If the adversary,
even without access to fo, can win at the game with probability
∼1.0, then the total vulnerability can not increase significantly
by having the transfer prior fo. However if this happens, then
it is true that releasing the model will not cause harm, because
the server model is already trivial to evade.

C. What Makes This Game Tractable?

Over the past decade, there has been limited progress to-
wards “solving” the problem of adversarial examples [36, 59–
63]. The best approaches available either significantly harm ac-
curacy [60], cause 100−1000× increase in computations [61],
or do not scale to state-of-the-art models [61, 62].

We expect our problem formulation is one that can be
reasonably solve because the defender does not need to train
models outright robust; not to transfer attacks, not to query
attacks, and certainly not to gradient-based attacks. Instead, all
the defender needs to do is not to make the situation worse.
A trivial and uninteresting, but perfect solution. There is
a straightforward solution to this problem: the defender could
train the on-device model using a completely different training
setup, on a completely different training dataset, using a
completely different model architecture and hyper-parameters.
Because this is something the adversary could have done
themselves, the advantage of the above game is by definition
0, and this would amount to a perfect solution to our problem.

There are two reasons this solution is undesirable.
• It considerably increases the defender’s training complex-

ity. The defender now must maintain two independent
training setups, must fix bugs in two independent training
algorithms, must gather two different training datasets,
and in general must do everything twice.



• The on-device model will be less accurate if trained from
scratch than derived from the server model. One of the
main benefits of deriving a small on-device model from
a larger pre-trained model is that the resulting on-device
model can be made more accurate. Training a smaller
model completely from scratch often does not reach the
same accuracy levels. While in principle, the defender
could entirely re-create the server model training setup
and then compress this model down to an on-device
model for the sole purpose of obtaining a high accuracy
on-device variant, this is an even larger complexity.

Goals. The objective of the defender, therefore, is to find a
nontrivial solution to this problem, and minimize the increased
vulnerability of the server model to black-box adversarial
examples without having to construct an entirely new and
complex training pipeline just to achieve this goal.

IV. EVALUATING THE POWER OF ON-DEVICE PRIORS

We first study this problem from the adversary’s perspective
and quantify to what extent publishing on-device models
increases the vulnerability of the server-side models to black-
box adversarial attacks. We outline our experimental setup and
methodology (§IV-A) followed by the vulnerability analysis
(§IV-B). In §IV-D, we characterize the vulnerability consider-
ing the costs a victim requires to spend to obtain on-device
models. We further show there is no-free lunch in efficient
deep learning (§IV-E): lower-cost techniques to construct on-
device models lead to the increase of the vulnerability more
than higher-cost techniques. We lastly discuss the security
implications of our results and the desiderata for a defense.

A. Experimental Setup and Methodology

Datasets. We run our experiments with two popular image
classification benchmarks: CIFAR10 [64] and ImageNet [65].
CIFAR10 is a 10-class classification dataset, with 50k training
and 10k testing images of 32×32 pixels. ImageNet contains
real-world images of 224×224 pixels with 1000 categories.

Metrics. We use two metrics to quantify the vulnerability:
(1) In transfer-based attacks, we design a new metric, relative

fooling rate (RFR)1, to measure the transferability. RFR is
a standardized metric that allows us to compare the vul-
nerability across different datasets, models, and attacks:

RFR(fθs , S, S
o, Ss) =

A(fθs , S)−A(fθs , So)
A(fθs , S)−A(fθs , Ss)

where A(fθ, S) denotes the accuracy of a model fθ over a
set of test-time samples S. Ss and So are the adversarial
examples of S crafted on fθs and fθo , respectively. RFR
computes how often the adversarial examples So can be

1RFR has the following advantages over the metrics proposed in prior work:
(1) RFR is a standardized metric that enables comparing the effectiveness
of different black-box attacks. It is not straightforward with the traditional
metrics, e.g., an accuracy of fθo over S′. (2) We encode the actual attack
success. Liang et al. [66] proposed a metric for quantifying the vulnerability,
but we found that the metric won’t capture the vulnerability in our scenarios.
We include our further analysis in Appendix C.

effective in causing an accuracy drop of fθs , compared to
the effectiveness of the white-box adversarial examples
Ss directly crafted on fθs . RFR will be close to 1, when
most adversarial examples So crafted on fθo transfer to
fθs ; otherwise, RFR will be near 0.

(2) In optimization-based attacks, we measure the number
of queries to the target (# Queries) required for crafting
adversarial examples on average. We limit the number of
queries an adversary can make to 4000 for each sample,
following the prior work [8, 9]. If the adversary cannot
fool the target after spending 4000 queries, we stop
crafting and count it as an attack failure. To quantify the
attack success, we also measure the fooling rate (FR). FR
is defined as the ratio of adversarial examples crafted by
the attacker successfully fool the target.

Methodology. We examine the vulnerability of server-side
models to black-box attacks when an adversary can exploit
on-device models as prior. For transfer-based attacks, we craft
adversarial examples using the on-device models and use
them to attack the target (server-side) models. We use two
canonical adversarial-example crafting algorithms, FGSM and
PGD-10. In black-box optimization-based attacks, we use the
P-RGF attack formulated by Cheng et al. [6]. This attack
requires a prior model, and for this we use each of the on-
device models. In each cases, we craft adversarial examples
on the same 1000 samples randomly chosen from the test
data. We limit the perturbations to 8/255 pixels in `∞ norm
(a standard value [36]) and fix the step-size to 2/255 pixels in
the optimization process. We run this experiment five times.

On-device Models. We examine six different mechanisms for
constructing on-device models from the target fθs :
• Quantization: We use 8-bit quantization to compress the

target model. Both the parameters and the activations are
represented in 8-bit. The on-device model has the size of
one-fourth and is computationally efficient as it uses integer-
only arithmetic, not floating-point operations.

• Pruning: We use `1-unstructured pruning, proposed by Li et
al. [16]. We gradually increase the sparsity by 5% from 0–
100% and stop if the accuracy drop becomes more than 4%
of the target. Pruned models we create have ∼50% sparsity.

• Knowledge Distillation (KD): We construct on-device
models with the knowledge distillation proposed by Hin-
ton et al. [30]. We set the temperature to 20 and the ratio
between the main loss and the distillation loss to 1.0.

• Neural Architecture Search (NAS): We further consider
on-device models that use the architectures constructed by
NAS [20] (e.g., NASNet). This architecture has a smaller
number of parameters and achieves compatible accuracy.
We train them on the same training data from scratch.

• Manually-designed Architectures: There are several ar-
chitectures manually-designed to reduce the number of
parameters while achieving accuracy compatible with the
target, e.g., MobileNetV2 or SqueezeNet. We train these
models on the same training data from scratch.

• Once-for-All (OFA) Models. We also consider the OFA



Dataset Original Model (fθs ) On-device Model (fθo ) Transfer-based (`inf ) Optimization-based [6]

Arch. Acc. (%) Mechanism Arch. (New) Need Training Acc. (%) FGSM PGD-10 # Queries FR (%)
C

IF
A

R
10

ResNet50 91.0±0.7

Baseline (as-is) ResNet50 (7) 7 91.0±0.7 1.00±0.00 1.00±0.00 13.7± 1.7 100±0.0
Baseline (a new) ResNet50 (7) 3 91.0±0.7 0.17±0.05 0.66±0.11 863.6±314.0 82±7.2
Baseline (no fθo ) - - - - - 3047.2± 27.0 28±0.5

Quantization ResNet50 (7) 7 91.0±0.7 1.00±0.00 1.00±0.00 13.9± 2.3 100±0.0
Pruning ResNet50 (7) 7 87.9±0.9 0.90±0.01 1.00±0.00 15.1± 4.1 100±0.1
Distillation ResNet18 (7) 3 87.9±0.9 0.18±0.03 0.70±0.04 752.3± 86.9 85±2.1
Distillation NASNet (3) 3 81.8±1.3 0.09±0.02 0.40±0.02 1713.4± 43.7 62±1.2
NAS NASNet (3) 3 84.7±2.8 0.11±0.02 0.46±0.10 1486.1±367.1 67±8.7
Manual-arch. MobileNetV2 (3) 3 91.6±0.9 0.21±0.03 0.72±0.03 655.8±118.5 87±2.7
Manual-arch. SqueezeNet (3) 3 89.1±0.6 0.11±0.02 0.45±0.02 1507.8±121.5 67±3.5

Im
ag

eN
et

ResNet50 75.3±0.5

Baseline (as-is) ResNet50 (7) 7 75.3±0.5 1.00±0.00 1.00±0.00 12.3± 0.1 100±0.0
Baseline (a new) ResNet50 (7) 3 75.3±0.5 0.34±0.04 0.74±0.10 649.9±266.1 87±6.2
Baseline (no fθo ) - - - - - 2558.9± 26.8 38±0.4

Quantization ResNet50 (7) 7 75.3±0.5 1.00±0.00 1.00±0.00 12.2± 0.1 100±0.0
Pruning ResNet50 (7) 7 73.0±0.0 0.44±0.29 0.77±0.14 600.7±364.3 88±7.8
NAS NASNet (3) 3 71.1±1.9 0.15±0.02 0.31±0.05 1952.4±127.3 54±3.3
Manual-arch. MobileNetV2 (3) 3 70.8±0.4 0.16±0.02 0.35±0.03 1840.8± 66.5 57±1.9
Manual-arch. SqueezeNet (3) 3 50.2±3.8 0.08±0.03 0.28±0.10 1914.3±429.6 55±8.0

†OFA (4, 6, 7) 78.2

Baseline (as-is) OFA (4, 6, 7) (7) 7 78.2 1.00 1.00 12.9 100
Baseline (a new) MobileNetV2 (3) 3 72.0 0.27 0.53 1388.4 67
Baseline (no fθo ) - - - - - 2726.4 34

Sub-networks

OFA (4, 6, 3) (7) 7 77.0 0.87 1.00 21.5 100
OFA (4, 3, 3) (7) 7 75.0 0.76 0.99 40.2 100
OFA (2, 6, 7) (7) 7 75.0 0.94 1.00 27.9 100
OFA (2, 6, 3) (7) 7 74.0 0.80 0.99 42.3 100
OFA (2, 3, 7) (7) 7 71.8 0.80 0.99 38.1 100
OFA (2, 3, 3) (7) 7 70.6 0.65 0.95 122.3 98

†Note that we use the single pre-trained model that the original work [21] provides.

TABLE I: Vulnerability to black-box attacks if transfer priors are on-device models, evaluating on CIFAR10 and ImageNet.
We consider six different mechanisms for producing on-device models, and we note the on-device architectures and whether
or not the mechanism requires additional training. Attacks are evaluated with FGSM, PGD-10, and P-RGF. We measure the
relative fooling rate (RFR) for FGSM and PGD-10, and we report the # Queries and the fooling rate (FR) for P-RGF.

model, proposed by Cai et al. [21], where we can extract
sub-networks—that have a smaller number of parameters—
without training. One can choose a sub-network from the
pre-trained OFA based on the device’s resource constraints.

We describe the experimental setup in detail in Appendix B.

B. Vulnerability Increases When Using On-Device Models

We show our results in Table I. The first three rows for each
server model correspond to baselines: Baseline (as-is) directly
uses the target as the transfer source, and so is easiest to attack:
the transfer rate is 100% because the models are identical, and
on average just 14 queries are required to fool the model. Note
that P-RGF uses the batch-size of 10 for querying. Baseline (a
new) serves as our perfect-but-uninteresting method described
earlier: the adversary trains a completely new model from
scratch (using the same architecture); this results in much
worse transferability and 60× higher query count than Base-
line (as-is). Baseline (no fθo ) does not use any on-device
model for the black-box attacks, and thus performs the worst.
The remaining rows then exploit various on-device models
constructed by using different efficient mechanisms.
Quantization and pruning increase vulnerability. To begin
with, we study the effect of models constructed by quantization
or pruning. In CIFAR10, the transfer-based attacks achieve
0.9–1.0 RFR in both FGSM and PGD, i.e., most adversarial
examples crafted on on-device models successfully transfer to

the target. And for optimization-based attacks, the adversarial
examples achieve 100% attack success rate by making fewer
than 15 queries on average. In contrast, without any prior, the
attacker needs to query the target model 2559–3047 times on
average, and even with 300× as many queries, their resulting
adversarial examples have a success rate of just 28–38%. This
is consistent with prior work [6, 8, 9, 67], which has generally
found that that optimization-based attacks require thousands
of queries to craft a single adversarial example. However,
our results show that just by having the quantized or pruned
models as an on-device prior, the attacker reduces the query
complexity (i.e., the cost) by two orders of magnitude.

Once-for-all paradigm also increases the vulnerability. We
also observe that when the attacker has access to the sub-
networks obtained from the OFA model, the vulnerability to
black-box adversarial attacks increases significantly. The last
nine rows in Table I presents the analysis for the OFA models.
The hyper-parameters for these models are denoted by a triple
(i, j, k) indicating the number of layers in each unit, the ex-
pansion ratio for each layer, and the kernel size (respectively).
We use the OFA (4, 6, 3) model as the target and choose six
different sub-networks with smaller sizes as on-device models.
The vulnerability increased by these sub-networks is similar
to (or even more) that caused by quantization and pruning.
In transfer-based attacks, we observe the RFR of 0.65–0.94



in FGSM and 0.95–1.00 in PGD-10, which is significantly
higher than the baseline (a new) where we see 0.27 and 0.53
RFR in FGSM and PGD-10, respectively. In optimization-
based attacks, the attack requires 22×–127× fewer queries
than the baseline with no prior and 11×–64× fewer than the
baseline that exploits an unrelated MobileNetV2. The attacker
also achieves ∼100% FR.

Models with architectures different from the target are less
effective priors. The advantage of exploiting an on-device
model decreases if the model and the target have different
architectures. Using a different architecture requires training
an on-device model from scratch; thus, we compare our results
with Baseline (a new). In CIFAR10, NASNet or SqueezeNet
on-device models achieve lower RFRs (0.11 and 0.45 for
FGSM and PGD-10, respectively) in transfer-based attacks
and 2× higher query complexity in optimization-based attacks
than the baseline. ResNet-like architectures, e.g., ResNet18 or
MobileNetV2, when used as transfer priors, are more effective
than NASNet and SqueezeNet. Using MobileNetV2 on-device
models achieves almost the same effectiveness as the baseline.
In ImageNet, we observe similar results.

We also observe that knowledge distillation often increases
vulnerability even when the two architectures are different.
In CIFAR10, a ResNet18 trained by knowledge distillation
increases RFRs, requires fewer queries, and has a higher suc-
cess rate. The vulnerability eventually becomes similar to the
baseline, where we use a ResNet50 on-device model trained
from scratch. However, when we use NASNet, knowledge
distillation does not increase the vulnerability further. We
hypothesize that this is because knowledge distillation forces
the outputs of a teacher and a student to be similar during
training. We will study this interaction further in §V-A.

C. Exploitation in the Real World

In §IV-B, we find that an attacker can increase the risk
of black-box attacks by exploiting on-device priors. We now
show that obtaining these priors is possible in practice.

Cloud providers offer many services where users can upload
their datasets and train on-device models, e.g., Amazon Sage-
Maker Edge or Google’s AutoML Edge. Those services are an
attractive option for users with limited expertise in machine
learning as they reduce the users’ effort in optimizing their
models for each device. They automatically train high-quality
models within the resource limits. In the meantime, service
providers utilize efficient deep learning methods to minimize
the cost of training on-device models. If a user deploys them
to edge, the attacker can reverse-engineer and exploit them for
crafting black-box adversarial examples.

Case study: SageMaker. We first attempted our attack on
Amazon SageMaker Edge, a service that provides both a larger
server-side model along with an efficient edge model. Here, we
found that the on device models released by SageMaker Edge
are functionally identical to the large server-side models—
they just use different client-side libraries for deep learning
computations optimized differently and use quantization. This

is equivalent to our quantization setting. And so in this case,
we observe that both the transfer- and optimization-based
attacks show ∼100% success rate with less than 20 queries.
This result, while at the technical level is unsurprising because
models are identical, demonstrates the potential pitfalls of
releasing on-device models using off-the-shelf tooling.

fs On-device fc Acc. (fc) Transfer- Optimization-
FGSM PGD10 # Q FR

A
ut

oM
L

V
is

io
n

Baseline (no f ) 92% - - 3179.6 23%

ResNet50 (P) 91% 0.05 0.12 2832.3 33%
ResNet50 (Q) 88% 0.03 0.09 2879.3 30%
ResNet18 89% 0.03 0.10 2775.4 34%
NASNet 89% 0.05 0.13 2844.1 33%
MobileNetV2 93% 0.04 0.07 2957.8 29%
SqueezeNet 89% 0.04 0.12 2731.9 35%

AutoML Edge† 93% 0.14 0.10 3254.4 20%
* We adapt our black-box attacks for this scenario.

TABLE II: Exploitation of the vulnerability in the real-
world. We first construct two models (server fs and on-device
models fc) using Google AutoML Vision, and we exploit the
smaller, on-device model in attacking the cloud-side model.

Case study: AutoML. To better understand how these attacks
apply in practice, we next use Google’s AutoML to construct
a server-side model and an on-device model on CIFAR10.
In Google’s AutoML, a user only has query access to the
cloud model, i.e., the predicted class is only visible. One
can download the on-device model in TFLite [68] format.
Unfortunately, TFLite does not allow to compute the gradients
in its format, i.e., the attacker cannot directly apply FGSM or
PGD on this model. Instead, we assume that the attacker can
reverse-engineer the model parameters from the format and use
them to construct a surrogate fo’, where we can approximate
gradients. We note that this adapted attack is much weaker
than directly running the white-box attacks. It enables us to
assess the vulnerability in real-world scenarios.

Even with this weak, adapted adversary, Table II shows
that an adversary can cause a similar or a better adversarial
vulnerability than the baseline (no fθo ). In FGSM, the vul-
nerability can increase more than twice (∼0.4→0.14) if the
attacker uses the approximated on-device model fo’. However,
we also find that the vulnerability remains similar in PGD-10,
and our adaptive optimization-based attack is ineffective. In
most PGD-10 cases, the accuracy drop caused by adversarial
examples is low across the board. The main reason is that the
cloud models only allow using images in the integer format
to query. As we typically compute adversarial perturbations in
a floating-point format, rounding them to integers can remove
those small changes. Under these constraints, the PGD-10 may
already achieve the limit of the accuracy drop.

D. Characterize the Vulnerability: Cost-Security Analysis

Our analysis showed that efficient deep learning methods
demand the training of an on-device model and utilize dif-
ferent architectures, resulting in less effective priors. These



Fig. 1: Vulnerability decreases as costs of constructing an on-device model increases. We consider two different costs: the
number of training iterations (# Epochs) and the architectural difference between the target and the on-device model. In the
left two figures, we fine-tune ResNet50 and measure the variability in the vulnerability. In the right two figures, based on the
architectural difference we define between OFA networks, we measure how the vulnerability changes. As the costs increase,
RFR decreases in transfer-based attacks, and the query efficiency and the success rate of the optimization-based attack decrease.

two factors, i.e., the training iterations and the architectural
differences, reflect how much effort we require to construct on-
device models. We conduct further analysis to characterize the
interaction between the vulnerability to black-box adversarial
attacks and the costs of building on-device models.
Longer training iterations reduces the vulnerability. To val-
idate this hypothesis, we exploit fine-tuned models in transfer-
based or optimization-based attacks. We run fine-tuning of a
ResNet50 model, pre-trained on CIFAR10, for 200 training
iterations (epochs). During training, we store the intermediate
models in every 10 epochs. We then use these models in
crafting adversarial examples and measure the vulnerability of
the original ResNet50 models to black-box adversarial attacks.

The left two figures in Figure 1 show our results. We first
observe that the fine-tuning does not reduce the accuracy of the
resulting models. We also show that fine-tuning is effective in
reducing the vulnerability of a weak transfer-based attack. In
the leftmost figure, the RFR of FGSM decreases (0.82→0.54)
as the number of training epochs increases (0→200). However,
fine-tuning is rendered ineffective when an adversary uses a
stronger attack (PGD-10); it shows ∼1.0 RFR. The second
figure from the left shows that the query complexity of the
optimization-based attacks increases from 20 to 70 on average,
meaning that more training iterations increase the attacker’s
cost, while the FR stays the same.
Larger architectural differences reduce the vulnerability.
We evaluate this hypothesis using the OFA sub-network in
Table I. It is challenging to compare the impact of the archi-
tectural difference because (i) models have different parameter
values that can impact the vulnerability, and (ii) we have no
metric to encode architectural differences. We address the first
by using those sub-networks—they share the same parameters
derived from the OFA model. Thus, we can minimize the
impact of parameter differences. We then define the archi-
tectural differences between the sub-networks by computing
the `1 distance between their configurations. For example, the
difference between the OFA (4, 6, 7) and OFA (2, 3, 7) models
is ‖(4−2)+(6−3)+(7−7)‖`1 = 5. Note that this definition is
not an ideal metric to measure the architectural differences—
we just use it as a proxy to characterize the interaction between
the architectural difference and vulnerability.

We illustrate our results in Figure 1. Overall, we observe
that the vulnerability decreases as the architectural difference
increases, while the accuracy of the networks remains almost
the same. In transfer-based attacks, the RFR decreases from
1.00→0.65 (FGSM) and from 1.00→0.95 (PGD-10), respec-
tively. Like our previous analysis, choosing an architecture
different from the target is more effective against a weak
(FGSM) attack than the strong (PGD-10) attack. In P-RGF,
we find that the query complexity increases from 13→122 on
average, while the FR stays similar (100%→98%).

E. Security Implications
Our analysis shows a trade-off in efficient deep learning. In
particular, we look at the interaction between the security
and the efforts in constructing on-device models. If we put
more effort into deriving on-device models (in terms of the
training iterations and designing architectures), the vulnera-
bility decreases. Otherwise, if we use cheaper mechanisms
like quantization and pruning, the resulting on-device models
increase the vulnerablility of the server-side model.
Desiderata. We summarize three conditions we would like out
of an efficient deep learning training mechanism.
(1) No accuracy drop. A mechanism will be ideal if the

resulting on-device models have a compatible accuracy.
(2) Minimize the training cost. Mechanisms that do not

require training on-device models from scratch are better.
(3) Reduce the vulnerability. The vulnerability caused by on-

device models should be less than the baselines in Table I.

V. SIMILARITY UNPAIRING REDUCES VULNERABILITY

We now study the problem from the eyes of the defender,
having shown in the prior section that without applying
defensive techniques, there is a trade-off between the compu-
tational demands of efficient deep learning mechanisms and
the security risk of a target model’s to black-box adversarial
attacks. If the defender choose more computationally efficient
techniques (e.g., pruning, quantizing, or the “once-for-all”
strategy) for constructing on-device models, it will increase the
vulnerability to the black-box attacks. However, mechanisms
that train models from scratch do not increase vulnerability
(because the adversary could have done it them self) but are
computationally expensive and are also less accurate.



Fig. 2: Our similarity metric accurately predicts the vulnerability to black-box adversarial examples. We measure the
similarities between the target (ResNet50) and the on-device models from Table I at the input-gradients (left) on CIFAR-10.
We plot the interaction between the vulnerability to black-box adversarial attacks and the similarity in the right two figures.

Here, we answer the question: can we reduce the vul-
nerability to black-box attacks further in an efficient way?
We propose a straightforward defense, similarity-unpairing,
that can actually achieve this by fine-tuning a model to
reduce the similarities between fθs and fθo . To this end,
we first explore metrics that quantify the similarity between
the two models. We measure how well the similarity metrics
encode the vulnerability increase to black-box attacks. We then
develop a novel objective function that decreases the similarity
between the two models fθs and fθo by fine-tuning the on-
device model fθo . We finally evaluate the effectiveness of our
defense in reducing the vulnerability to black-box adversarial
attacks when the attacker exploits the fine-tuned model fo′ .

A. Similarity Metrics to Quantify the Vulnerability

We develop similarity metrics to quantify to what extent
models produce similar classifications in the hope that they
will allow us to train models to be different as a defense.
We identify two locations in a model to measure similarity:
activations and outputs (i.e., logits). We additionally compute
the gradients at the input space for the same test-time sample to
capture the similarity of the two models’ loss surfaces. Using
the three metrics (activations, outputs, and input-gradients), we
measure the similarities between models in Table I.

Metrics. We utilize the cosine similarity loss Cs as a metric
to quantify how much outputs obtained from each of the three
locations are similar. The loss value will be 1 when they are
similar; otherwise, -1. We compute the loss at each location
as follows (see the computation details in Appendix D):
(1) Output: We compute the loss between the logits.
(2) Input-gradients: We compute the loss between the input-

gradients (i.e., the gradients computed on the same input
with respect to two different models).

(3) Activations: We compute the similarity between the acti-
vations of a model before the classification head (i.e., the
latent representations), commonly regarded as features.

Results. Figure 2 shows our results in CIFAR10. We compute
the similarities between the target ResNet50 (R50) and the

seven different models we construct in Table I. We use the
same 1,000 samples used for crafting adversarial examples.

The leftmost figure shows the distribution of similarities ob-
served at the input-gradients. We find that the input-gradients
reflect the vulnerability better than the two other metrics,
i.e., logits and activations (see Appendix E). Quantization and
pruning lead to on-device models with the highest similarities.
Perhaps unsurprisingly, we find that the similarity decreases
as we use the mechanisms that require training a new model
from scratch: ResNet18 (D), NASNet (D), MobileNetV2,
NASNet, SqueezeNet, and ResNet50 (a new), confirming our
observation in §IV-D. We further observe that, compared to
the baseline where we train a new ResNet50 from scratch, the
architectural differences decrease the similarity further.

In the right two figures, we plot the interaction between the
vulnerability to black-box adversarial attacks and the similarity
measured in the input-gradients. We compute them with the
models we examine previously in Table I. We first show that
the input-gradient similarity directly predicts how easy it is
to perform a black-box attack: the model pair that is most
similar is the best transfer source, and the least similar model
pair is the worst transfer source. And in query attacks (the right
figure), as similarity increases, the query efficiency and the FR
also increase. We also find that decreasing the input-gradient
similarity below 0.4 reduces the vulnerability significantly. In
transfer-based attacks, compared to the cases with a similarity
score over 0.3, the RFR of FGSM and PGD-10 decrease to
0.1–0.25 and 0.3–0.8 (respectively). In optimization-based at-
tacks, the FR decreases to 55–90%, and the number of queries
required increases to 1000–1600. This connection gives the
insight to develop techniques that reduce the vulnerability
of black-box adversarial attacks in constructing models with
efficient deep learning algorithms.

B. Similarity Unpairing Objective

We present our defense: similarity unpairing. The intuition
for this defense is straightforward. As shown above, while we
would like to directly convert the model fθs into an efficient
model fθo , this causes potential harm because an adversary
can make use of the input-gradient similarity between fθo and



Objective Penalize Output-level Sim. Penalize Input-level Sim. Penalize Feature-level Sim.

λ
Transfer- Optimization- Transfer- Optimization- Transfer- Optimization-

Acc. FGSM PGD10 # Q FR Acc. FGSM PGD10 # Q FR Acc. FGSM PGD10 # Q FR

0.0 91% 0.84 1.00 46.2 99% 92% 0.83 1.00 29.1 100% 92% 0.83 1.00 30.1 100%

0.001 91% 0.84 1.00 26.8 100% 91% 0.85 1.00 26.1 100% 92% 0.83 1.00 30.1 100%
0.01 91% 0.83 1.00 22.6 100% 91% 0.83 1.00 40.3 100% 92% 0.83 1.00 36.3 100%
0.1 91% 0.62 0.61 819.1 82% 91% 0.76 1.00 135.3 100% 91% 0.83 1.00 26.2 100%
1.0 90% 0.66 0.67 664.4 86% 91% 0.08 0.09 3411.9 15% 91% 0.86 1.00 17.4 100%

10.0 90% 0.64 0.62 841.7 80% 72% 0.22 0.86 191.9 97% 91% 0.85 1.00 24.1 100%

TABLE III: Effectiveness of our similarity unpairing defense. We measure the vulnerability of fθs to black-box adversarial
examples when the attacker uses the model fθc′ fine-tuned with our similarity-unpairing loss. We use the ResNet50 model fθs
trained on CIFAR10. The cases where the attacker is the least successful are highlighted in bold.

fθs . So to prevent this, we fine-tune a model fθ and convert it
into a new model fθ′ that has similar accuracy, but a different
input-gradient landscape. Formally, to reduce the similarity,
we fine-tune the model on the following objective:

Lours = Lxe
(
f ′(x), y

)
+
∑
i∈S

λi · ED
[
Cs

i
(
x, y, fθ, fθ′

)]
where Lxe is the cross-entropy loss, Csi is the i-th similarity
function we define in §V-A, fθ and fθ′ are the original and
fine-tuned models, and λi is the hyper-parameter controlling
the two loss terms. We fine tune for 20 epochs (i.e., just 10%
of the total steps to train the server-side model), using the same
set of hyper-parameters we use for training. We consider only
one similarity Cs

i at a time, but we combine them together
later on for reducing the vulnerability further. We also train
fθ′ from scratch, but this does not offer better protection. We
include those additional results in Appendix F.

Single objective at a time. Table III shows the effectiveness
of penalizing each similarity individually in reducing the
vulnerability to black-box adversarial examples. We fine-tune
the ResNet50 model on CIFAR10 and then evaluate as before,
using the fine-tuned model to craft adversarial examples on the
target model, setting λi in 0.001–10.0 to control the impact
of our unpairing loss. In each case, we measure the accuracy
of the fine-tuned model fθc′ and the vulnerability metrics we
define. The baseline λi = 0 is included as the first row.

We find penalizing the outputs and the input-gradients
effectively reduces the vulnerability to black-box adversarial
examples. If we decrease the output-level similarity, the RFRs
of the transfer-based attacks reduce from 0.84→0.62 (FGSM)
and 1.00→0.61. Additionally, the query complexity increases
from 46.2 (baseline) to 841.7, and the success rate decreases
from 100% to 80%. Penalizing the similarity of the input-
gradients is more effective than reducing the output-level
similarity. Here, in the transfer-based attacks, the RFRs are
decreased to below 0.09 for both FGSM and PGD-10, with the
query attack complexity increasing from 29.1 to 3411.9, and
the FR reduces from 100% to 15%. In both cases, we further
preserve the accuracy of the fine-tuned models compared to
the baselines. However, we find that penalizing the activation-
level similarity is not effective in reducing the vulnerability.

Objectives Penalize Multiple Sim.

Output. Input. Transfer-based Optimization-based

λ1 λ2 Acc. FGSM PGD10 # Q FR

0.01 0.01 91% 0.25 0.87 291.1 95%
0.01 0.1 91% 0.23 0.83 344.2 96%
0.01 1.0 91% 0.05 0.08 2922.7 32%

0.1 0.01 92% 0.24 0.79 381.2 94%
0.1 0.1 92% 0.20 0.77 491.5 91%
0.1 1.0 91% 0.06 0.12 2647.9 39%

1.0 0.01 91% 0.18 0.64 564.4 91%
1.0 0.1 91% 0.18 0.65 567.5 91%
1.0 1.0 93% 0.06 0.08 2835.5 34%

TABLE IV: Combining multiple unpairing objectives. We
measure the vulnerability when we fine-tune on-device models
while decreasing both the outputs and the input-gradients
similarity. We highlight the least vulnerable case in bold.

Combining multiple unpairing objectives. We further exam-
ine if combining multiple objectives simultaneously can reduce
the vulnerability more. We fine-tune the ResNet50 model
while reducing the similarities at the outputs and the input-
gradients. The hyper-parameters λ1 and λ2 are the weights for
the output similarity loss and input-gradient similarity loss.
We vary them in 0.01–1.0. (We exclude the activation-level
similarity as it is ineffective.)

Table IV shows these results. Combining multiple objectives
reduces the vulnerability only slightly: if we set both λs to 1.0,
the RFRs of FGSM and PGD-10 become 0.06 and 0.08, just
∼0.02 less than penalizing only the similarity between input-
gradients. Therefore, for the remainder of our experiments, we
consider just one loss penalty.

VI. SAFE AND EFFICIENT DEEP LEARNING
WITH SIMILARITY UNPAIRING

In §V-B, we show that our similarity unpairing would
reduce the vulnerability of server-side models if the adversary
had direct access to the fine-tuned model. However, these
fine-tuned models are still large (server-scale) models that
can not be used on devices directly. Here, we combine our
defense with efficient deep learning mechanisms to construct
efficient on-device models with reduced vulnerability. We



compare three strategies to construct efficient and safe on-
device models:
(1) Finetune first: We first fine-tune the model fθs and apply

efficient deep learning mechanisms, e.g., the victim fine-
tunes a pre-trained model and then applies quantization.

(2) Finetune last: We can also apply efficient deep learning
mechanisms first to construct the on-device model fθo
and then fine-tune it to reduce the vulnerability, e.g., the
victim constructs a quantized version of fθs and then fine-
tunes the resulting model fθo with our objective function.

(3) Jointly finetune: We can further develop novel effi-
cient deep learning mechanisms that return on-device
models with reduced vulnerability by incorporating our
similarity-unpairing objective into their algorithms, e.g.,
we add our objective to the distillation loss.

Mechanism Finetune first Finetune last Jointly finetune

Quantization 3 3 3
Pruning 3 3 3
Distillation 3 3 3
New-arch. 7 3 7
OFA 3 3 7

TABLE V: Applicability of similarity-unpairing. We show
the applicability of our defense to six efficient deep learning
mechanisms that our work examines. 3 indicates that we can
take the strategy, while 7 means that it is not applicable.

Table V shows the applicability of these three strategies
to the efficient deep learning mechanisms that we examine.
The finetune-first (FF) strategy is applicable when a mecha-
nism uses a pre-trained model. If the victim constructs on-
device models by designing new architectures, e.g., NAS, or
manually-designed architectures, this strategy is not applica-
ble. The finetune-last (FL) strategy is always applicable as one
can fine-tune pre-trained on-device models with our defense
objective. We can apply the jointly-finetune (JL) strategy when
an efficient deep learning mechanism involves an optimization
process. The victim can add our similarity-unpairing loss as
an additional objective for the process.

A. Strawman Solution: Robust Server-side Models

Before we test whether our similarity unpairing reduces the
vulnerability, we examine a strawman solution that first con-
structs an adversarially-robust server-side model and reduces
its size so that on-device models are somewhat robust.

Methodology. We first run adversarial training (AT) [36]—
a standard approach to train adversarially-robust models—on
ResNet50. We run AT with PGD-7 that has the perturbation
bound of 8/255 pixels in `∞-norm and the step-size of 2/255
pixels. We then utilize the six mechanisms we previously used
to construct on-device models in §IV-D. Using the on-device
models we construct as transfer priors, we perform black-box
adversarial attacks on the robust ResNet50.

Results. Due to the space limit, we summarize our results in
Appendix H and I. As we reviewed in §III, robust models

suffer from the utility loss–their accuracy is 10–20% less than
the undefended models. In transfer-based attacks, we observe
that robust server-side models cannot reduce the vulnerability
increase. Quantization and pruning lead to the RFR of 0.8–
1.0. In the NASNet, MobileNetV2, and SqueezeNet cases,
we observe the RFR further increases to 0.5–0.6; they were
0.1–0.2 in our results with non-robust server-side models.
Nevertheless, we find that robust server-side models reduce
the vulnerability increase in query-based attacks. Even in the
most vulnerable cases, i.e., baseline (as-is), quantization, and
pruning, the FR is 53–64% and, the number of queries needed
for crafting a successful adversarial example is 1476–1886. In
remaining cases, the FR is significantly reduced to ∼25%, and
the attacker requires ∼3000 queries to construct an adversarial
example. It is therefore necessary to construct defenses that
allow the release of safe on-device models until the trade-off
of training truly robust models is deemed acceptable.

B. Similarity Unpairing with Quantization

Methodology. To apply our defense to the FF setting, we fine-
tune a ResNet50 fθs with our similarity-unpairing loss for
10–30 epochs and then quantize the model. In the FL setting,
we first quantize the pre-trained ResNet50 in 8-bit and then
fine-tune for 10–30 epochs. For finetuning (JL) we develop a
quantization-aware training (QAT) scheme by minimizing:

L(fθs , x, y) = Lxe(fθs(x), y) + α · Lours(fθo(x), y)

where fθo is the 8-bit representation of fθs , and α is the hyper-
parameter between the two loss-terms. We set α to 1.0.

Dataset Strategy Acc.
(8-bit)

Transfer- Optimization-

FGSM PGD10 # Q FR

C
IF

A
R

10 Baseline 91% 1.00 1.00 13.7 100%

FF 68% 0.38 0.58 901.8 80%
FL 91% 0.13 0.31 1131.9 74%

Im
ag

eN
et Basline 76% 1.00 1.00 13 100%

FF 75% 0.51 0.93 140.7 99%
FL 73% 0.43 0.91 240.00 97%

TABLE VI: Effectiveness of similarity-unparing in quanti-
zation. We show the vulnerability of fs to black-box adver-
sarial examples when we create quantized on-device models
fc′ by using three strategies. We highlighted the most effective
defense strategy and the vulnerability it causes in bold.

Results. Table VI shows our results. The baseline is the case
where we quantize the pre-trained ResNet50 as-is. We first
find that FL is the best strategy at reducing the vulnerability
to black-box adversarial examples. In both CIFAR10 and
ImageNet, the RFR of the transfer-based attack is reduced to
0.13–0.43 (FGSM) and 0.31–0.91 (PGD-10), compared to the
baseline of 1.00. Our defense increases the query complexity
from 12–14 to 138–1132 and decreases the FR from 100%
up to 74%. However, we also find that FF is not an effective
strategy for reducing vulnerability. While it reduces the RFR
in the transfer-based attacks, and the query efficiency and the



FR in the optimization-based attack, the defense entails a large
accuracy drop (91→68%). In JF, we observe that our QAT
results in a model that shows a significant accuracy drop when
quantized (91→47% in CIFAR10). We do not measure the
vulnerability that fc′ causes as our QAT leads to inaccurate
models. We analyze the reason for this failure. We find that
making a single model with significantly different gradients
on the same inputs in its 32-bit and 8-bit representations is
extremely difficult while achieving a high accuracy.

C. Similarity Unpairing with Pruning

Methodology. Pruning with FF is simple: we fine-tune the
ResNet50 with our unpairing loss and then increase sparsity
until the accuracy begins to drop, as we did before. In FL,
we first prune the pre-trained ResNet50 with 50% sparsity and
then fine-tune this model for 10–30 epochs with our unpairing
objective. Joint finetuning is again most difficult; we attempted
to apply Variational Dropout [69] before the classification head
of a network and use it a learned mask that removes neurons
from the network. During fine-tuning, we optimize only the
dropout layer to minimize our similarity-unpairing objective.
Unfortunately, joint finetuning in this way does not work and
reduces model accuracy to 20%.

Dataset Strategy Acc.
(Pruned)

Transfer- Optimization-

FGSM PGD10 # Q FR

C
IF

A
R

10 Baseline 88% (0.5) 0.89 1.00 19.5 100%

FF 89% (0.3) 0.37 0.55 743.6 83%
FL 91% (0.5) 0.31 0.46 880.6 81%

Im
ag

eN
et Basline 73% 0.97 1.00 12.2 100%

FF 73% (0.4) 0.51 0.94 148.18 99%
FL 74% (0.5) 0.58 0.99 64.0 98%

TABLE VII: Effectiveness of similarity-unparing in prun-
ing. We show the vulnerability of fs to black-box adversarial
examples when we use pruning to construct on-device models
fc′ . The number in parenthesis next to each accuracy is the
sparsity. We highlighted the most effective strategy in bold.

Results. Table VII shows our results. Pruning the pre-trained
ResNet50 is our baselines. Overall, the RFR of the transfer-
based attacks is reduced to 0.31–0.51 (FGSM) and up to 0.46
(PGD-10) from 1.00. In CIFAR10, our defense significantly
increases the query complexity from 12–19 to 50–881 and
decreases the FR from 100% to 81%. We decrease the vulner-
ability similar to the case of retraining a model from scratch
with 85–95% fewer training epochs. In ImageNet, we reduce
the RFR from 0.97→0.51 (FGSM) and 1.00→0.94 (PGD-
10) while increasing query complexity by 10×. We note that
this does not mean our defense, on ImageNet models, is less
effective than retraining a model from scratch (a new fθ).
Our further analysis in Appendix G implies that one could
reduce the vulnerability more by increasing the learning rate
or training with longer epochs. In FF, we need to stop pruning
at a smaller sparsity (0.3–0.4). Pruning more than 30–40% of
the parameters leads to an accuracy drop of more than 20%.

Unfortunately, in JF, our proposed pruning makes the accuracy
of a fine-tuned model to ∼20%.

D. Similarity Unpairing with Distillation

Methodology. We further examine the three strategies to
achieve similarity-unpairing during the distillation process. We
can first fine-tune the teacher with our unpairing objective
and use the fine-tuned teacher for distillation (FF). Here, we
hypothesize that the dissimilarity we encode to the teacher
can be transferred to the student. We can also fine-tune the
student model for a few epochs after the distillation, i.e., we
directly reduce the vulnerability. Moreover, we can use our
objective function as a regularizer for the distillation loss (JF).
In this case, we only consider the input-gradient similarity as
minimizing the output similarity can disturb the distillation
process, i.e., the distillation does not work if we make the
outputs of both the teacher and student dissimilar.

Network
(Student) Strategy Acc.

(Student)
Transfer- Optimization-

FGSM PGD10 # Q FR

R
es

N
et

18

Baseline 88% 0.18 0.70 752.3 85%

FF 90% 0.19 0.73 413.5 94%
FL 84% 0.12 0.37 2337.1 43%
JF 89% 0.22 0.85 352.6 94%

N
A

SN
et Baseline 82% 0.09 0.40 1713.7 62%

FF 87% 0.11 0.52 1052.4 79%
FL 88% 0.09 0.41 1114.2 78%
JF 89% 0.15 0.69 722.1 86%

TABLE VIII: Effectiveness of similarity-unparing in dis-
tillation. We analyze the effectiveness of our defense in
distillation. We use two students ResNet18 and NASNet in
CIFAR10. We highlighted the most effective cases in bold.

Results. Table VIII shows our results. Our objective func-
tion can reduce vulnerability in all three cases. We run our
experiments in CIFAR10 and consider two student networks,
ResNet18 and NASNet. We first observe that both FL and JF
achieve the least vulnerability to black-box adversarial exam-
ples. Compared to the baseline, the RFR reduces by ∼0.10
in FGSM and 0.3–0.4 in PGD-10. The query complexity
increases by 2–7×, and the FR is reduced by 10–50%. We also
find that FF is more effective in distillation than quantization or
pruning. Distillation makes the outputs of a student resemble
those of a teacher—the fine-tuned model in our case. Our
analysis further shows that one can jointly optimize both the
distillation and similarity-unpairing objectives. Unlike the JF
strategy used in quantization and pruning, this can reduce the
vulnerability while preserving the accuracy of a student.

We additionally compare our similarity-unpairing with the
adversarially-robust distillation mechanism proposed by Gold-
blum et al. [70]. We take the ResNet50 model as a teacher and
perform this distillation process onto ResNet18 (a student).
The student achieves an accuracy of 72%, which is 16% less
than the models constructed by our defense mechanism. In
the transfer-based attacks, we observe the RFR of 0.04 and



0.26 in FGSM and PGD-10, respectively. The optimization-
based attacks achieve the FR of 44% with 2398.3 queries per
adversarial-example crafting on average. The robust distilla-
tion offers a similar amount of vulnerability decrease, but it
sacrifices the accuracy of the resulting models by 10–15%.

E. Similarity Unpairing with New Architectures

Methodology. Here, we examine the scenarios where a vic-
tim chooses a compact architecture, designed by architecture
search mechanisms (e.g., NASNet) or manually (e.g., Mo-
bileNet or SqueezeNet). In this case, we consider the FL or JF
strategies as the victim needs to train a network from scratch.
We wonder if the defender can push the vulnerability reduction
further than just training a new architecture from scratch. In
FL, we take a pre-trained model and fine-tune it with our
similarity-unpairing objective for 40 more epochs. In JF, we
train a network from scratch with our defense objective using
the same hyper-parameter for training the pre-trained models.

Dataset Net-arch. Acc. Transfer- Optimization-

FGSM PGD10 # Q FR

C
IF

A
R

10 MobileNetV2 93% 0.24 0.76 580.3 89%
92% 0.12 0.35 1173.4 75%

SqueezeNet 89% 0.09 0.47 1547.1 67%
87% 0.09 0.43 1345.2 73%

TABLE IX: Effectiveness of similarity-unpairing in using
different architectures. We analyze the effectiveness of our
defense in fine-tuning on-device models with smaller architec-
tures (i.e., MobileNetV2 and SqueezeNet). We only consider
the finetune-last strategy. For each architecture, the first row
is the baseline, and the second row is our results.

Results. Table IX shows our results. We run our experiments
with MobileNet and SqueezeNet in CIFAR10. We only report
the results from FL as we find JF training has a 20–30%
accuracy drop. In FL, we find that our defense reduces the
vulnerability to transfer-based attacks by 50% at most. Com-
pared to the baseline where we use undefended MobileNetV2,
the fine-tuned model shows 0.12–0.36 less in RFR. In the
optimization-based attack, the query efficiency and the FR are
reduced by 2× and 14%. In SqueezeNet, both the undefended
and fine-tuned models show a similar vulnerability. SqeezeNet
already achieves low vulnerability even if the attacker uses the
undefended model; thus, we marginally improves the security.

F. Similarity Unpairing with Once-for-All

Methodology. We finally examine our unpairing’s effective-
ness when used with the once-for-all (OFA) paradigm [21].
We only consider the FL strategy. FF is not compatible with
this paradigm as it derives multiple sub-networks from a
pre-trained model—the vulnerability between the pre-trained
model and sub-networks will remain the same. We examine
JL, but the computations require to optimize our objective
while we run the progressive shrinking algorithm is intractable.
We consider the OFANet-267—the most vulnerable case—and
fine-tune it for 20 epochs with our defense.

Results. We find that the fine-tuning reduces the vulnerability
of the server model (OFANet-467) to black-box adversarial
examples while maintaining a 74% accuracy. In the transfer-
based attacks, we achieve a RFR of 0.65 and 0.98 in FGSM
and PGD-10, compared to the baseline of 0.94 and 1.00. In
the optimization-based attack, the query complexity increases
from 28 to 220 on average, but the FR remains almost the same
(100%→97%). We achieve this improvement even when the
sub-networks are only fine-tuned for a few epochs.

VII. CONCLUSION

This paper introduces a new security consideration when
training machine learning models that will be hosted both
server-side but also published on-device: the release of the on-
device model should not increase the server-side vulnerability
to adversarial examples. We have shown that naive release
methods, as studied in efficient deep learning, do significantly
increase server-side vulnerability, but that by fine-tuning an ef-
ficient model before the release with our similarity-unpairing,
it is possible to reduce the advantage an adversary would have
from using this on-device model significantly. We make two
categories of conclusions:

Next steps for researchers. We have posed a new research
problem, and while we believe in having constructed a robust
defense, no defense can be perfect. It is an open question if
there is a new way to design stronger black-box attacks that
reduce the effectiveness of similarity-unpairing.

We have answered one question in this direction, but other
questions remain. For simplicity, we have studied the case
where the defender releases just an efficient model; in practice,
however, model providers often update their model over time
to improve accuracy. It is unknown whether releasing multiple
models with small parameter differences can increase adver-
sarial vulnerability even further or if this practice results in a
break of our defense without stronger attacks.

We have shown a trade-off between the costs required for
constructing on-device models and security. The question still
remains unanswered if this trade-off is inherent to the problem
or if there is a way to design around it.

Next steps for practitioners. The security threat we expose
is immediately practical in any setting where both server- and
on-device models are constructed. If security is a potential
consideration, this vulnerability will need to be considered
when evaluating the vulnerability of the server-side model.

One immediate consequence of this threat is that any server
model where corresponding efficient models have already
been released should be considered insecure. Future on-device
models should only be released if either security is not
a consideration or if steps have been taken to reduce the
vulnerability. Fortunately, we have found with our defense that
even a small amount of fine-tuning can mitigate adversaries
from exploiting the on-device model to launch adversarial
attacks on the server model more successfully.

We believe that answering those open questions will bring
the two seemingly distant objectives closer: improving the



security of server-side models against black-box attacks and
releasing computationally-efficient on-device models.
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APPENDIX A
PRACTICALITY OF THE THREAT MODEL

We discuss practical scenarios where an adversary exploits
on-device models to attack original, server-side models.

A server-side model for many services. The victim can
train a (server-side) model and uses it as a building block for
multiple services they offer. For example, service providers
like Google can train a classifier to detect NSFW photos and
uses it (1) to filter out the images uploaded to Google Drive
and (2) to detect YouTube videos with sensitive content. They
can also train a model that acts as a profanity filter and uses
it (1) to filter out spam emails and (2) to remove websites
containing bad language from their search results.

Evading those filters is challenging. As the models (i.e.,
filters) are typically deployed to the servers, where an adver-
sary does not have white-box access, they harness black-box
attacks to evade the filtering. However, black-box attacks, such
as transfer-based or query-based attacks, are less successful or
require a high query complexity than the white-box attacks.
The victim can also deploy security mechanisms, such as rate-
limiting, user authentication, or returning only hard labels, that
increases the costs of black-box attacks.

Adversaries can exploit on-device models for evasion. To
overcome this challenge, the attacker can use on-device models
the victim releases. Suppose that a company pushes a NSFW
filter to mobile devices to reduce the networking bandwidth
and protect user privacy. As the filter will be available to
anyone has a mobile device, the attacker reverse-engineer the
filter and use it to generate adversarial examples and test their

attack. Since there is no limit on what the adversary can do
with the device, it is fair to assume the model will be on the
attacker’s hand. Once the model is there, the attacker can use
it for generating videos that evades the company’s filtering
mechanisms. It will be the same for the profanity filter case.

APPENDIX B
EXPERIMENTAL SETUP IN DETAIL

Setup. We implemented our analysis framework using Python
v3.8 and PyTorch v1.8.02 that supports CUDA 11.3 for accel-
erating computations by GPUs. We run all our experiments on
a computing cluster, where we have a machine equipped with
2 Intel Xeon 6248R 3.00GHz 48-core processors, 512GB of
RAM, and 8 Nvidia Tesla V100 and 8 Nvidia A40 GPUs.

Hyperparameters. We train our CIFAR10 network for 200
epochs from scratch using the same set of hyper-parameters
following the original study [71]. We use pre-trained ImageNet
models offered by Torchvision library3. In the case of training
these models from scratch, we use the same training configu-
rations used for constructing the pre-trained models4.

APPENDIX C
DISCUSSION ABOUT THE METRICS

FOR QUANTIFYING THE VULNERABILITY

Setup. We evaluate the effectiveness of the metrics, widely-
used in the field of adversarial examples, in capturing the ad-
versarial vulnerability in our setting. We examine two popular
metrics: (i) the accuracy drop of a model—typically used in
the prior work on adversarial examples, and (ii) the metrics
proposed in a recent work [66] on transferability of adversarial
examples. We use them to quantify the vulnerability in Table I.

Server fs On-device fo Metrics in [66] Acc. drop (on fs and fo)

Arch. Acc. Mech. Arch Acc. FGSM PGD10 FGSM PGD10

R
50 92%

as-is R50 92% 1.00 1.00 61% 61% 92% 92%
new fc R50 91% 0.28 0.22 74% 16% 91% 79%

Quant R50 92% 1.00 1.00 60% 60% 92% 92%
Pruning R50 91% 0.97 0.97 61% 58% 91% 91%
Distill R18 89% 0.26 0.18 59% 12% 89% 70%
Manual MV2 93% 0.27 0.16 68% 16% 93% 67%
Manual SN 89% 0.12 0.09 59% 4% 89% 40%

TABLE X: Comparing the metrics proposed by prior work.
We evaluate the two vulnerability metrics offered in literature:
the accuracy drop caused by adversarial examples and the
metrics proposed by [66] in CIFAR10. We compute the metrics
between the pair of server and on-device models we examined
in Table I. We use adversarial examples crafted by FGSM and
PGD-10 on the on-device models.

Results. Table X shows our results. R50, R18, MV2, and SN
refer to ResNet50, ResNet18, MobileNetV2, and SqueezeNet
architectures, respectively. In each column from the left,
where we measure the accuracy drop, we show the accuracy
degradation of on-device fθo and server fθs models caused

2https://pytorch.org/
3https://pytorch.org/vision/stable/models.html
4https://github.com/pytorch/vision/tree/main/references/classification

https://www.usenix.org/conference/usenixsecurity19/presentation/demontis
https://www.usenix.org/conference/usenixsecurity19/presentation/demontis
https://www.tensorflow.org/lite
https://pytorch.org/
https://pytorch.org/vision/stable/models.html
https://github.com/pytorch/vision/tree/main/references/classification


by adversarial examples crafted on fθo . We first observe that
within each attack case, the metric captures the vulnerability
somehow, i.e., if the vulnerability decreases, the metrics are
reduced as well. However, we also find that those metrics
are sometimes misleading. For example, the metrics [66] are
smaller in PGD-10 (0.18) than in FGSM (0.26), while PGD-
10 is a much stronger attack. In distillation, the accuracy drop
of the server model caused by PGD-10 (70%) is much larger
than that of FGSM (12%).

While the accuracy drop (or the fooling rate) captures the
strength of an attack well, we observe that it cannot capture
how many adversarial examples successful on fθo can also
fool the attack target (fθs ). For example, the adversary would
not use a set of adversarial examples, unsuccessful on fθo—the
model used to craft them—for attacking the server-side model.
To address this problem, we propose a new metric, relative
fooling rate (RFR), that can capture how much the attacker
can be successful relatively more/less than the baseline. In
our work, we set the baseline as the white-box attacks on fθs
and compare them with the black-box attacks with fθo .

APPENDIX D
COMPUTING SIMILARITIES

In §V-A, we compute our similarity metrics as follows:
• Output similarity defined as:

Cs
o = meanDs

{
cosine(fθs(x), fθo(x))

}
where fθs and fθo are server-side and on-device models;
(x, y) is an input sample drawn from 1,000 randomly
chosen training samples Ds; f(x) is the logits; and Cs

o

is the cosine similarity. We compute the mean over Ds.
• Input-gradients similarity defined as:

Cs
i = meanDs

{
cosine(∇xL(fθs , x, y),∇xL(fθo , x, y))

}
where L is the loss function (cross-entropy); ∇xL(f, x, y)
is the gradient of the loss with respect to an input x. The
others are the same as the output-level similarity.

• Activation similarity defined as:

Cs
a = meanDs

{
cosine(zs(x), zo(x))

}
where zs(x) is the activtaions of an input x computed by
fθs . Here, we use the penultimate layer’s activations for z.

APPENDIX E
LIMITATIONS OF USING ACTIVATION SIMILARITY

In this section, we discuss more why activation-space sim-
ilarity is not desirable in measuring adversarial vulnerability.
As we expected, activation similarity is much more fragile.
First, note we can only compare activation vectors when they
share the same dimensionality, e.g., ResNets that have 512-
dimensional latent representations. But also, when training
from scratch, the activation vectors can easily represent the
same feature but be “permuted” and thus show a near-zero
similarity even if they represent the same data. And this is
not just something that is technically possible, it actually does
easily happen when we train models separately from scratch.

Fig. 3: Similarity metrics measured in the latent represen-
tation space. We measure the similarities between the server
(ResNet50) and on-device models in Table I. We can com-
pare them between models with the same latent dimension;
otherwise, we cannot compute this metric.

Dimensions should be the same. Our activation-space simi-
larity predicts the vulnerability between the models when the
dimensions of their latent representations are the same. In Ta-
ble 3, in ResNets, the vulnerability reduces as the similarity de-
creases. However, not all the models have the same dimensions
there. For example, while ResNets in CIFAR10 typically use a
256-dimensional vector in their latent representations, i.e., the
activations just before the classification head, MobileNetV2
uses 1024-dimensions. Thus, we cannot compute the similarity
loss when latent dimensions are different.
Models that share the same architecture can learn different
features. Another assumption in measuring the activation sim-
ilarity is that two models using the same architecture, trained
individually, will learn similar representations. However, we
can also hypothesize that there could be a permutation of a
similar set of representations. Suppose that a representation
vector [l1, l2, ..., ln] for an input observed from one network,
the second network can have [ln, l1, ..., l2] where elements are
permuted. In this case, the vector contains the same set of
elements, but the cosine similarity between the two cannot
be 1.0 unless all the li’s are the same. We leave the further
investigation of this issue as future work.

APPENDIX F
SIMILARITY REDUCTION IN TRAINING FROM SCRATCH

Single objective at a time. In Table XI, we examine whether
we can achieve a better reduction in vulnerability when we
train on-device models from scratch. We hypothesize that
training from scratch may help the optimization process of our
objective by increasing the search space in the loss surface. In
contrast, fine-tuning has a limited search space for an optimum
as the process only explores a smaller region around the
location where a pre-trained model is. We train each on-device
model from scratch using the same hyper-parameters we use to
construct pre-trained models. We vary the hyper-parameter λi
in 0.001–10.0 to control the impact of our unpairing loss term.



Objective Penalize Output-level Sim. Penalize Feature-level Sim. Penalize Input-level Sim.

λ
- Transfer- Optimization- - Transfer- Optimization- - Transfer- Optimization-

Acc. FGSM PGD10 # Q FR Acc. FGSM PGD10 # Q FR Acc. FGSM PGD10 # Q FR

0.0 92% 0.25 0.91 274.4 95% 92% 0.25 0.91 274.4 95% 92% 0.25 0.91 274.4 95%

0.001 80% 0.05 0.23 2979.0 48% 80% 0.04 0.23 2410.0 46% 93% 0.25 0.88 344.1 94%
0.01 81% 0.04 0.23 2196.0 51% 81% 0.07 0.41 1775.5 62% 91% 0.25 0.88 347.0 94%
0.1 82% 0.04 0.30 1903.0 58% 77% 0.02 0.10 2898.3 31% 91% 0.25 0.81 396.0 93%
1.0 81% 0.02 0.14 2711.8 37% 80% 0.04 0.20 2521.4 43% 90% 0.12 0.55 1237.0 75%

10.0 85% 0.10 0.56 - - 79% 0.05 0.30 - - 89% 0.02 0.04 - -

TABLE XI: Effectiveness of our similarity-unpairing defense (train from scratch). We measure the vulnerability of fs
to black-box adversarial examples when the defender trains fc with our defense objective instead of doing fine-tuning. The
settings are inherited from our experiments in Table III. We make the cases where the attacker is the least successful in bold.

In each case, we measure the accuracy of the fine-tuned model
fθc′ and the vulnerability metrics we define. As a baseline, we
set λi to zero and include the result in the first row.

Interestingly, we find that training from scratch does not
offer a reduction of the vulnerability increase. The attacker
is the least successful when penalizing the input-gradients
similarity while training an on-device model from scratch. The
model achieves an accuracy of 90% while reducing the RFR
by 0.13 (FGSM) and by 0.36 (PGD-10). In optimization-based
attacks, the query complexity increases from 274 to 1237, and
the FR decreases by 20%. However, penalizing the output-
level or feature-level similarities leads to client models with
7–15% less accuracy. We observe the reduced vulnerability in
those cases, but the victory may be useless as a defender ends
up deploying these inaccurate models to devices.

Objectives Penalize Multiple Sim.

Output. Input. - Transfer-based Optimization-based

λ1 λ2 Acc. FGSM PGD10 #Q FR

0.01 0.01 90% 0.82 1.00 50.7 99%
0.01 0.1 92% 0.84 1.00 132.2 99%
0.01 1.0 90% 0.07 0.06 3492.0 14%

0.1 0.01 92% 0.56 0.73 551.6 89%
0.1 0.1 91% 0.39 0.74 588.2 89%
0.1 1.0 90% 0.08 0.07 3463.2 14%

1.0 0.01 89% 0.69 0.72 674.98 85%
1.0 0.1 89% 0.61 0.70 635.61 86%
1.0 1.0 90% 0.34 0.51 824.9 82%

TABLE XII: Combining multiple unpairing objectives
(train from scratch). We measure the vulnerability when we
train a client model from scratch instead of doing fine-tuning.
We penalize the outputs and input-gradients similarity. The
least vulnerable case is highlighted in bold.

Combining multiple unpairing objectives. In Table XII, we
observe that combining multiple objectives while training a
model from scratch can effectively reduce the vulnerability.
We use the same settings as our experiments in §V-B. The
hyper-parameters λ1 and λ2 are the weights for the output
similarity loss and input-gradient similarity loss. We vary them
from 0.01–1.0. We exclude the activation-level similarity as the
objective is ineffective.

By setting λ1 and λ2 to 0.01 and 1.0, we achieve the RFRs
of 0.07 and 0.06 in FGSM and PGD-10. We also increase the
query complexity to 3492.0 and reduce the FR to 14% in the
optimization-based attacks. The result is compatible with the
best case we observe in the fine-tuning scenarios.

We further show that the final model’s accuracy decreases
as we increase the importance of the output similarity (λ1).
Compared to the cases of setting λ1 to 0.01, the final models
trained with λ1 = 1.0 have 2–3% reduced accuracy. It indi-
cates that making the outputs from the two models dissimilar
can disturb the training process from finding an optimum.

APPENDIX G
A NOTE ON THE IMAGENET FINE-TUNING
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Fig. 4: The vulnerability to black-box adversarial attacks
while fine-tuning a client-side model. We run fine-tuning of a
ResNet50 in ImageNet for 25 epochs. We show the vulnerabil-
ity to transfer-based attacks on the left and optimization-based
attacks on the right. We find that the vulnerability gradually
decreases while preserving the accuracy.

In §VI, we observe that the fine-tuning ImageNet mod-
els cannot reduce the vulnerability to the same-level as the
baselines. We thus evaluate whether our similarity unpairing
objective is ineffective in ImageNet scenarios. We fine-tune a
ResNet50 (ImageNet) model with our unpairing objective and
measure the model’s accuracy and the vulnerability to transfer-
and optimization-based attacks. Figure 4 shows our results.

We find that the RFR for FGSM decreases from 1.0 to 0.48
at epoch 25. For PGD-10, the RFR decreases from 1.0 to
0.9. In the optimization-based attack, the query complexity
for successful attacks increases from 14 to ∼170. This result
indicates that our unpairing objective is effective in reducing



Dataset Original Model (fs) On-device Model (fo) Transfer-based (`inf ) Optimization-based [6]

Arch. Acc. (%) Mechanism Arch. (New) Train Acc. (%) FGSM PGD-10 # Queries Success (%)
C

IF
A

R
10

ResNet50 80.2±0.3

Baseline (as-is) ResNet50 (7) 7 80.2±0.3 1.00±0.00 1.00±0.00 1476.1± 43.4 64±1.1
Baseline (a new) ResNet50 (7) 3 80.2±0.3 0.64±0.07 0.65±0.02 2075.3± 17.3 49±0.5
Baseline (no f ) - - - - - 3105.5± 31.4 23±0.7

Quantization ResNet50 (7) 7 80.2±0.3 1.00±0.00 1.00±0.00 1474.9± 43.7 64±1.1
Pruning ResNet50 (7) 7 76.8±0.7 0.77±0.06 0.80±0.04 1885.9±116.7 53±3.0
Distillation ResNet18 (3) 3 87.7±0.2 0.05±0.01 0.05±0.02 3046.0± 33.8 25±0.8
Distillation NASNet (3) 3 81.0±0.8 0.07±0.02 0.10±0.03 3011.3± 46.5 26±1.2
NAS NASNet (3) 3 75.2±0.5 0.52±0.04 0.52±0.04 2301.8± 10.5 43±0.4
Manual-arch. MobileNetV2 (3) 3 80.8±2.2 0.61±0.03 0.61±0.06 2124.6± 63.1 47±1.6
Manual-arch. SqueezeNet (3) 3 78.2±0.3 0.62±0.02 0.62±0.06 2108.9± 32.4 48±0.8

TABLE XIII: Vulnerability to black-box attacks when on-device models are used as priors. Six different mechanisms are
used for producing on-device models, and we also note whether or not each technique requires additional training. All the
on-device models are constructed from the robust ResNet50 trained with PGD-7. FGSM, PGD-10, and P-RGF are used. We
measure the relative fooling rate (RFR) for FGSM and PGD-10, and for P-RGF, we measure the # of queries and the FR.

the vulnerability. We believe that, by adjusting training hyper-
parameters, e.g., increasing the learning rate, one can suppress
the vulnerability similar to the baseline cases.

APPENDIX H
EVALUATING THE POWER OF ROBUST MODELS

Here, we examine whether adversarial training [36, 60] (AT)
of server-side models, i.e. a standard technique for training ro-
bust models, can provide some benefit for the defender. There
are three ways the defender can employ AT: (i) adversarially-
training only on the server-side models and constructing on-
device models from them; (ii) employing AT only on the on-
device models; or (ii) constructing both the server-side and
on-device models. We test all three scenarios.

Setup. We conduct the same vulnerability analysis we per-
formed in §IV-D. First, we run AT of ResNet50 to build a
robust server-side model. We use the standard setting, where
we use PGD-7 with the perturbation limit to 8255 pixels in
`∞ norm and the step-size of 2 pixels. We then utilize the
six mechanisms we previously used to construct on-device
models in §IV-D. Note that in the cases where we train a
new architecture from scratch, i.e., NASNet, MobileNetV2,
and SqueezeNet, we adversarially-train these models, which
reflects our second scenario. Third, we only train robust on-
device models and use them to attack the undefended server-
side model. We perform the transfer-based attacks (FGSM and
PGD-10) and the query-based attack (P-RGF), exploiting the
on-device models as transfer priors.

Results. Table XIII summarizes our results in the first and
the second scenario. As we reviewed in §III, robust models
suffer from accuracy degradations—their accuracy is 10–20%
less than the undefended models. It may not be desirable
to sacrifice their server-side model’s accuracy. In transfer-
based attacks, we find that the vulnerability remains the same.
Quantization and pruning lead to the RFR of 0.8–1.0. In the
NASNet, MobileNetV2, and SqueezeNet cases, we observe
the RFR further increases to 0.5–0.6; they were 0.1–0.2 in
our results with non-robust server-side models. This implies
that adversarial-training of server-side models cannot reduce

Server fs Client Models fc Transfer- Optimization-

Arch. Acc. Arch. Acc. FGSM PGD10 #Q FR

R
50 92%

R50 (as-is) 92% 1.00 1.00 14.1 100%
R50 (ours) 93% 0.06 0.08 2835.5 34%

R50 83% 0.03 0.27 2285.0 47%
R18 78% 0.04 0.30 2248.1 47%
NASNet 75% 0.05 0.42 1787.3 59%
MobileV2 82% 0.03 0.22 2429.7 44%
Squeeze 81% 0.03 0.25 2273.1 47%

TABLE XIV: Impact of robust training on the vulnerability.
We compare our defense with the robust training of on-device
models in reducing the vulnerability. The first two rows are
the baselines: using the undefended ResNet50 and the model
fine-tuned using our defense. The rest are the robust models.

the vulnerability increase in transfer-based attacks. Oftentimes,
adversarial examples crafted on robust on-device models trans-
fer better than those crafted on non-robust models.

However, we observe that robust training reduces the vul-
nerability increase in query-based attacks. Even in the most
vulnerable cases, i.e., baseline (as-is), quantization, and prun-
ing, the FR is 53–64% and, the number of queries needed
for crafting a successful adversarial example is 1476–1886. In
other cases, we observe that the FR is significantly reduced to
∼25%, and the number of queries the attacker will spend is
∼3000. This implies that in query-based attacks, either robust
training reduces the vulnerability increase, or the attacks are
weak (i.e., we require future work on stronger query-based
attacks to test the vulnerability).

We further show our results, reflecting the third scenario,
in Table XIV. We first observe that AT is effective in
reducing this vulnerability. Compared to the baseline (as-
is), AT significantly reduces the RFR of the transfer-based
attacks—i.e., from 1.00 to 0.03–0.05 in FGSM and 0.2–0.4 in
PGD-10. In the optimization-based attack, the robust models
increase the query complexity by two orders of magnitudes
and reduce the FR by ∼50%. However, as expected, the robust
on-device models have 10–18% less accuracy, compared to
the undefended models we use in §IV. For comparison, we



show that the on-device model fine-tuned with our similarity
unpairing (ours) achieves desiderata. The on-device model
has an accuracy of 93% (no accuracy drop) and reduces the
vulnerability more than any robust model.

APPENDIX I
EVALUATING THE POWER OF ROBUST ARCHITECTURE

Here, we additionally examine whether a neural network
architecture, known to be robust to adversarial attacks, can
reduce the vulnerability in our settings.

Setup. We use RobNet [72], a robust architecture found by
neural architecture search, for our evaluation. We first run
adversarial-training of RobNet on CIFAR10 using PGD-7 with
the same perturbation bound and step-size we used in our
work. We follow the same training configurations that the
original study used. We then take the pre-trained RobNet (as a
server-side model) and and construct on-device models using
efficient deep learning mechanisms. We test with the most
vulnerable cases, i.e., quantization (8-bit) and pruning. We
use those two on-device models as transfer priors to perform
black-box adversarial attacks on the pre-trained RobNet.

Results. We achieve an accuracy of 77±0.4 on the pre-trained
RobNet, and 77±0.4 and 75±0.3 on the quantized and pruned
models, respectively. Our results corroborate the results we
had in Appendix H. We observe that in transfer-based attacks,
the vulnerability stays the same. The RFR of the FGSM and
PGD-10 attacks are 1.00 when we use the 8-bit model. If we
use the sparse model, the RFR is 0.85±0.09 and 0.84±0.13 for
FGSM and PGD-10. However, in optimization-based attacks,
we found that the vulnerability increases. If we use those on-
device models, the FR (success rate) of P-RGF is 45–55% and
the number of queries required to craft an adversarial example
is 1547–2186. The attacker is twice successful at fooling, and
the query efficiency increases by a factor of 2×, compared to
the setting where we don’t have any transfer prior. We further
exploit those on-device models to perform the query-based
attacks on our pre-trained ResNet50. We observe that the FR
and the number of queries required are similar to attacking the
pre-trained RobNet model.

APPENDIX J
DETAILS OF ADVERSARIAL ATTACKS WE USE

We describe the details of the adversarial attacks we use.

Projected-gradient descent (PGD): Given a test-time input
x, its true label y, and a target model fθ, PGD [36] works by
computing the noise δ that can increase the loss L(fθ(x), y).
If the noise is added to the input, the adversarial example
x′ = x + v can be misclassified by fθ. To compute such
noise, the adversary iteratively computes the gradients with
respect to the input x using fθ. PGD takes the sign of the
gradients and adjust each element by multiplying the step-
size α. PGD bounds the maximum input perturbations (the
noise) the attacker can make by limiting the distance between
the input x and the adversarial example x′. Typical choices of
the distance is `p, where p=1, 2, or ∞, and, at each iteration,

the input gradients are projected to the `p space. When we
refer to this attack, the number of iterations the adversary will
use is followed by the name PGD, such as PGD-10, for 10
iterations. If the attacker uses a large bound or more iterations,
the attack becomes stronger; otherwise, it is weak. We show
the PGD algorithm below:

vt+1 =
∏
|vt|p<ε

(
vt + α sign

(
∇vL(fθ(x+ v), y)

))
,

where v, t, ε, and α denote the noise, the number of iterations,
the bound, and the step-size, respectively.
Fast-gradient sign method (FGSM): FGSM [35] is another
way to craft adversarial examples v. Similar to PGD, the
attack computes the input gradients ∇xL(f(x), y) and add
it to the original clean example x. But before the addition,
the attacker takes only the sign of the input gradient sign(·)
and then multiplies it by the step-size α. FGSM leads to
adversarial examples, weaker than those from PGD, but the
weaker examples have been used in prior work that studies
the transferability to quantify the model’s behaviors nearby its
decision boundary. We show the FGSM algorithm below:

v =
∏
|v|p<ε

(
α sign

(
∇vL(fθ(x+ v), y)

))
,

Prior-guided random gradient-free (P-RGF): Both the PGD
and FGSM attacks exploit the transferability, i.e., the attacker
generates adversarial examples on a different model fθ′ and
uses them to attack the target model fθ. In contrast, the P-
RGF attack [6] queries the target model directly for crafting
adversarial examples. Black-box attacks typically require thou-
sands of queries to generate a successful adversarial example.
To reduce such query complexity, P-RGF exploits a model
fθ′ similar to the target in terms of the training data or
model architectures, as a transfer-based prior. The attack
takes advantage of the query information and the prior for
approximating the true input gradients ∇x(fθ(x), y) on fθ.
For the detailed attack algorithms, we refer the readers to the
original study by Cheng et al. [6].
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