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Abstract— This paper focuses on the use of GPGPU-based clus-
ters for hierarchical N -body simulations. Whereas the behavior
of these hierarchical methods has been studied in the past on
CPU-based architectures, we investigate key performance issues
in the context of clusters of GPUs. These include kernel orga-
nization and efficiency, the balance between tree traversaland
force computation work, grain size selection through the tuning
of offloaded work request sizes, and the reduction of sequential
bottlenecks. The effects of various application parameters are
studied and experiments done to quantify gains in performance.
Our studies are carried out in the context of a production-quality
parallel cosmological simulator called ChaNGa. We highlight
the re-engineering of the application to make it more suitable
for GPU-based environments. Finally, we present performance
results from experiments on the NCSA Lincoln GPU cluster,
including a note on GPU use inmultistepped simulations.

Index Terms—N -Body Simulations, Barnes-Hut Algorithm,
General Purpose Graphics Processors, Performance Analysis

I. I NTRODUCTION

In recent years, the GPU has received widespread accep-
tance as the accelerator of choice for computation-intensive
applications. The use of GPUs to accelerate applications
as varied as biomedical imaging, molecular dynamics and
stochastic financial modeling has been detailed in the liter-
ature. However, the results of adaptation to this relatively
new class of architecture vary from stellar for some applica-
tions to mediocre for others. Whereas applications dominated
by floating-point arithmetic with simple layout and regular
memory access patterns have done well on these platforms,
significant effort is required to obtain appreciable speedups
for applications that exhibit irregular parallelism. To date,
relatively few studies have been carried out on the scalability
of applications on large clusters of these devices.

In this paper, we analyze the performance of Barnes-Hut
simulations on GPU clusters. The various tasks associated
with the Barnes-Hut procedure are split among the CPU and
the GPU. The parallel construction and traversal of the global
Barnes-Hut tree is done by the CPUs. The traversal procedure
produces lists of computations that are offloaded to the GPU.
Therefore, all of the actual force calculation is performed
on the GPU. The efficient use of GPUs as offload devices
requires the study of different parameters of the Barnes-Hut

application. In this paper, we focus on aspects such as the
layout of force computation kernels, the balance between tree
traversal and force evaluation, the overlap of CPU work with
GPU work, the removal of serial bottlenecks on the CPU and
considerations for multi-time resolution simulations. While
the effect of such factors has been examined in detail for
shared and distributed memory systems, this work discusses
their effects in the context of clusters of GPUs. Mathemat-
ical models for performance are used where appropriate. In
addition, we provide empirical data from a hierarchicalN -
body simulator called ChaNGa. We establish a lower bound
on the time taken to compute forces in this manner of dividing
responsibility for tasks between the CPU and GPU. Finally,
we demonstrate the efficacy of the techniques discussed by
highlighting performance results on up to 256 GPUs using a
variety of cosmological data sets.

The rest of the paper is organized as follows. We begin
with brief descriptions of related work and the software
infrastructure on which ChaNGa is based. Next, we analyze
the performance of the Barnes-Hut algorithm on GPU clusters
along various dimensions. Finally, we highlight the utility of
these optimizations in the form of scaling results from the
simulation of various data sets using ChaNGa.

II. RELATED WORK

Warren and Salmon [1] were among the first to design a
scalable parallel simulator based on theO(N lg N) Barnes-
Hut algorithm. Gramaet al. [2] have presented an analysis of
different parallel formulations of the Barnes-Hut procedure.

More recently, Kawaiet al. [3] and Makinoet al. [4] have
demonstrated the use of specialized hardware to obtain good
speedups over the traditional CPU-based approach. However,
they used theO(N2), all-pairs algorithm which does not scale
well with the number of particles. The all-pairs algorithm has
also been adapted to the GPU. Implementations showing ap-
preciable speedups over traditional CPUs have been provided
by Nylandet al. [5] and Bellemanet al. [6], among others.

Hamadaet al. [7] have provided an efficient implementation
of the Barnes-Hut algorithm for a custom-built GPU cluster.A
large data set, exceeding 1.5 billion particles, was used inthat
work to demonstrate good performance and performance/price
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results using MPI and CUDA. We assess the strong-scaling
performance of GPU-assistedN -body simulations by using
small data sets, and demonstrate that through a series of careful
optimizations, good scaling can be achieved even with small
sets of astronomical data. Moreover, we provide an analysis
of the various factors that affect the scaling performance of
a production-quality simulator such as ChaNGa. Our use of
techniques such as quadrupole moments and gravitational soft-
ening yields greater physical precision than the code outlined
in that work. Since the data sets used in our experiments are
physically accurate representations of astronomical systems
and feature in the computational astronomy literature, the
results presented are relevant to both the astrophysics and
computational science communities.

Lashuket al. [8] have created scalable algorithms for the
FMM technique and present results on similar counts of
GPUs as described in this paper. While the force calculation
methods used differ from the ones employed here, we note that
the authors present speedup comparisons between the GPU-
augmented and CPU-only versions of the code by restricting
the number of processes per socket (4 CPU cores) to one.
Moreover, artificial data sets are used to obtain uniform
distributions of particles, and only weak-scaling resultsare
presented.

Aubert and Teyssier have used a cluster of GPUs to perform
radiative transfer calculations coupled with a tree-basedAMR
code called RAMSES [9]. They demonstrate good speedups
over a CPU-only version. However, the finite difference cal-
culations carried out on the GPU in that code are significantly
different from the pairwise force computations performed
in the GPU kernels studied in this paper. In particular, the
irregular nature of the data parallelism in tree-based codes
makes it harder to attain good speedups.

III. G ENERAL PURPOSEGPUS AND CHARM++

We used NVIDIA’s CUDA [10] technology to develop the
GPU code for ChaNGa. CUDA devices are programmed using
C with extensions for expressing parallelism on the GPU
and utilizing GPU-specific hardware units. As an accelerator
device, a GPU has limited control capabilities. CUDA reflects
this fact by requiring programmers to write CPU code for
managing the units of parallel GPU code, which are known
askernels.

In order to benefit from GPU acceleration, a program
must be decomposed into a large number of concurrently
schedulable units. Furthermore, the high density of execution
units on the GPU comes at a cost of limited instruction
scheduling and dispatch logic which is shared across a group
of eight execution units called aStreaming Multiprocessor
(SM) in CUDA terminology. In practice, this dictates that
groups of threads must execute the same code in lockstep
fashion or suffer poor performance. In CUDA GPUs these
groups, known aswarps, consist of 32 threads. If threads
within a warp diverge on a branch, the full warp is serially
executed on each branch path, with threads converging into a
single execution path only after the branch is finished.

CUDA requires the organization of warps into larger units
calledblocks. Threads are assigned to SMs in units of blocks
and can only communicate with other threads in the same
block. Communication across blocks requires termination of
the GPU kernel and data transfer into CPU memory where
the required data manipulation can be performed. These issues
limit the applicability of GPUs primarily to data parallel appli-
cations, and usually require significant program modifications
when porting applications to use a GPU.

CUDA gives users access to several on-chip memory and
computational resources which are unique to GPUs. Each
SM has a largeregister filewhich provides fast storage that
is shared among all its threads. Register use is indirectly
controlled by the user through variable declarations inside
kernels. In addition to a register file, each SM also containsa
modestly sizedshared memoryunit. Shared memory is as fast
as registers and can be used to communicate among threads in
the same block. Shared memory is 16-way banked, requiring
threads within a half-warp to access data on different banksto
yield full bandwidth.Constant memoryprovides single-cycle
access to immutable data as long as all threads in a half-warp
access the same value.Texture memoryis cached on-chip and
optimized for 2D spatial locality. Any data not stored in one
of the above units must be read from a relatively largeglobal
GPU memory. Global GPU memory latency is on the order of
400-600 cycles, but its bandwidth is high compared to CPU
memory as long as values accessed by neighboring threads
are located in close proximity in memory. Global memory
latency is dynamically overlapped with useful work done by
thread blocks that are ready to execute.

A. CHARM++

CHARM++ [11] is a message-driven parallel language im-
plemented as a C++ library. CHARM++ programs consist of
collections of objects calledchare objects, which execute in
response to messages received from other chare objects. While
it is the programmer’s responsibility to partition a program
into a number of chare objects, the CHARM++ adaptive
runtime system performs the mapping of objects to proces-
sors. CHARM++ objects communicate through asynchronous
messages using the familiar C++ syntax of invoking a function
on an object. The runtime system keeps track of physical
location of chare objects and handles the low-level detailsof
sending and receiving messages on the network. CHARM++
is built on top of a communication layer called Converse
which supports most hardware and network architectures in
use today. CHARM++ shares the message driven execution
model with the Actors paradigm [12].

CHARM++ applications are typically written to have signif-
icantly more chare objects than the number of processors used
during execution. The presence of multiple objects on a single
processor allows for automatic overlap between computation
and network communication, since if one object is waiting for
a message, the runtime system can schedule objects whose
messages have already been received.



B. CHARM++ GPU Manager

The purpose of the CHARM++ GPU Manager is to simplify
the management of GPUs in CHARM++ programs while
providing good GPU and CPU utilization. It is possible to
use CUDA directly in Charm++, and applications have been
written which do so to good effect [13]. When using GPUs
in a Charm++ program, one needs to be careful to ensure
that the CPU is not blocked when transferring data between
CPU and GPU memories or calling kernel functions. Since
Charm++ programs often have several messages per processor
enqueued for execution, blocking the CPU on every GPU
operation is undesirable. Second, users need to be able to
share GPUs among chare objects such that the objects do not
synchronize explicitly with each other when using the GPU.
Since chares often do not have a prescribed order of execution,
synchronizing would be difficult and probably detrimental to
performance. Use of the CUDA stream construct and polling
functions provides a partial solution to these issues. For every
CUDA kernel call and data transfer, users can indicate in
which stream the operation should execute. CUDA operations
within a single stream execute in order while a kernel exe-
cution and a GPU data transfer operation which happen in
different streams can theoretically overlap in execution.The
most natural way to utilize streams in CHARM++ is to use a
different CUDA stream parameter for every chare executing on
the GPU. Users can poll for completion of operations within
a single stream. This provides a way to determine whether all
GPU operations belonging to a particular chare have finished
executing.

The above approach unfortunately suffers from some per-
formance and usability problems. First, it requires periodic
polling calls for each chare which is using the GPU to check
whether work for a particular stream has completed. This
reduces code clarity and is tedious for the user. Second, while
the number of chares which have work to be executed on
a particular GPU may be large, only one chare’s kernel can
execute at a time on the GPU. The large number of calls
to periodic functions which perform the polling will waste
CPU cycles. Finally, while CUDA can theoretically overlap
kernel execution with data transfer in concurrent streams,in
practice the most natural usage patterns of streams greatly
limit the possibility of overlap between kernel execution and
data transfer. CUDA hardware consists of a compute engine
and a DMA engine which can operate concurrently. Stream
operations are assigned to the appropriate engine in FIFO
order as they are encountered in the program. A typical usage
scenario for a stream is to submit three operations one after
another: data transfer into the device, kernel execution, and
transfer of results out of the device. While the kernel is
executing, the data-transfer-out operation will remain atthe
head of the DMA engine queue, stopping data transfers in
other streams from executing. To prevent this, one would have
to insert an additional polling call for completion of kernel
execution, and only then transfer data out of the device before
scheduling another polling call.

The CHARM++ GPU Manager is a library designed to
address the above issues by automating the management of
GPUs[14]. Users of GPU Manager definework requestswhich
specify the GPU kernel and any data transfer operations
required before and after completion of the kernel. The system
controls the execution of the work requests submitted by allthe
chares on a particular processor. This allows it to effectively
manage execution of work requests and overlap CPU-GPU
data transfer with kernel execution. In steady-state operation,
GPU Manager overlaps kernel execution of one work request
with data transfer out of GPU memory for a preceding
work request and the data transfer into GPU memory for a
subsequent work request. This approach avoids blocking the
DMA engine by only submitting data transfers when they are
ready to execute. When using GPU Manager, the user does not
need to poll for completion of GPU operations. The system
manages execution of a work request throughout its life cycle
and returns control to the user upon completion of a work
request through acallback objectspecified by the user per
work request. Another advantage of using GPU Manager is
that the system polls only for a handful of currently executing
operations, which avoids the problem of multiple chares all
polling the GPU when using CUDA streams directly. GPU
Manager has options for recording profiling data for kernel
execution and data transfer which can be visualized using the
CHARM++ Projections profiler.

IV. CHANGA

ChaNGa [15] (CHARM++ N-body Gravity Solver) is an it-
erativeN -body simulator written in CHARM++. ChaNGa dis-
tinguishes itself from other codes through several production-
quality features. These are essential for state-of-the-art cos-
mological simulations, and include canonical, comoving coor-
dinates with a symplectic integrator to efficiently handle cos-
mological dynamics [16], individual and adaptive time-steps,
periodic boundary conditions using Ewald summation, and
Smooth Particle Hydrodynamics (SPH) [17] for adiabatic gas.
The gravitational softening is consistent with the spline kernel
softening used in SPH [18]. ChaNGa also uses quadrupole
expansions which provide a more efficient force evaluation
than monopole expansions at the force accuracies required for
cosmological simulations [19]. Therefore, ChaNGa has many
of the features of the widely used, state-of-the-art cosmology
simulation codes, GASOLINE [20], and GADGET [21]. These
features are in contrast to existing GPU implementations
which typically only use monopole expansions, do not use
periodic boundary conditions or comoving coordinates, and
use a non-local gravitational softening. In addition, ChaNGa
employs several optimizations, such as the prefetching of
remote data, use of a software cache to reduce average access
time of remote data, and prioritized execution to overlap
requests for remote data with useful computation. These opti-
mizations have enabled ChaNGa to scale to 32,768 cores [22].

Below, we describe the various phases of each iteration of
ChaNGa. This will give some context to the optimizations
discussed in§ VI.



Domain decomposition. Particles are decomposed onto
CHARM++ objects calledtree piecesusing one of many
decomposition strategies. This operation is similar to a parallel
sort of particles across all tree pieces. The tree pieces are
assigned to processors by the CHARM++ runtime system.
GPUs are excluded from this phase since there is not enough
computation per particle to justify the transfer and kernel
invocation costs associated with GPU use. In the strong scaling
studies that we conduct, there are significantly fewer than a
million particles per processor–less than the threshold amounts
above which the best GPU algorithms outperform CPU-based
sorting codes.

Tree construction. Once the particles have been partitioned
among tree pieces, a distributed Barnes-Hut tree is constructed,
with each tree piece holding a portion of the Barnes-Hut tree
that is local to it. This phase is characterized by irregular
memory accesses and very little computation per tree piece
beyond the recursive summation of multipole moments of
sibling nodes. Furthermore, ChaNGa employs a fine-grained
algorithm for tree construction, where the latency of exchange
of shared node information is overlapped with useful work.
Given this issue of grain size, it is more beneficial to perform
tree construction on the CPUs.

Tree traversal. The computation of gravitational forces is
preceded by a traversal of the distributed Barnes-Hut tree by
each tree piece. In ChaNGa, the cost of traversing the tree
is amortized over several local particles by grouping them
into buckets. These buckets form the leaves of the Barnes-Hut
tree. For each bucket of local particles (thetarget bucket), an
interaction list is obtained, listing the nodes and particles that
act assourcesof gravitational force on it. Each tree piece
performs this traversal in two parts. Thelocal traversal is
conducted on that portion of the Barnes-Hut tree that is local to
the tree piece (i.e. its local tree). Theremotetraversal operates
on the remainder of the distributed Barnes-Hut tree, leading to
communication between tree pieces in the form of requests for
remote nodes and particles. Since communication cannot be
initiated by the GPU directly, assigning this task to it would
entail repeated memory transfers between the CPU and the
GPU. Due to this issue, tree traversal is performed on the
CPU.

Force computation. Gravitational forces may be computed
in parallel across all particles. In fact, each interactionof
the particle with a tree node (aparticle-nodeinteraction) or
another particle (aparticle-particle interaction) may be com-
puted in parallel with all others. Moreover, the gravitational
force calculation routines exhibit a high intensity of floating
point operations. These factors make force calculation an ideal
candidate for execution on the GPU. In order to ensure a large
enough grain size for gravity computation kernels on the GPU,
ChaNGa was enhanced with awork agglomeration module.
This module collates the interaction lists of multiple buckets
into a singlework request(WR), which is then transferred to
the GPU for execution.

CPU B

CPU A

GPU

Request for

Remote Data Sent

Data

Request
Recvd

WR WR
Local

Traversal
Local

Data recvd

Construction continues

Remote

Traversal
Remote

Fig. 1. Division of tasks between the CPU and the GPU. Here, two CPUs
share a GPU. Remote and local tree traversals are performed on the CPU to
construct lists of interactions. These are offloaded to the GPU for computation
of forces. CPU and GPU work can be overlapped.

Ewald summation. Forces in simulations with periodic
boundary conditions are handled using the Ewald summation
technique in a manner similar to the reduced cell multipole
method of Dinget al. [23]. For a given particle we first cal-
culate the direct non-periodic forces due to all particles in the
fundamental cube (i.e. the simulated universe) and a numberof
periodic replicas, usually the 26 neighbors. We then calculate
the forces due to the Ewald sum of the multipole moments
of the root cell of the fundamental cube. Our approach differs
from that work in that we explicitly calculate the Ewald sum
of the multipole moments rather than representing them with
a small number of particles. The Ewald calculation involves
a sum over nearby replicas and a sum over Fourier terms.
The nearby replica terms are modified to exclude the forces
which were included in the direct calculation. Since these
summations only depend on the multipole moments of the
root cell, no communication is needed for this part of the
force [24].

We offload all Ewald summation onto the GPU. The or-
ganization of the algorithm into a real space component and
a Fourier space component suggests a division of the GPU
work into two kernels. As the two phases of the calculation
use different data structures, placing them into separate kernels
decreases the register usage per thread and allows more threads
to be present on the GPU at the same time. To further reduce
register pressure, we used constant memory to store a set
of values required during the execution of the real space
component of Ewald summation. For the Fourier space kernel,
we used constant memory to store a large table of values
precomputed on the CPU. Since in both cases the values
accessed in constant memory were required by all threads
within a warp at the same time, the broadcast capabilities of
the constant cache were fully utilized. Both kernels further
benefited from the use of fast GPU implementations of math
functions.

Figure 1 illustrates the execution of various tasks on the
CPU and the GPU. The figure shows the timelines of two
CPU cores offloading multiple work requests to a single GPU.
Also shown is activity related to remote and local traversals
(aquamarine and light blue colored bars, respectively) andthe
exchange of node and particle data between processors (dark
blue bars.) During their remote traversals, CPUs A and B send
requests for particle and node data to each other. It can alsobe



seen that the traversals of the two processors have intervening
dark blue boxes. This represents the periodic suspension of
traversal work in order to satisfy any pending requests for
data from remote processors. Once a threshold number of
interactions has been accrued during the traversal, the CPU
sends the GPU a work request. A work request has a name
that corresponds to the type of traversal that generated it.For
instance, a local traversal generates local work requests.Notice
that the division of computation work into work requests
allows overlap between traversal work on the CPU and work
request execution on the GPU. Since the size of each WR can
be controlled, this approach also provides an effective wayto
limit the amount of GPU memory used in computing forces.

During the course of a CPU-only simulation, most of the
time is spent in force computation. In particular, preliminary
studies showed that more than 90% of the time was spent in
gravity computation on several benchmarks, even when using
up to 1,024 processors. In our case, this time is consumed in
the Barnes-Hut algorithm. Therefore, in the remainder of this
paper we will consider only this phase of the simulation.

V. EXPERIMENTAL SETUP

The experiments and performance tests described in the
remainder of the paper use various astronomical data sets of
varying properties and size:
cube300.A low resolution simulation of a cosmological cube
300 Mpc on a side with 30% dark matter and 70% dark energy.
Only 110,592 particles are used. The particles are moderately
clustered on small scales, becoming more uniform on larger
scales.
lambs. Final state of a simulation of a71Mpc3 volume of the
Universe with 30% dark matter and 70% dark energy. Nearly
three million particles are used. This dataset is highly clustered
on scales less than 5 Mpc, but becomes uniform on scales
approaching the total volume. Three subsets of this data setare
obtained by taking random subsamples of size thirty thousand,
three hundred thousand, and one million particles, respectively.
hrwh lcdms.Final state of a90Mpc3 volume of the Universe
with 31% dark matter and 69% dark energy realized with 16
million particles. This dataset is used in [25], and is slightly
more uniform thanlambs.
lambb. Same physical model aslambsexcept that it is realized
with 80 million particles.

These data sets are small compared to state of the art
cosmologicalN -body simulations currently being performed.
In the experiments below we focus on the strong scaling of
these data sets rather than weak scaling to larger data sets for
a couple of reasons. First, many astrophysical problems, e.g.
globular clusters or nuclear regions of galaxies, involve solving
an N -body system for 10,000 dynamical times requiring
millions of time steps. Hence data sets where time steps can
be completed in an order of a second are needed. Second,
because communication overheads become more significant
as the work per processor decreases, and the amount of
communication only grows logarithmically with problem size
for the tree algorithm, strong scaling is harder to achieve than

blocks
Iterate over node

Iterate over
particle blocks

P

N

dn

dp

Iij

Fig. 2. Pictorial depiction of the organization of force computation kernel.

weak scaling. Furthermore strong scaling for a small problem
on a modest number of processors will indicate how well the
code will perform with large problems on the 100,000 core
machines expected in the near future.

Experiments were performed on two machines. The single
core, single GPU tests were conducted on a quad-core work-
station equipped with an Intel Core 2 Quad Q6600 processor
running at 2.4 GHz, augmented with an NVIDIA GeForce
8800 GTS card comprising128 streaming processors. Strong
scaling results were obtained on the NCSA’s Lincoln GPU
cluster, which comprises 192 Dell PowerEdge 1950 servers,
each hosting dual Intel Core 2 Quad (Harpertown) 2.33 GHz
processors with access to a total of 16 GB of memory. An
NVIDIA S1070 Computing System is shared between two
nodes, resulting in a total of 8 cores and 2 GPUs per node.
Nodes are connected via an Infiniband SDR network. OS
interference and system noise prevented the use of all 8
cores per node: our experiments were conducted with only
7 CHARM++ processes instantiated per node. This strategy
leaves one core per node free for the execution of OS daemons
and periodic OS tasks, yielding better performance than using
all 8 of the cores available per node.

VI. T UNING GPU PERFORMANCE

Whereas the promise of massive amounts of hardware
parallelism provides a compelling case for their adoption,
the efficient use of GPUs in sophisticated variants of the
Barnes-Hut procedure requires the investigation of several
performance issues and significant development effort. In
this section, we study the key performance characteristicsof
these simulations. Further, we quantify the benefits yielded
by careful consideration of application parameters through
experiments done with the ChaNGaN -body simulator.

A. Kernel Organization

A scalable parallel simulator spends most of its time in
force computation routines. Therefore, adapting the structure
of the force computation kernels is key to ensuring good
performance. Consider the calculation of forces on a bucket
of P particles due to a list ofN nodes. Interactions between
a particlepi and a nodenj can be represented as elements of
an interaction matrixI , such that each interactionI ij denotes
the calculation of the force ontarget pi due to sourcenj .
Each I ij can be computed in parallel. However, the number
of concurrent threads available per block is typically much
smaller than the total number of interactions: values forN
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Fig. 3. Variation of computation time with kernel layout: 3(a) models this time whereas 3(b) and 3(c) show empirical results.

are typically in the thousands, andP is on the order of tens
of particles. Therefore,I is divided into individual tiles that are
executed one-at-a-time by a block of threads of sizeT < NP .
A block of threads is organized logically as a rectangle of
length dn ≪ N and breadthdp < P , with the condition
that dp × dn = T , i.e. dn = T/dp. This arrangement is
depicted in Figure 2. Threads in rowi operate upon the data
of particlepi, whereas those in columnj share the multipole
expansions of nodenj . A single thread in rowi (respectively,
columnj) issues the load of particlepi (nodenj) into shared
memory. These threads are calledrow- and column-leaders,
respectively.

Furthermore, stores to global memory are limited by com-
puting partial forces on a batch ofdp particles until all node
interactions are exhausted. Then, each row-leader accumulates
the acceleration of its corresponding particle and updatesit
in global memory. This yields an optimal number of stores
(exactlyP ) to global memory. However, loads of nodes must
now be repeated across different batches of particles. If the
size of a particle’s coordinate information issp bytes and that
of a node’s multipole moments issm bytes, the total number
of bytes loaded from global memory is:

Ltotal = Nsm⌈P/dp⌉ + Psp

It may appear that performance can be maximized by in-
creasingdp at the expense ofdn. However, increasingdp can
have a negative effect on the performance of the gravitational
force kernels, as explained below. Ifsv is the size of the
data structure that stores a particle’s (variable) acceleration
and potential, the total amount of shared memory required per
block for this tiling scheme,Mtotal , is given by:

Mtotal = Tsv + Tsm/dp + spdp

The greater the value ofMtotal , the fewer the blocks that can
be assigned for parallel execution to each multiprocessor of the
GPU. Therefore, the amount of hardware concurrency utilized
actually diminishes with the increase ofdp. To estimate the
combined effect of these forces, we model force computation
time F as a linear combination ofLtotal and Mtotal . The
shape of this curve for constantT is depicted in Figure 3(a). In
modeling force computation time asF (dp) = Adp+B/dp+C,
we use placeholder constantsA, B and C instead of actual
values obtained by curve-fitting, since we only wish to obtain

an idea of the variation of execution time withdp. The
minimal value for computation time was obtained empirically,
as detailed later. The graph illustrates that the minimum occurs
at an intermediate value ofdp rather than at either extreme.
For small values ofdp, accesses of node moment information
account for much of the execution time. SinceMtotal grows
linearly with dp, it dominates execution time for largedp. To
ascertain the optimal value ofdp, we did experiments on the
cube300data set on a single CPU core with one GPU. Our
conjectures about the variation of execution time withdp were
borne out for the various values ofT examined. Figures 3(b)
and 3(c) show the variation of execution time withdp. The
expected trough is visible for differentT values. The best
performance was achieved with a total ofT = 128 threads
per block, and dimensionsdp = 16, dn = 8.

B. Balancing Tree Traversal and Force Computation

There are two main parts to the calculation of forces in
the Barnes-Hut procedure. The first is the traversal of the
global tree to accumulate a list of interactions. Recall that
these lists are accrued for buckets of particles. Then, there is
the calculation of forces using the interaction lists. The amount
of time spent in either routine can be controlled by tuning
the average size of a bucket. Increasing the average size of a
bucket reduces the number of leaves in the global tree, thereby
reducing the number of internal nodes in it. This reduces the
time spent walking the tree. On the other hand, increasing the
bucket size can raise the amount of computation performed for
the following reason. Letro be theopening radiusof node
n. This radius is proportional to the size ofn, and describes
a sphereS centered at its center of mass. If the bounding
box of a bucketb intersects withS, n must beopened, i.e.
its children must be evaluated when computing forces for
particles inb. This has a dual effect: (1) since bounding boxes
of buckets are bigger,b is more likely to intersect withS
thus forcing the opening ofn; (2) since buckets are located
higher in the tree, when openingn we could find that it is a
bucket, and therefore we would need to compute directly with
all its particles. This increases the total number of interactions
recorded, as shown in Figure 4(a). Note that although thetotal
number of interactions increases, the number of particle-node
interactions remains roughly the same. This is because while
effect (1) increases the number of particle-node interactions,
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Fig. 4. Single-GPU runs on thecube300(100k particles) data set; 4(a): total number of interactions increases rapidly with bucket size; 4(b): tree traversal
time decreases, and GPU computation time increases with larger buckets; 4(c): a similar effect is observed on the CPU.

effect (2) decreases it.
The tradeoff engendered by the average bucket size is

depicted in Figure 4(b). The experiments presented were
performed on thecube300data set on a single core with a
single GPU. It must be noted that the tests were performed
with no overlap between CPU work (tree traversal) and GPU
work (force evaluation). Computations meant for the GPU
were buffered until the tree was traversed completely for all
buckets. This helped isolate the issue of work balance from
that of overlap between the CPU and GPU (discussed in
§ VI-C.) In the graph, the time taken to traverse the Barnes-
Hut tree is shown by the blue curve. It was obtained by
switching off force calculation in ChaNGa. The green curve
was generated by measuring the total time taken on the GPU
for calculation of forces due to both particle-particle and
particle-node interactions. The red curve depicts the total time
taken to complete all Barnes-Hut tasks (dominated by the
sum of CPU tree traversal and gravitational force calculation
on the GPU.) For small buckets, tree traversal accounts for
most of the execution time. This changes with an increase
in bucket size. Time taken by the GPU to calculate forces
decreases initially due to fewer, more efficient thread blocks.
Total time falls until the optimal value for average bucket
size, determined to be 32.51. Past this point, the increasing
cost of extra particle-particle computation dominates andtotal
computation time rises. On Lincoln, an average bucket size of
44.92 worked best across the range of data sets. The Ewald
computation was independent of bucket size and required 120
ms for completion.

Figure 4(c) depicts the effect of bucket size on CPU
execution time. As before, tree traversal time decreases with
an increase in bucket size. Force calculation time also de-
creases until 5.7 particles per bucket. At this point, the
extra computation due to larger buckets hindered performance.
Ewald computation took a constant time of about 3.2 seconds,
implying that GPU use sped up the operation by 25 times.

C. Overlapping CPU and GPU Work

Using the GPU as an acceleration co-processor in the
described fashion, the only tasks designated to it are the
computation of forces on particles due to lists of interactions
and the Ewald correction. Tasks such as tree traversal and the
construction and serialization of interaction lists are consigned

to the CPU. To allow the overlap of CPU work with that done
on the GPU, the entire space of interactions is split into indi-
vidual work requests. As noted in§ IV, work requests (WRs)
are created by the CPU and specify the sources of gravitational
force (tree nodes or particles) with which target particles
interact. Work requests are self-contained and independent of
each other. Therefore, the construction of interaction lists for
one request can be overlapped with the computation of forces
with lists from a previous one.

However, the division of work into individual requests
comes at a cost. The transfer of a WR incurs the overheads
of serialization and memory transfer. An optimal balance of
work between the CPU and GPU ensures that the work done
by one is overlapped with that performed by the other, without
incurring a prohibitive penalty for this division of computation
work into WRs.

Figure 5 presents the variation in computation time with
sizes of the key types of work request. The parameters studied
are the sizes of local node (LN ), remote node (RN ) and local
particle (LP ) computation requests. Tests were conducted with
the lambs data set on 14 CPU cores with 4 GPUs and 112
cores with 32 GPUs, to examine the effects of these parameters
at different grain sizes. The results presented in Figures 5(b)
and 5(c) respectively indicate that the effects on computation
time are similar at both scales, but less pronounced with finer
grain sizes.

Consider the 14 core, coarse-grained case shown in Fig-
ure 5(b). The red curve illustrates the effect of the size of local
node (LN ) requests on computation time. For this curve,LN

was varied whereasRN andLP were held constant. Observe
that computation time increases with a decrease in the WR
size (i.e. more WRs.) The reason for this is as follows. In
ChaNGa, computation on local nodes and particles (termed
local work) is assigned a lower priority than computation that
involves particles and nodes received from remote processors
(so calledremote work). Therefore, remote work dominates
the initial part of an iteration, and the latency of requests
for remote data that are generated during the remote work is
overlapped with useful local work. This strategy works well
for the CPU-only version. However, in the CPU/GPU version,
the CPU must serialize the data required for each WR. In
particular, the serialization of local WRs generated to mask
remote data access latencies delays the CPU’s response to
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Fig. 5. WR sizes affect the overlap of tree traversal on CPUs with force computation on GPUs. The effect is greater with more particles per core.

requests from other processors. This holds up the processors
requesting data, leading to a drop in performance. The effects
of this serialization overhead become more prominent with an
increase in the number of local WRs (corresponding to smaller
LN values.) The red curve shows that up to a 7% increase in
performance can result from the use of largeLN values.

The green curve shows the effect of varying the size of
remote node (RN ) WRs. In this case,LN and LP are kept
constant. Large values ofRN hinder performance, since they
delay the offload of WRs to the GPU, causing it to idle
during the early portion of the iteration. We were able to
reduce computation time by more than 7% by settingRN

appropriately.
Lastly, the blue curve demonstrates the variation in compu-

tation time with changes in the size of local particle WRs
(LP ). In this set of experiments,LN and RN were kept
constant. As can be seen,LP does not affect computation
time significantly in the twolambs experiments, since node
computations (both local and remote) dominate execution
time. To obtain a more comprehensive assessment, we studied
the effect of these parameters incube300simulations on a
single CPU core accompanied by a single GPU, completely
eliminating remote work. The results of these tests are shown
in Figure 5(a). Particle computations accounted for about 70%,
and node computations about 20% of GPU time, so that the
effect ofLP on execution time was more marked than that of
LN . The tradeoff between increased overlap due tosmaller
WR sizes and greater offload efficiency due tolarger WR
sizes is clearly demonstrated. The optimal values forLP and
LN were found to increase performance by 20% and 10%,
respectively.

D. Reducing Serial Overheads

In this subsection, we estimate a lower bound on the execu-
tion time achieved by dividing tasks related to the Barnes-Hut
procedure in the way described. We then compare the scaling
performance of ChaNGa to the ideal scaling profile and study
the reasons for practical discrepancies between the two. This
demonstrates the overheads of GPU use.

Let T t
cpu denote the time taken for CPU tree traversal and

T f
gpu , that to calculate forces on the GPU. In addition to

these, the simulation incurs an overheadT ovhd
gpu due to the

serialization of interaction lists and their transfer to the GPU.
When there is overlap between CPU and GPU work, the

total time taken to compute gravitational forces using GPUs
is: Tgpu = max (T t

cpu , T f
gpu) + T ovhd

gpu . To obtain an upper
bound on the speedup, we assume that the GPU is not the
bottleneck, and that CPU work and that done on the GPU are
overlapped perfectly. Therefore, the time taken to complete
gravity calculation by offloading force computations to GPUs
with full efficiency would beT ∗

gpu = max (T t
cpu , T f

gpu) =
T t
cpu , and the overhead of GPU use is given by the difference

T ovhd
gpu = Tgpu − T t

cpu .

Experiments were performed to determine this overhead for
ChaNGa on thelambs (3 million particles) data set. Results
are shown in Figure 6. The orange curve with upward-facing
triangles shows the scaling of the CPU version of ChaNGa
(‘ lambs-CPU’). The green curve with circles (‘lambs-GPU’)
shows the scaling of our first attempt at a CPU/GPU version.
It can be seen that this CPU/GPU version only provided
speedups over the CPU-only version of ChaNGa at lower core
counts. In fact, barely any improvement in execution time was
obtained past 112 cores (and 32 GPUs.) The use of GPUs was
detrimental at 448 cores.

We studied the breakup of various tasks in ChaNGa to
identify obstacles to scaling. The amount of computation
offloaded to each GPU decreases as the number of GPUs
increases. Therefore, force computation on the GPU is unlikely
to be the bottleneck to scaling. Recall that the tasks performed
by the CPU include the traversal of the Barnes-Hut tree and the
construction of interaction lists to be shipped to the GPU. Even
though the proportion of locally-available parts of the global
tree diminishes with an increase in cores [15], tree traversal
time (T t

cpu = T ∗

gpu) scales reasonably with the number of
cores. This is because the number of buckets for which each
core must traverse the tree falls with an increase in the total
number of cores. The time to traverse the Barnes-Hut tree is
depicted by the blue curve labeled ‘Traversal’ in Figure 6.
It decreases with the number of cores, and therefore doesn’t
add the growing overhead that is characteristic of the green
lambs-GPU curve.

Next, we tested the amount of time taken to transfer lists of
interactions to the GPU. The asynchronous transfer of these
lists to the GPU involves the use of a special allocator called
cudaMallocHost. This function returns a buffer of page-
locked memory of specified size. It was observed that the
cost of usingcudaMallocHost and its counterpart to free



0.0625

0.125

0.25

0.5

1

2

4

8

16

32

64

16 32 64 128 256 512

It
er

at
io

n
tim

e
(s

)

Num. CPUs

ChaNGa Overhead (lambs)

lambs-CPU
lambs-GPU

lambs-mempool
Traversal

Ideal
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allocated lists of interactions,cudaFreeHost, dominated
as we scaled to larger core counts. The actual cost of these
operations comes from the fact that requests to allocate and
free buffers of page-locked memory result in communication
between the CPU and GPU. Moreover, if a GPU is busy at
the time of issue of such a request, the CPU stalls until the
GPU becomes idle, at which point, presumably, the GPU is
available to participate in the memory request.

To overcome this overhead, a scheme was devised to fulfil
requests for page-locked memory from a pool of preallocated
buffers. This reduces the time taken to fulfil memory requests
considerably, since all communication between the CPU and
the GPU is done at startup, and the allocation and freeing
of buffers involve straightforward pointer manipulations. The
performance of the version of ChaNGa that uses this memory
allocator is presented in Figure 6 by the red curve marked
lambs-mempool. As can be seen, the curve in red scales far
beyond the one in green. This behavior was seen across all data
sets considered. Therefore, savings due to the use of pooled
memory are key to strong scaling performance.

Observe that the difference between the total time taken
by the lambs-mempool version (red) and the tree traversal
time (in blue, equivalent toT ∗

gpu) diminishes as the number of
processing elements increases. In fact, at 224 cores/64 GPUs
and beyond, there is so little force calculation work per GPU
that the time taken by CPUs to perform tree traversal and
list construction dominates. Figure 6 also shows the ideal
performance relative to 14 cores and 4 GPUs (brown curve
marked ‘Ideal’.) Notice that the execution times depicted by
the lambs-mempool curve are close to the ideal values up to
56 CPUS/16 GPUs, indicating an efficient implementation.

VII. R ESULTS

We now present results from tests conducted to assess the
performance of the GPU version of ChaNGa under strong scal-
ing conditions on the Lincoln GPU cluster. Figure 7 compares
the performance of the CPU-only and CPU/GPU versions of
ChaNGa on thelambs, hrwh LCDMs, and lambb datasets.
These are abbreviated as 3m, 16m and 80m, respectively. The
performance of the CPU-only version with the 80m,16m and
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Fig. 7. A comparison of the performance of CPU-only and CPU/GPU
versions of ChaNGa.

3m data sets is shown by curves marked 80m-CPU, 16m-CPU
and 3m-CPU, respectively. It is noteworthy that the CPU-only
version of ChaNGa has been carefully optimized and uses
SIMD instructions to achieve good performance [22]. Table I
compares performance of the two versions of ChaNGa in a
textual format. Speedups are listed for the various data sets
in columns markedSn, which is the ratio of the time taken
to compute forces onn CPU cores and the time taken on
n cores together with2n/7 GPUs. The factor of2/7 comes
from the fact that 7 cores per Lincoln node are used in our
experiments, i.e.n/7 nodes, with 2 GPUs per node. The table
also lists performance in terms of single precision Gflop/s.
This measure was obtained by dividing the total number of
floating point operations performed during force computation
by the time taken to complete this procedure. This includes
the time spent in traversing the tree and constructing lists,
communication of remote data between processors and various
overheads associated with the use of GPUs.

The smallest of the data sets, 3m, exhibits a good scaling
profile up to 224 cores/64 GPUs. Efficiency suffers at 448
cores/128 GPUs, but the simulation still scales up to that point.
By using 4 GPUs in addition to 14 CPUs, we were able to
speed up simulation times by 9.5 times. This speedup drops
with increasing numbers of cores and GPUs, as the amount of
work done per GPU falls. The simulation exhibited an average
rate of 538 Gflops/s with 448 cores/128 GPUs.

The 16m data set has a more uniform distribution of
particles than the 3m and 80m systems. This reduces the
amount of load imbalance across processors, so that greater
speedups may be obtained over the CPU-only version. Values
of Sn for this data set remain appreciable across the range
of processors. We were able to obtain a speedup of about 14
over the CPU-only version at lower core and GPU counts,
and 9.82 at 448 cores/128 GPUs. With this configuration, the
simulation maintained an average rate of 1.79 Tflop/s.

Finally, the largest of the systems studied,lambb, demon-
strated excellent scaling up to 896 cores/256 GPUs. Whereas
superlinear speedups are obtained when scaling from 448



3m 16m 80m

CPUs/GPUs Sn GF Sn GF Sn GF

14/4 9.5 57.17
28/8 8.75 102.84 14.14 176.43
56/16 7.87 176.31 14.43 357.11
112/32 6.45 276.06 12.78 620.14 9.92 450.32
224/64 5.78 466.23 13.21 1262.96 10.07 888.79
448/128 3.18 537.96 9.82 1849.34 10.47 1794.06
896/256 - 3819.69

TABLE I
SPEEDUPS(Sn) AND SINGLE PRECISIONGFLOPS/S (GF).

cores/128 GPUs to 896 cores/256 GPUs, this is likely an
artifact of the values selected for WR sizes with the 448
core/128 GPU configuration. Once again, our implementation
yielded a 9.92-10x speedup over the CPU-only version on up
to 448 cores/128 GPUs. The simulation sustained an average
of 3.82 Tflop/s on 896 cores/256 GPUs. However, we were
unable to conduct tests on an 896-core, CPU-only version,
which is why the correspondingSn value is left blank. If
we were to extrapolate performance of the CPU-only version
by assuming no loss in parallel efficiency upon doubling the
number of processors from 224 cores, we would still obtain a
speedup of 11.15 times with the CPU/GPU version.

A. Considerations for Multistepped Simulations

Modern gravitational simulators must deal with particle
systems that exhibit vast variations in particle density, and
consequently, high dynamic ranges of timescales. Inmulti-
steppedsimulations, this feature of self-gravitating systems is
exploited to obtain large algorithmic gains in performance.
Instead of computing forces on all particles at each time step,
forces are evaluated at every time step only on the particles
present in the most dense regions. The forces on particles
in less dense regions are updated less frequently, and only
occasionally are the forces computed for all particles in the
system. This force evaluation scheme can lead to dramatic
reductions in computational cost, while maintaining accuracy
of simulation.

In GPU-supported multistepped simulations, data must be
transferred to and from the GPU at each time step. These
data include the coordinate and multipole information of
both thetarget particles, on which forces are evaluated, and
sourceparticles, which contribute to the forces incident on
the target particles. Note that the former constitute a subset
of the latter. For time steps in which there are relatively
few target particles, the memory transfer and GPU kernel
startup overheads dominate execution time. These overheads
are amortized over a larger number of particles in time steps
where there are more target particles.

This effect is illustrated in Figure 8, which depicts perfor-
mance of the CPU-only (blue) and CPU/GPU version (red)
on a multistepped simulation of thecube300data set on a
single processor. The amount of computation per time step
varies with the number of target particles. Therefore, the
computational power of the GPU compensates for the cost
of CPU-GPU transfers and kernel invocation only beyond
250-500 target particles per processor. Therefore, it is more
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The use of the GPU for as an offload device is feasible only in time steps
with more than 250-500 target particles.

efficient to conduct tree traversalas well asforce calculation
on the CPU for time steps that have fewer than 500 target
particles per processor.

VIII. C ONCLUSION AND FUTURE WORK

In this paper, we studied various application characteristics
of Barnes-Hut simulations and their impact on the scaling
performance on clusters of GPUs. The key characteristics iden-
tified were optimal kernel organization, favorable balanceof
work between the CPU and GPU, the overlap of tree traversal
on the CPU with force routine execution on the GPU, and
the removal of serial bottlenecks such as page-locked memory
allocation requests. Furthermore, we provided a lower bound
on execution time given the division of concerns between
CPU and GPU. We incorporated these optimizations into a
production-quality simulator called ChaNGa and performed
strong-scaling tests on realistic data sets, demonstrating good
scaling results.

Future work will focus on the adaptation of SPH and FMM
methods to the GPU. We will also explore the design of a
pipelined GPU tree traversal to alleviate the CPU bottleneck
at scale. Finally, we leave the study of load imbalance in GPU-
based multistepped simulations to future work.
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