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Abstract— This paper focuses on the use of GPGPU-based clus-application. In this paper, we focus on aspects such as the
ters for hierarchical N-body simulations. Whereas the behavior layout of force computation kernels, the balance betwess tr
of these hierarchical methods has been studied in the past onyayersal and force evaluation, the overlap of CPU work with
CPU-based architectures, we investigate key performancessues GPU K th | of ial bottl K the CPU and
in the context of clusters of GPUs. These include kernel orga .WOI’ ! € remova _0. serial bo gnec .S on " € an
nization and efficiency, the balance between tree traversaind considerations for multi-time resolution simulations. Wh
force computation work, grain size selection through the tming the effect of such factors has been examined in detail for
of offloaded work request sizes, and the reduction of sequeiat  shared and distributed memory systems, this work discusses

bottlenecks. The effects of various application parameter are  iyair effects in the context of clusters of GPUs. Mathemat-
studied and experiments done to quantify gains in performane.

Our studies are carried out in the context of a production-quality ical .mc’dels for p?rformanlcle are used Where_approp”ate' In
parallel cosmological simulator called ChaNGa. We highligt —addition, we provide empirical data from a hierarchi¢é

the re-engineering of the application to make it more suitate body simulator called ChaNGa. We establish a lower bound
for GPU-based environments. Finally, we present performaoe on the time taken to compute forces in this manner of dividing
results from experiments on the NCSA Lincoln GPU cluster, responsibility for tasks between the CPU and GPU. Finally,

including a note on GPU use inmultistepped simulations. - . .
Index Terms—N-Body Simulations, Barnes-Hut Algorithm, W€ demonstrate the efficacy of the techniques discussed by

General Purpose Graphics Processors, Performance Analgsi  highlighting performance results on up to 256 GPUs using a
variety of cosmological data sets.

The rest of the paper is organized as follows. We begin
with brief descriptions of related work and the software
In recent years, the GPU has received widespread accigrastructure on which ChaNGa is based. Next, we analyze
tance as the accelerator of choice for computation-intensthe performance of the Barnes-Hut algorithm on GPU clusters
applications. The use of GPUs to accelerate applicatioapng various dimensions. Finally, we highlight the uilitf
as varied as biomedical imaging, molecular dynamics atitese optimizations in the form of scaling results from the
stochastic financial modeling has been detailed in the- litefimulation of various data sets using ChaNGa.
ature. However, the results of adaptation to this relativel
new class of architecture vary from stellar for some applica Il. RELATED WORK
tions to mediocre for others. Whereas applications dorathat Warren and Salmon [1] were among the first to design a
by floating-point arithmetic with simple layout and regulascalable parallel simulator based on HhéN lg N) Barnes-
memory access patterns have done well on these platforidst algorithm. Gramaet al. [2] have presented an analysis of
significant effort is required to obtain appreciable spgsdudifferent parallel formulations of the Barnes-Hut proceslu
for applications that exhibit irregular parallelism. Totela  More recently, Kawakt al. [3] and Makinoet al. [4] have
relatively few studies have been carried out on the scéabildemonstrated the use of specialized hardware to obtain good
of applications on large clusters of these devices. speedups over the traditional CPU-based approach. However
In this paper, we analyze the performance of Barnes-Hiltey used theé(N?), all-pairs algorithm which does not scale
simulations on GPU clusters. The various tasks associatedll with the number of particles. The all-pairs algorithmsh
with the Barnes-Hut procedure are split among the CPU aatbo been adapted to the GPU. Implementations showing ap-
the GPU. The parallel construction and traversal of the glotpreciable speedups over traditional CPUs have been prbvide
Barnes-Hut tree is done by the CPUs. The traversal procedbseNylandet al. [5] and Bellemaret al. [6], among others.
produces lists of computations that are offloaded to the GPU.Hamadeet al.[7] have provided an efficient implementation
Therefore, all of the actual force calculation is performedf the Barnes-Hut algorithm for a custom-built GPU clusker.
on the GPU. The efficient use of GPUs as offload devicémge data set, exceeding 1.5 billion particles, was usekan
requires the study of different parameters of the Barness-Huork to demonstrate good performance and performance/pric
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results using MPI and CUDA. We assess the strong-scalingCUDA requires the organization of warps into larger units
performance of GPU-assisted-body simulations by using calledblocks Threads are assigned to SMs in units of blocks
small data sets, and demonstrate that through a seriesadficarand can only communicate with other threads in the same
optimizations, good scaling can be achieved even with smhlbck. Communication across blocks requires terminatibn o
sets of astronomical data. Moreover, we provide an analyie GPU kernel and data transfer into CPU memory where
of the various factors that affect the scaling performanice the required data manipulation can be performed. Thesedssu
a production-quality simulator such as ChaNGa. Our use lohit the applicability of GPUs primarily to data parallgbpli-
techniques such as quadrupole moments and gravitatioftral scations, and usually require significant program modifaati
ening yields greater physical precision than the coderadli when porting applications to use a GPU.
in that work. Since the data sets used in our experiments arecCUDA gives users access to several on-chip memory and
physically accurate representations of astronomicalesyst computational resources which are unique to GPUs. Each
and feature in the computational astronomy literature, ti8M has a largeegister filewhich provides fast storage that
results presented are relevant to both the astrophysics @&dhared among all its threads. Register use is indirectly
computational science communities. controlled by the user through variable declarations msid
Lashuket al. [8] have created scalable algorithms for th&ernels. In addition to a register file, each SM also contains
FMM technique and present results on similar counts efodestly sizeghared memorynit. Shared memory is as fast
GPUs as described in this paper. While the force calculatias registers and can be used to communicate among threads in
methods used differ from the ones employed here, we note ttigd same block. Shared memory is 16-way banked, requiring
the authors present speedup comparisons between the Gfkads within a half-warp to access data on different bamks
augmented and CPU-only versions of the code by restrictigggld full bandwidth.Constant memorprovides single-cycle
the number of processes per socket (4 CPU cores) to oaecess to immutable data as long as all threads in a half-warp
Moreover, artificial data sets are used to obtain uniforeccess the same valuEexture memorys cached on-chip and
distributions of particles, and only weak-scaling reswdte optimized for 2D spatial locality. Any data not stored in one
presented. of the above units must be read from a relatively lagipbal
Aubert and Teyssier have used a cluster of GPUs to perfo®PU memoryGlobal GPU memory latency is on the order of
radiative transfer calculations coupled with a tree-ba®&dR  400-600 cycles, but its bandwidth is high compared to CPU
code called RAMSES [9]. They demonstrate good speedupgmory as long as values accessed by neighboring threads
over a CPU-only version. However, the finite difference cahre located in close proximity in memory. Global memory
culations carried out on the GPU in that code are signifigantatency is dynamically overlapped with useful work done by
different from the pairwise force computations performethread blocks that are ready to execute.
in the GPU kernels studied in this paper. In particular, the
irregular nature of the data parallelism in tree-based €0dg ~arm++
makes it harder to attain good speedups.
CHARM++ [11] is a message-driven parallel language im-
IIl. GENERAL PURPOSEGPUS AND CHARM++ plemented as a C++ library.H&RM++ programs consist of
We used NVIDIAs CUDA [10] technology to develop thecollections of objects calledhare objectswhich execute in
GPU code for ChaNGa. CUDA devices are programmed usirgsponse to messages received from other chare object® Whi
C with extensions for expressing parallelism on the GPiUis the programmer’s responsibility to partition a progra
and utilizing GPU-specific hardware units. As an accelerat®to a number of chare objects, theH@RM++ adaptive
device, a GPU has limited control capabilities. CUDA refiectruntime system performs the mapping of objects to proces-
this fact by requiring programmers to write CPU code fogors. GiIARM++ objects communicate through asynchronous
managing the units of parallel GPU code, which are knownessages using the familiar C++ syntax of invoking a fumctio
askernels on an object. The runtime system keeps track of physical
In order to benefit from GPU acceleration, a progran@cation of chare objects and handles the low-level detils
must be decomposed into a large number of concurrengignding and receiving messages on the netwoHaRM++
schedulable units. Furthermore, the high density of executis built on top of a communication layer called Converse
units on the GPU comes at a cost of limited instructiowhich supports most hardware and network architectures in
scheduling and dispatch logic which is shared across a graige today. @ARM++ shares the message driven execution
of eight execution units called Streaming Multiprocessor model with the Actors paradigm [12].
(SM) in CUDA terminology. In practice, this dictates that CHARM++ applications are typically written to have signif-
groups of threads must execute the same code in lockstegntly more chare objects than the number of processors use
fashion or suffer poor performance. In CUDA GPUs thes#uring execution. The presence of multiple objects on alsing
groups, known aswvarps consist of 32 threads. If threadsprocessor allows for automatic overlap between computatio
within a warp diverge on a branch, the full warp is serialland network communication, since if one object is waiting fo
executed on each branch path, with threads converging inta anessage, the runtime system can schedule objects whose
single execution path only after the branch is finished. messages have already been received.



B. CHARM++ GPU Manager The GHARM++ GPU Manager is a library designed to
address the above issues by automating the management of
The purpose of the EARM++ GPU Manager is to simplify GPUs[14]. Users of GPU Manager defimerk requestsvhich
the management of GPUs inH&RM++ programs while specify the GPU kernel and any data transfer operations
providing good GPU and CPU utilization. It is possible teequired before and after completion of the kernel. Theesyst
use CUDA directly in Charm++, and applications have be&fbntrols the execution of the work requests submitted bthall
written which do so to good effect [13]. When using GPUghares on a particular processor. This allows it to effetfiv
in a Charm++ program, one needs to be careful to ensyfinage execution of work requests and overlap CPU-GPU
that the CPU is not blocked when transferring data betweggta transfer with kernel execution. In steady-state djpera
CPU and GPU memories or calling kernel functions. SinGgpU Manager overlaps kernel execution of one work request
Charm++ programs often have several messages per proce@s® data transfer out of GPU memory for a preceding
enqueued for execution, blocking the CPU on every GRljork request and the data transfer into GPU memory for a
operation is undesirable. Second, users need to be ablesi®sequent work request. This approach avoids blocking the
share GPUs among chare objects such that the objects domRtA engine by only submitting data transfers when they are
synchronize explicitly with each other when using the GPYeady to execute. When using GPU Manager, the user does not
Since chares often do not have a prescribed order of executifeed to poll for completion of GPU operations. The system
synchronizing would be difficult and probably detrimental tmanages execution of a work request throughout its lifeecycl
performance. Use of the CUDA stream construct and pollinghd returns control to the user upon completion of a work
functions provides a partial solution to these issues. Ferye request through aallback objectspecified by the user per
CUDA kernel call and data transfer, users can indicate {fork request. Another advantage of using GPU Manager is
which stream the operation should execute. CUDA operatiofit the system polls only for a handful of currently exeogti
within a single stream execute in order while a kernel exgperations, which avoids the problem of multiple chares all
cution and a GPU data transfer operation which happen galling the GPU when using CUDA streams directly. GPU
different streams can theoretically overlap in executibhe Manager has options for recording profiling data for kernel

most natural way to utilize streams ilHERM++ is to Use @ execution and data transfer which can be visualized usiag th
different CUDA stream parameter for every chare executmg @narm++ Projections profiler.

the GPU. Users can poll for completion of operations within
a single stream. This provides a way to determine whether all IV. CHANGA
GPU operations belonging to a particular chare have finishedchaNGa [15] (G1ARM++ N-body Gravity Solver) is an it-
executing. erative N-body simulator written in @ARM++. ChaNGa dis-
The above approach unfortunately suffers from some pdinguishes itself from other codes through several prddoet
formance and usability problems. First, it requires padodquality features. These are essential for state-of-the@s-
polling calls for each chare which is using the GPU to chechological simulations, and include canonical, comovingreo
whether work for a particular stream has completed. Thinates with a symplectic integrator to efficiently handés
reduces code clarity and is tedious for the user. Seconde whiological dynamics [16], individual and adaptive timepste
the number of chares which have work to be executed periodic boundary conditions using Ewald summation, and
a particular GPU may be large, only one chare’s kernel c&mooth Particle Hydrodynamics (SPH) [17] for adiabatic. gas
execute at a time on the GPU. The large number of callie gravitational softening is consistent with the splieeriel
to periodic functions which perform the polling will wastesoftening used in SPH [18]. ChaNGa also uses quadrupole
CPU cycles. Finally, while CUDA can theoretically overlapxpansions which provide a more efficient force evaluation
kernel execution with data transfer in concurrent streams, than monopole expansions at the force accuracies required f
practice the most natural usage patterns of streams greathgmological simulations [19]. Therefore, ChaNGa has many
limit the possibility of overlap between kernel executiamda of the features of the widely used, state-of-the-art cosgl
data transfer. CUDA hardware consists of a compute engisienulation codes, GASOLINE [20], and GADGET [21]. These
and a DMA engine which can operate concurrently. Streai@atures are in contrast to existing GPU implementations
operations are assigned to the appropriate engine in FIR@ich typically only use monopole expansions, do not use
order as they are encountered in the program. A typical usgggriodic boundary conditions or comoving coordinates, and
scenario for a stream is to submit three operations one aftese a non-local gravitational softening. In addition, CeaN
another: data transfer into the device, kernel executiod, aemploys several optimizations, such as the prefetching of
transfer of results out of the device. While the kernel ieemote data, use of a software cache to reduce average access
executing, the data-transfer-out operation will remairtheg time of remote data, and prioritized execution to overlap
head of the DMA engine queue, stopping data transfers riequests for remote data with useful computation. Thesie opt
other streams from executing. To prevent this, one woule& hamizations have enabled ChaNGa to scale to 32,768 cores [22].
to insert an additional polling call for completion of kelne Below, we describe the various phases of each iteration of
execution, and only then transfer data out of the devicerbef@ChaNGa. This will give some context to the optimizations
scheduling another polling call. discussed ir§ VI.



Request for Data

Domain decomposition. Particles are decomposed onto Remote Data Sent Data recvd
CHARM++ objects calledtree piecesusing one of many
decomposition strategies. This operation is similar toraljfe
sort of particles across all tree pieces. The tree pieces are
assigned to processors by theiARM++ runtime system. ©PY — SRS — SR — 00 —
GPUs are excluded from this phase since there is not enough
computation per particle to justify the transfer and kernel cPUB
invocation costs associated with GPU use. In the strongnscal
studies that we conduct, there are significantly fewer than a
million particles per processor—less than the threshololarts Fig. 1. Division of tasks between the CPU and the GPU. Here, @RUs
above which the best GPU algorithms outperform CPU-bas%gﬁre a GPU. Remote and local tree traversals are performéitecCPU to

. struct lists of interactions. These are offloaded to tR&)®r computation
sorting codes. of forces. CPU and GPU work can be overlapped.

CPU A

Construction continues

Request
Recvd

Tree construction. Once the particles have been partitionegyald summation. Forces in simulations with periodic
among tree pieces, a distributed Barnes-Hut tree is cartsttl houndary conditions are handled using the Ewald summation
with each tree piece holding a portion of the Barnes-Hut tregchnique in a manner similar to the reduced cell multipole
that is local to it. This phase is characterized by irregulagyethod of Dinget al. [23]. For a given particle we first cal-
memory accesses and very little computation per tree pieg@ate the direct non-periodic forces due to all particfehie
beyond the recursive summation of multipole moments @indamental cube (i.e. the simulated universe) and a nuofber
sibling nodes. Furthermore, ChaNGa employs a fine-grainggriodic replicas, usually the 26 neighbors. We then cateul
algorithm for tree construction, where the latency of exti® the forces due to the Ewald sum of the multipole moments
of shared node information is overlapped with useful worlgf the root cell of the fundamental cube. Our approach differ
Given this issue of grain size, it is more beneficial to perfor from that work in that we explicitly calculate the Ewald sum
tree construction on the CPUs. of the multipole moments rather than representing them with

. I ._a small number of particles. The Ewald calculation involves
Tree traversal. The computation of gravitational forces is . .
sum over nearby replicas and a sum over Fourier terms.

receded by a traversal of the distributed Barnes-Hut tyee . -
P y ¥ e nearby replica terms are modified to exclude the forces

each tree piece. In ChaNGa, the cost of traversing the tr I% . . . ; .
P 9 ich were included in the direct calculation. Since these

is amortized over several local particles by grouping the mmations onlv depend on the multivole moments of the
into buckets These buckets form the leaves of the Barnes-Ht ! y dep uitip

tree. For each bucket of local particles (tiagget bucket), an ][OOI CZIL’ ho communication is needed for this part of the
interaction listis obtained, listing the nodes and particles tha?"c® [24]. _
We offload all Ewald summation onto the GPU. The or-

act assourcesof gravitational force on it. Each tree piece "~ . .
performs this traversal in two parts. THecal traversal is ganization of the algorithm into a real space component and

conducted on that portion of the Barnes-Hut tree that isl mca a Fck)quer spacke corlnpc:\nenr: suggesft]s a dlv;s?n of lth? (.SPU
the tree piece (i.e. its local tree). Themotetraversal operates wor d_';to twc()j ernels. As t eltwp P hases of the ca cu"atlon
on the remainder of the distributed Barnes-Hut tree, legattin use different data structures, placing them into sepa

communication between tree pieces in the form of requests H)ecreases the regEteglgsSge phe r thread ‘de a_Illov;/s mhomelss:lre
remote nodes and particles. Since communication cannottﬁé?e present on the gtt e same time. To further reduce
initiated by the GPU directly, assigning this task to it webyl E9ISter pressure, we used constant memory to store a set

entail repeated memory transfers between the CPU and mevalues required during the execution of the real space

GPU. Due to this issue, tree traversal is performed on tf@mponent of Ewald summation. For the Fourier space kernel,
CPU we used constant memory to store a large table of values

precomputed on the CPU. Since in both cases the values
Force computation. Gravitational forces may be computecaccessed in constant memory were required by all threads
in parallel across all particles. In fact, each interactimfn within a warp at the same time, the broadcast capabilities of
the particle with a tree node (@article-nodeinteraction) or the constant cache were fully utilized. Both kernels furthe
another particle (@article-particleinteraction) may be com- benefited from the use of fast GPU implementations of math
puted in parallel with all others. Moreover, the gravitagb functions.
force calculation routines exhibit a high intensity of fioat Figure 1 illustrates the execution of various tasks on the
point operations. These factors make force calculatiomlaali CPU and the GPU. The figure shows the timelines of two
candidate for execution on the GPU. In order to ensure a lar§PU cores offloading multiple work requests to a single GPU.
enough grain size for gravity computation kernels on the GPWIso shown is activity related to remote and local traversal
ChaNGa was enhanced withveork agglomeration module (aquamarine and light blue colored bars, respectively)thad
This module collates the interaction lists of multiple betsk exchange of node and particle data between processors (dark
into a singlework reques{WR), which is then transferred to blue bars.) During their remote traversals, CPUs A and B send
the GPU for execution. requests for particle and node data to each other. It carbalso



Iterate over node
blocks —

seen that the traversals of the two processors have infag/en

dark blue boxes. This represents the periodic suspension of

traversal work in order to satisfy any pending requests for Iterate over
data from remote processors. Once a threshold number of Particle blocks
interactions has been accrued during the traversal, the CPU l
sends the GPU a work request. A work request has a name
that corresponds to the type of traversal that generaté&ait.
instance, a local traversal generates local work requestice

that the division of computation work into work requestg;y o
allows overlap between traversal work on the CPU and work

request execution on the GPU. Since the size of each WR ¢g@sak scaling. Furthermore strong scaling for a small prble
be controlled, this approach also provides an effective way on a modest number of processors will indicate how well the
limit the amount of GPU memory used in computing forcessode will perform with large problems on the 100,000 core
During the course of a CPU-only simulation, most of thgyachines expected in the near future.

time is spent in force computation. In particular, preliam  Experiments were performed on two machines. The single
studies showed that more than 90% of the time was spentciiye, single GPU tests were conducted on a quad-core work-
gravity computation on several benchmarks, even when usigigtion equipped with an Intel Core 2 Quad Q6600 processor
up to 1,024 processors. In our case, this time is consumeqifining at 2.4 GHz, augmented with an NVIDIA GeForce
the Barnes-Hut algorithm. Therefore, in the remainder &f thggoo GTS card comprising28 streaming processors. Strong
paper we will consider only this phase of the simulation.  scaling results were obtained on the NCSAs Lincoln GPU
cluster, which comprises 192 Dell PowerEdge 1950 servers,

] ) ~each hosting dual Intel Core 2 Quad (Harpertown) 2.33 GHz
The experiments and performance tests described in #)@cessors with access to a total of 16 GB of memory. An

remginder of th_e paper use various astronomical data set§\®fipja S1070 Computing System is shared between two
varying properties and size: nodes, resulting in a total of 8 cores and 2 GPUs per node.
cube300.A low resolution simulation of a cosmological cubeygdes are connected via an Infiniband SDR network. OS
300 Mpc on a side with 30% dark matter and 70% dark energyerference and system noise prevented the use of all 8
Only 110,592 particles are used. The particles are modgratgores per node: our experiments were conducted with only
clustered on small scales, becoming more uniform on largercyarm++ processes instantiated per node. This strategy
scales. leaves one core per node free for the execution of OS daemons

lambs. Final state of a simulation of 2l Mpc® volume of the  5nq periodic OS tasks, yielding better performance thamgusi
Universe with 30% dark matter and 70% dark energy. Neary| g of the cores available per node.

three million particles are used. This dataset is highlgtelted

on scales less than 5 Mpc, but becomes uniform on scales VI. TUNING GPU FERFORMANCE
approaching the total volume. Three subsets of this datareet \Whereas the promise of massive amounts of hardware
obtained by taking random subsamples of size thirty thodisaparallelism provides a compelling case for their adoption,
three hundred thousand, and one million particles, res@dgt the efficient use of GPUs in sophisticated variants of the
hrwh_lcdms. Final state of 01/ pc* volume of the Universe Barnes-Hut procedure requires the investigation of sévera
with 31% dark matter and 69% dark energy realized with J§erformance issues and significant development effort. In
million particles. This dataset is used in [25], and is sligh this section, we study the key performance characterisfics

Pictorial depiction of the organization of force quuitation kernel.

V. EXPERIMENTAL SETUP

more uniform tharlambs N ~these simulations. Further, we quantify the benefits yiklde
lambb. Same physical model dambsexcept that it is realized by careful consideration of application parameters thhoug
with 80 million particles. experiments done with the ChaNG&body simulator.

These data sets are small compared to state of the art o
cosmologicalN-body simulations currently being performedA- Kernel Organization
In the experiments below we focus on the strong scaling of A scalable parallel simulator spends most of its time in
these data sets rather than weak scaling to larger dataosetddrce computation routines. Therefore, adapting the &irec
a couple of reasons. First, many astrophysical problengs, eof the force computation kernels is key to ensuring good
globular clusters or nuclear regions of galaxies, invoblging performance. Consider the calculation of forces on a bucket
an N-body system for 10,000 dynamical times requiringf P particles due to a list ofV nodes. Interactions between
millions of time steps. Hence data sets where time steps aaparticlep; and a node:; can be represented as elements of
be completed in an order of a second are needed. Secalinteraction matrixl, such that each interactidr; denotes
because communication overheads become more significénat calculation of the force otarget p; due to sourcen;.
as the work per processor decreases, and the amountEathl;; can be computed in parallel. However, the number
communication only grows logarithmically with problem iz of concurrent threads available per block is typically much
for the tree algorithm, strong scaling is harder to achibamt smaller than the total number of interactions: values for
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Fig. 3. Variation of computation time with kernel layout:a3(models this time whereas 3(b) and 3(c) show empiricallisesu

are typically in the thousands, arfdl is on the order of tens an idea of the variation of execution time wiil},. The

of particles. Thereford,is divided into individual tiles that are minimal value for computation time was obtained empirigall
executed one-at-a-time by a block of threads of dize NP. as detailed later. The graph illustrates that the minimuouce

A block of threads is organized logically as a rectangle @it an intermediate value aof, rather than at either extreme.
length d,, < N and breadthd, < P, with the condition For small values ofl,, accesses of node moment information
that d, x d,, = T, i.e. d, = T/d,. This arrangement is account for much of the execution time. Sin&8,;,; grows
depicted in Figure 2. Threads in roioperate upon the datalinearly with d,, it dominates execution time for largg,. To

of particlep;, whereas those in columhshare the multipole ascertain the optimal value @f,, we did experiments on the
expansions of node;. A single thread in rowi (respectively, cube300data set on a single CPU core with one GPU. Our
columny) issues the load of particle; (noden;) into shared conjectures about the variation of execution time withwere
memory. These threads are calledv- and column-leaders borne out for the various values @f examined. Figures 3(b)
respectively. and 3(c) show the variation of execution time wiih. The

Furthermore, stores to global memory are limited by congxpected trough is visible for differerit’ values. The best
puting partial forces on a batch df, particles until all node Performance was achieved with a total Bf= 128 threads
interactions are exhausted. Then, each row-leader acatmsul Per block, and dimensiong, = 16, d,, = 8.
the acceleration of its corresponding particle and updates
in global memory. This yields an optimal number of storeB. Balancing Tree Traversal and Force Computation

(exactly P) to global memory. However, loads of nodes must There are two main parts to the calculation of forces in
now be repeated across different batches of particles.elf §he Barnes-Hut procedure. The first is the traversal of the
size of a particle’s coordinate informationds bytes and that giopal tree to accumulate a list of interactions. Recall tha
of a node’s multipole moments is,, bytes, the total number these |ists are accrued for buckets of particles. Thenettser
of bytes loaded from global memory is: the calculation of forces using the interaction lists. Theant
Liotat = N [P/d,] + Ps, of time spent_in either routine can b_e controlled by t_uning
the average size of a bucket. Increasing the average size of a
It may appear that performance can be maximized by iBucket reduces the number of leaves in the global tree,liiere
creasingd,, at the expense af,,. However, increasing,, can reducing the number of internal nodes in it. This reduces the
have a negative effect on the performance of the gravitationime spent walking the tree. On the other hand, increasiag th
force kernels, as explained below. 4f is the size of the pucket size can raise the amount of computation performed fo
data structure that stores a particle’s (variable) acatter the following reason. Lei, be theopening radiusof node
and potential, the total amount of shared memory required pg This radius is proportional to the size of and describes
block for this tiling schemeM;,.:, is given by: a sphereS centered at its center of mass. If the bounding
. box of a bucketh intersects withS, n must beopened i.e.
Miotar = Ty +Tsm/dy + spdy its children must be evaluated when computing forces for
The greater the value d¥f/,,;,;, the fewer the blocks that canparticles inb. This has a dual effect: (1) since bounding boxes
be assigned for parallel execution to each multiprocedsieo of buckets are biggef, is more likely to intersect withS
GPU. Therefore, the amount of hardware concurrency udilizéhus forcing the opening of; (2) since buckets are located
actually diminishes with the increase @f. To estimate the higher in the tree, when openingwe could find that it is a
combined effect of these forces, we model force computatibacket, and therefore we would need to compute directly with
time F' as a linear combination of.;,;,; and M,,.,;. The all its particles. This increases the total number of intBoas
shape of this curve for constahtis depicted in Figure 3(a). In recorded, as shown in Figure 4(a). Note that althoughadtsd
modeling force computation time @3d, ) = Ad,+B/d,+C, number of interactions increases, the number of partiotéen
we use placeholder constants B and C' instead of actual interactions remains roughly the same. This is becauseswhil
values obtained by curve-fitting, since we only wish to abtaieffect (1) increases the number of particle-node intevasti
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Fig. 4. Single-GPU runs on theube300(100k particles) data set; 4(a): total number of interactiincreases rapidly with bucket size; 4(b): tree traversal
time decreases, and GPU computation time increases wigbrlauckets; 4(c): a similar effect is observed on the CPU.

effect (2) decreases it. to the CPU. To allow the overlap of CPU work with that done

The tradeoff engendered by the average bucket sizeois the GPU, the entire space of interactions is split inta-ind
depicted in Figure 4(b). The experiments presented weriglual work requests. As noted flV, work requests (WRs)
performed on thecube300data set on a single core with aare created by the CPU and specify the sources of gravitdtion
single GPU. It must be noted that the tests were performi&gce (tree nodes or particles) with which target particles
with no overlap between CPU work (tree traversal) and GPibteract. Work requests are self-contained and indepérafen
work (force evaluation). Computations meant for the GPWBach other. Therefore, the construction of interactiots lier
were buffered until the tree was traversed completely for aine request can be overlapped with the computation of forces
buckets. This helped isolate the issue of work balance framith lists from a previous one.
that of overlap between the CPU and GPU (discussed inHowever, the division of work into individual requests
§ VI-C.) In the graph, the time taken to traverse the Barnesemes at a cost. The transfer of a WR incurs the overheads
Hut tree is shown by the blue curve. It was obtained byf serialization and memory transfer. An optimal balance of
switching off force calculation in ChaNGa. The green curveork between the CPU and GPU ensures that the work done
was generated by measuring the total time taken on the GBWone is overlapped with that performed by the other, withou
for calculation of forces due to both particle-particle anthcurring a prohibitive penalty for this division of compation
particle-node interactions. The red curve depicts thd totee  work into WRs.
taken to complete all Barnes-Hut tasks (dominated by theFigure 5 presents the variation in computation time with
sum of CPU tree traversal and gravitational force calcoifati sizes of the key types of work request. The parameters studie
on the GPU.) For small buckets, tree traversal accounts fae the sizes of local nodé.{V), remote node N) and local
most of the execution time. This changes with an increapaerticle (LP) computation requests. Tests were conducted with
in bucket size. Time taken by the GPU to calculate forcaéke lambsdata set on 14 CPU cores with 4 GPUs and 112
decreases initially due to fewer, more efficient thread kdoc cores with 32 GPUs, to examine the effects of these paraseter
Total time falls until the optimal value for average buckeat different grain sizes. The results presented in Figu(b} 5
size, determined to be 32.51. Past this point, the incrgasind 5(c) respectively indicate that the effects on comjmrtat
cost of extra particle-particle computation dominates taal time are similar at both scales, but less pronounced with fine
computation time rises. On Lincoln, an average bucket size grain sizes.
44.92 worked best across the range of data sets. The Ewal@onsider the 14 core, coarse-grained case shown in Fig-
computation was independent of bucket size and required 1@ 5(b). The red curve illustrates the effect of the sizevoél
ms for completion. node (LN) requests on computation time. For this curizéy

Figure 4(c) depicts the effect of bucket size on CPWwas varied whereaBN and LP were held constant. Observe
execution time. As before, tree traversal time decreastis wihat computation time increases with a decrease in the WR
an increase in bucket size. Force calculation time also d@ze (i.e. more WRs.) The reason for this is as follows. In
creases until 5.7 particles per bucket. At this point, th@haNGa, computation on local nodes and particles (termed
extra computation due to larger buckets hindered perfoceanlocal work) is assigned a lower priority than computation that
Ewald computation took a constant time of about 3.2 second®/olves particles and nodes received from remote procgesso
implying that GPU use sped up the operation by 25 times.(so calledremote work Therefore, remote work dominates

] the initial part of an iteration, and the latency of requests

C. Overlapping CPU and GPU Work for remote data that are generated during the remote work is

Using the GPU as an acceleration co-processor in theerlapped with useful local work. This strategy works well
described fashion, the only tasks designated to it are tfoe the CPU-only version. However, in the CPU/GPU version,
computation of forces on particles due to lists of intexatsi the CPU must serialize the data required for each WR. In
and the Ewald correction. Tasks such as tree traversal &nd plarticular, the serialization of local WRs generated to knas
construction and serialization of interaction lists arasigned remote data access latencies delays the CPU’s response to
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Fig. 5. WR sizes affect the overlap of tree traversal on CPlils ferce computation on GPUs. The effect is greater with enparticles per core.

requests from other processors. This holds up the procesdotal time taken to compute gravitational forces using GPUs

requesting data, leading to a drop in performance. Thetsffes: 7,,, = max(TCtpu,Tg;u) + Tgozjjfd. To obtain an upper

of this serialization overhead become more prominent with #ound on the speedup, we assume that the GPU is not the
increase in the number of local WRs (corresponding to smalleottleneck, and that CPU work and that done on the GPU are

LN values.) The red curve shows that up to a 7% increaseduerlapped perfectly. Therefore, the time taken to coneplet

performance can result from the use of laig¥ values. gravity calculation by offloading force computations to GPU
The green curve shows the effect of varying the size ofith full efficiency would beT},, = maxz(T.,,. T},.) =

remote node RN) WRs. In this caseLN and LP are kept T, and the overhead of GPU use is given by the difference
constant. Large values @tN hinder performance, since theyryutd = T,,,, — T?,,,.
delay the offload of WRs to the GPU, causing it to idle Experiments were performed to determine this overhead for
during the early portion of the iteration. We were able tghaNGa on thdambs (3 million particles) data set. Results
reduce computation time by more than 7% by settiy are shown in Figure 6. The orange curve with upward-facing
appropriately. L triangles shows the scaling of the CPU version of ChaNGa
I__astly, the l_)lue curve de.monstra_tes the variation in COMPltambsCPU’). The green curve with circleslgmbsGPU’)
tation time with changes in the size of local particle WRshows the scaling of our first attempt at a CPU/GPU version.
(LP). In this set of experimentsLN' and RN were kept |t can pe seen that this CPU/GPU version only provided
constant. As can be seefi” does not affect computationgpeedups over the CPU-only version of ChaNGa at lower core
time significantly in the twdambs experiments, since nodeconts, In fact, barely any improvement in execution time wa
computations (both local and remote) dominate executigitained past 112 cores (and 32 GPUs.) The use of GPUs was
time. To obtain a more comprehensive assessment, we studigflimental at 448 cores.
the effect of these paramet.ers d:rmbe3QOsimuIations on a We studied the breakup of various tasks in ChaNGa to
sn_'lg!e CT‘PU core accompanied by a single GPU, COmplem&'ﬁ’entify obstacles to scaling. The amount of computation
eliminating remote work. The results of these tests are ahow,

in Figure 5(a). Particle computations accounted for ab6sb,7 offloaded to each GPU decreases as the number of GPUs
g ' P " .increases. Therefore, force computation on the GPU is elglik

: 0 )
and node computations al_)out 20% of GPU time, so that t > be the bottleneck to scaling. Recall that the tasks pedar
effect of LP on execution time was more marked than that .
: y the CPU include the traversal of the Barnes-Hut tree amd th
LN. The tradeoff between increased overlap duesrmaller . . - .
WR sizes and areater offload efficiency due laoaer WR construction of interaction lists to be shipped to the GPkrE
9 Y J though the proportion of locally-available parts of thelidb

sizes is clearly demonstrated. The optimal valuesifBrand A . : .
LN were found to increase performance by 20% and 100%39 diminishes with an increase in cores [15], tree tralers

. tme (It , = T ) scales reasonably with the number of
respectively. cpu - gpu )
cores. This is because the number of buckets for which each
D. Reducing Serial Overheads core must traverse the tree falls with an increase in the tota

In this subsection, we estimate a lower bound on the exedltmber of cores. The time to traverse the Barnes-Hut tree is
tion time achieved by dividing tasks related to the Barneg-Hdepicted by the blue curve labeled “Traversal’ in Figure 6.
procedure in the way described. We then compare the Sca”h@ecreases with the number of cores, and therefore doesn’t
performance of ChaNGa to the ideal scaling profile and stu@gid the growing overhead that is characteristic of the green
the reasons for practical discrepancies between the twis. TRMbsGPU curve.
demonstrates the overheads of GPU use. Next, we tested the amount of time taken to transfer lists of

Let T}, denote the time taken for CPU tree traversal aridteractions to the GPU. The asynchronous transfer of these
Tg;u, that to calculate forces on the GPU. In addition tésts to the GPU involves the use of a special allocator dalle
these, the simulation incurs an overhéﬁyq;”ﬁd due to the cudaMal | ocHost . This function returns a buffer of page-
serialization of interaction lists and their transfer te 8PU. locked memory of specified size. It was observed that the
When there is overlap between CPU and GPU work, tlst of usingcudaMal | ocHost and its counterpart to free
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allocated lists of interactions;udaFr eeHost , dominated F9- 7- A comparison of the performance of CPU-only and CRRIG
versions of ChaNGa.

as we scaled to larger core counts. The actual cost of these

operations comes from the fact that requests to allocate agif gata sets is shown by curves marked 80m-CPU, 16m-CPU
free buffers of page-locked memory resullt in communicatiqj{hd 3m-CPU, respectively. It is noteworthy that the CPUyonl
between the CPU and GPU. Moreover, if @ GPU is busy gbrsion of ChaNGa has been carefully optimized and uses
the time of issue of such a request, the CPU stalls until tRg\1p instructions to achieve good performance [22]. Table |
GPU becomes idle, at which point, presumably, the GPU i§mpares performance of the two versions of ChaNGa in a
available to participate in the memory request. textual format. Speedups are listed for the various data set

To overcome this overhead, a scheme was devised to fulfil columns markeds,,, which is the ratio of the time taken
requests for page-locked memory from a pool of preallocatggl compute forces om CPU cores and the time taken on
buffers. This reduces the time taken to fulfil memory reguiest, ¢gres together witln/7 GPUs. The factor oR/7 comes
considerably, since all communication between the CPU afdm the fact that 7 cores per Lincoln node are used in our
the GPU is done at startup, and the allocation and freei@ﬂperiments, i.en/7 nodes, with 2 GPUs per node. The table
of buffers involve straightforward pointer manipulatiofi$ie 510 |ists performance in terms of single precision Gflop/s.
performance of the version of ChaNGa that uses this memofyis measure was obtained by dividing the total number of
allocator is presented in Figure 6 by the red curve markggating point operations performed during force compotati
lambsmempool. As can be seen, the curve in red scales {§ the time taken to complete this procedure. This includes
beyond the one in green. This behavior was seen acrossall gk time spent in traversing the tree and constructing, lists
sets considered. Therefore, savings due to the use of poQlgthmunication of remote data between processors and gariou
memory are key to strong scaling performance. overheads associated with the use of GPUs.

Observe that the difference between the total time takenThe smallest of the data sets, 3m, exhibits a good scaling
by the lambsmempool version (red) and the tree travers@rofile up to 224 cores/64 GPUs. Efficiency suffers at 448
time (in blue, equivalent td’;,,) diminishes as the number of cores/128 GPUS, but the simulation still scales up to thattpo
processing elements increases. In fact, at 224 coreSIGABGW using 4 GPUs in addition to 14 CPUs, we were able to
and beyor_1d, there is so little force calculation work per GPHoeed up simulation times by 9.5 times. This speedup drops
that the time taken by CPUs to perform tree traversal angh increasing numbers of cores and GPUs, as the amount of
list construction dominates. Figure 6 also shows the ideghrk done per GPU falls. The simulation exhibited an average
performance relative to 14 cores and 4 GPUs (brown curyge of 538 Gflops/s with 448 cores/128 GPUs.
marked ‘Ideal’.) Notice that the execution times depictgd b The 16m data set has a more uniform distribution of
the lambsmempool curve are close to the ideal values up ipyticles than the 3m and 80m systems. This reduces the
56 CPUS/16 GPUs, indicating an efficient implementation. 3mount of load imbalance across processors, so that greater
speedups may be obtained over the CPU-only version. Values
of S, for this data set remain appreciable across the range

We now present results from tests conducted to assess dfigrocessors. We were able to obtain a speedup of about 14
performance of the GPU version of ChaNGa under strong scalter the CPU-only version at lower core and GPU counts,
ing conditions on the Lincoln GPU cluster. Figure 7 comparesd 9.82 at 448 cores/128 GPUs. With this configuration, the
the performance of the CPU-only and CPU/GPU versions simulation maintained an average rate of 1.79 Tflop/s.
ChaNGa on thdambs hrwh_LCDMs and lambb datasets.  Finally, the largest of the systems studiéainbh demon-
These are abbreviated as 3m, 16m and 80m, respectively. Btrated excellent scaling up to 896 cores/256 GPUs. Whereas
performance of the CPU-only version with the 80m,16m argliperlinear speedups are obtained when scaling from 448

VII. RESULTS
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cores/128 GPUs to 896 cores/256 GPUs, this is likely an

artifact of the values selected for WR sizes with the 448 0'0011 0 100 1000 10000 100000
core/128 GPU configuration. Once again, our implementation Target particles

yielded a 9.92-10x speedup °V¢r the.CPU_Only Version on HP 8. Time per step measured as a function of number of tt@aicles.
to 448 cores/128 GPUs. The simulation sustained an aver € use of the GPU for as an offload device is feasible onlyrire tsteps
of 3.82 Tflop/s on 896 cores/256 GPUs. However, we wewdth more than 250-500 target particles.

unable to conduct tests on an 896-core, CPU-only version,

which is why the corresponding,, value is left blank. If efficient to conduct tree traversat well asforce calculation
we were to extrapolate performance of the CPU-only versiam the CPU for time steps that have fewer than 500 target
by assuming no loss in parallel efficiency upon doubling thgarticles per processor.

number of processors from 224 cores, we would still obtain a

speedup of 11.15 times with the CPU/GPU version. VIII. CONCLUSION AND FUTURE WORK

A. Considerations for Multistepped Simulations In this paper, we stu_died various gpplication charactesis_t
i . . . of Barnes-Hut simulations and their impact on the scaling
Modern grawtajuqnal S|mu|z_;\to_rs m_ust de_al with part'd?)erformance on clusters of GPUs. The key characterist@sid

systems thﬁ‘t er:(.h'hb'g vast yarlatlons mf gartlcle Idenshzﬁ.d A tified were optimal kernel organization, favorable balante
consequently, igh dynamic ranges of imescalesmuiti- -,y petween the CPU and GPU, the overlap of tree traversal
steppedsimulations, this feature of self-gravitating systems I8 the CPU with force routine execution on the GPU. and
exploited to obtain large algorithmic gains in performanc '

. X . fhe removal of serial bottlenecks such as page-locked memor
Instead of computing forces on all particles at each timp, ste

. . Pllocation requests. Furthermore, we provided a lower Qoun
forces are evaluated at every time step only on the partic

tin th td . The f " execution time given the division of concerns between
present in the most dense regions. 1he Torces on partices ; 5ng gpu. we incorporated these optimizations into a
in less dense regions are updated less frequently, and o

ionall the f ted f I ticles im t Xduction-quality simulator called ChaNGa and performed
occasionaly are the Torces computed for afl particies & trong-scaling tests on realistic data sets, demongjrgtiod
system. This force evaluation scheme can lead to dram

reductions in computational cost, while maintaining aecyr astbca”ng results.
of simulation P ' 9 ¥ Future work will focus on the adaptation of SPH and FMM

In GPU-supported multistepped simulations, data must QeethOds o the GPU. We will aiso explore the design of a

) ipelined GPU tree traversal to alleviate the CPU bottl&nec
transferred to and from the GPU at each time step. The%tgscale. Finally, we leave the study of load imbalance in GPU

data include the _coordmate :_:md multipole information Qjased multistepped simulations to future work.
both thetarget particles, on which forces are evaluated, and

source particles, which contribute to the forces incident on
the target particles. Note that the former constitute a etubs
of the latter. For time steps in which there are relatively The authors would like to thank the reviewers for their

few target particles, the memory transfer and GPU kerng@mments and thoroughness. Thanks are also due to Orion

startup overheads dominate execution time. These ovesheb@wlor for his suggestions regarding the performance of an
are amortized over a larger number of particles in time steparly version of the CPU/GPU version of ChaNGa. This work

where there are more target particles. was supported in part by the National Science Foundation
This effect is illustrated in Figure 8, which depicts perfor(ITR-HECURA-0833188) and NASA (NNX08AD19G). Runs

mance of the CPU-only (blue) and CPU/GPU version (re@) Lincoln were done under the TeraGrid [26] allocation gran

on a multistepped simulation of theube300data set on a ASC050039 supported by the NSF.

single processor. The amount of computation per time step

varies with the number of target particles. Therefore, the REFERENCES
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